JPH08194533A - Controller for beam light guidance for mobile object - Google Patents

Controller for beam light guidance for mobile object

Info

Publication number
JPH08194533A
JPH08194533A JP7003657A JP365795A JPH08194533A JP H08194533 A JPH08194533 A JP H08194533A JP 7003657 A JP7003657 A JP 7003657A JP 365795 A JP365795 A JP 365795A JP H08194533 A JPH08194533 A JP H08194533A
Authority
JP
Japan
Prior art keywords
light
light receiving
guiding
moving body
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7003657A
Other languages
Japanese (ja)
Inventor
Atsushi Masutome
淳 増留
Koji Yoshikawa
浩司 吉川
Ryozo Kuroiwa
良三 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7003657A priority Critical patent/JPH08194533A/en
Publication of JPH08194533A publication Critical patent/JPH08194533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE: To surely receive beam light for guidance in a stable state by performing light receiving position control for operating a light receiving position change means so as to position the light receiving position of a beam light receiving means at the center of the scanning range of beam light for guidance based on displacement state discrimination information. CONSTITUTION: A mobile object V is provided with the light receiving position change means 20 for changing the light receiving position of the beam light receiving means S1 in a vertical direction. Then, based on the information of a time interval for which the beam light receiving means S1 receives the beam light for guidance, a controller discriminates the displacement state of the light receiving position of the beam light receiving means S1 from the center position of the scanning range of the beam light for guidance. Based on the discrimination, the light receiving position control for operating the light receiving position change means 20 so as to position the light receiving position of the beam light receiving means S1 at the center of the scanning range of the beam light for guidance is performed. Thus, the beam light for guidance is surely received in the stable state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地上側に、移動体の誘
導経路の長手方向に沿って誘導用ビーム光を上下方向に
所定角度走査する状態で投射する誘導用ビーム光投射手
段が設けられ、前記移動体に、前記誘導用ビーム光を受
光するビーム光受光手段と、そのビーム光受光手段の受
光情報に基づいて前記移動体の前記誘導経路に対する横
方向での位置を検出して、その位置検出情報に基づいて
前記移動体が前記誘導経路に沿って移動するように操向
制御する制御手段とが設けられた移動体のビーム光誘導
用制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided with guide beam light projection means on the ground side for projecting a guide beam light along a longitudinal direction of a guide path of a moving body in a state of vertically scanning a predetermined angle. In the moving body, a beam light receiving means for receiving the guiding light beam, and a position in the lateral direction of the moving body with respect to the guiding path based on light receiving information of the beam light receiving means, The present invention relates to a beam light guide control device for a moving body, which is provided with a control means for controlling the steering so that the moving body moves along the guide path based on the position detection information.

【0002】[0002]

【従来の技術】上記移動体のビーム光誘導用制御装置
は、例えば、矩形状の作業地(圃場)内に設定した誘導
経路としての複数個の作業行程に沿って誘導用ビーム光
を上下方向に所定角度走査する状態で投射するととも
に、移動体としての田植え用の作業車に例えば横方向に
所定の分解能を有する光センサを備えたビーム光受光手
段を設け、この光センサが上記誘導用のビーム光を受光
した受光位置情報に基づいて誘導経路に対する作業車の
横方向での位置を検出し、その位置検出情報に基づいて
横方向に適正な位置になるように操向制御しながら、作
業車を各作業行程に沿って誘導走行させるものである。
2. Description of the Related Art For example, a controller for guiding a light beam of a moving body moves a guide light beam in a vertical direction along a plurality of work steps as a guide route set in a rectangular work site (field). In addition to projecting in a state of scanning at a predetermined angle, a work vehicle for rice transplanting as a moving body is provided with a beam light receiving means provided with an optical sensor having a predetermined resolution in the lateral direction, and this optical sensor is used for the guidance. The position of the work vehicle in the lateral direction with respect to the guide route is detected based on the light receiving position information received from the light beam, and the work is performed while the steering control is performed so that the position becomes the proper position in the lateral direction based on the position detection information. The vehicle is guided to travel along each work process.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来技術
では、地上側に投射された誘導用ビーム光のビーム光走
査範囲は上下方向の所定角度範囲に固定され、又、作業
車側のビーム光受光手段も上下方向の受光位置が固定し
た状態で作業車に設置されていた。そのため、例えば、
作業車が地面の凹凸の激しい場所や軟弱な路面状態の場
所等に走行した場合には車体が大きく上下及び傾斜する
結果、ビーム光受光手段が誘導用ビーム光をそのビーム
光走査範囲の端部付近で受光したり、あるいは、最悪の
場合には、ビーム光受光手段がビーム光走査範囲から外
れて受光できなくなって誘導経路に対する横方向での位
置検出情報が得られず、適正な操向制御ができなくなる
おそれがあるという不具合があった。
However, in the above-mentioned prior art, the beam light scanning range of the guiding beam light projected on the ground side is fixed to a predetermined angle range in the vertical direction, and the beam light on the working vehicle side is fixed. The light receiving means was also installed in the work vehicle with the light receiving position in the vertical direction fixed. So, for example,
When the work vehicle travels to a place where the ground is highly uneven or a place where the road surface is weak, the vehicle body largely tilts up and down, and as a result, the beam light receiving means causes the beam light for guiding to guide the beam light at the end of the beam light scanning range. Light is received in the vicinity, or in the worst case, the beam light receiving means is out of the beam light scanning range and cannot receive light, so position detection information in the lateral direction with respect to the guide path cannot be obtained, and proper steering control is performed. There was a problem that it could not be done.

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、上記従来技術の不具合を解消さ
せるべく、移動体の移動時における地面状態等の条件に
かかわらず、移動体側のビーム光受光手段が地上側に投
射された誘導用ビーム光を安定な状態で確実に受光でき
るようにすることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to solve the problems of the above-mentioned prior art regardless of the conditions such as the ground state when the moving body is moving, and the moving body side. The light beam receiving means is capable of reliably receiving the light beam for guidance projected on the ground side in a stable state.

【0005】[0005]

【課題を解決するための手段】本発明による移動体のビ
ーム光誘導用制御装置の第1の特徴構成は、前記移動体
に、前記ビーム光受光手段の受光位置を上下方向に変更
する受光位置変更手段が設けられ、前記制御手段は、前
記ビーム光受光手段が前記誘導用ビーム光を受光した時
間間隔情報に基づいて前記ビーム光受光手段の受光位置
の前記誘導用ビーム光走査範囲中央位置からの偏位状態
を判別し、その偏位状態判別情報に基づいて前記ビーム
光受光手段の受光位置が前記誘導用ビーム光走査範囲の
中央に位置するように前記受光位置変更手段を作動させ
る受光位置制御を行うように構成されている点にある。
A first characteristic configuration of a controller for guiding a beam light of a moving body according to the present invention is a light receiving position for changing the light receiving position of the beam light receiving means in the up and down direction on the moving body. Change means is provided, the control means, based on the time interval information when the light beam receiving means received the light beam for guidance, from the center position of the light beam scanning range for guidance of the light receiving position of the light beam receiving means. The light receiving position for activating the light receiving position changing means so that the light receiving position of the beam light receiving means is located at the center of the guiding light beam scanning range on the basis of the deviation state determination information. It is configured to perform control.

【0006】又、第2の特徴構成は、地上側に、地上側
通信手段と、その地上側通信手段の受信情報に基づいて
前記誘導用ビーム光の投射位置を上下方向に変更する投
射位置変更手段とが設けられ、前記移動体に、移動体側
通信手段が設けられ、前記制御手段は、前記ビーム光受
光手段が前記誘導用ビーム光を受光した時間間隔情報に
基づいて前記ビーム光受光手段の受光位置の前記誘導用
ビーム光走査範囲中央位置からの偏位状態を判別して、
その偏位状態判別情報を前記移動体側通信手段を介して
前記地上側通信手段に送信し、前記ビーム光受光手段の
受光位置が前記誘導用ビーム光走査範囲の中央に位置す
るように前記送信された偏位状態判別情報に基づいて前
記投射位置変更手段を作動させる投射位置制御を行うよ
うに構成されている点にある。
The second characteristic structure is that the ground side communication means is arranged on the ground side, and the projection position is changed in the vertical direction based on the information received by the ground side communication means. Means is provided, the moving body is provided with a moving body side communication means, and the control means controls the beam light receiving means based on time interval information when the beam light receiving means receives the guiding beam light. Determining the deviation state from the center position of the light beam scanning range for the guide light,
The deviation state discrimination information is transmitted to the ground side communication means via the mobile body side communication means, and the light reception position of the beam light receiving means is transmitted so that it is located at the center of the guiding light beam scanning range. The projection position control for activating the projection position changing means is performed based on the deviation state determination information.

【0007】又、第3の特徴構成は、上記第1又は第2
の特徴構成において、前記ビーム光受光手段が、横方向
に所定分解能の受光位置を備え且つ上下方向に所定間隔
を置いて並置された複数個の光センサにて構成され、前
記制御手段は、前記各光センサが前記誘導用ビーム光を
受光した時間間隔情報に基づいて、前記偏位状態として
前記ビーム光受光手段の受光位置が前記誘導用ビーム光
走査範囲中央位置から偏位している方向と偏位量とを判
別するように構成されている点にある。
A third characteristic configuration is the first or second aspect described above.
In the characteristic configuration of the above, the beam light receiving means is composed of a plurality of optical sensors having light receiving positions of a predetermined resolution in the lateral direction and arranged side by side at a predetermined interval in the vertical direction, and the control means includes: A direction in which the light receiving position of the beam light receiving means is deviated from the center position of the guiding light beam scanning range as the deviation state based on time interval information when each light sensor receives the guiding light beam. The point is that it is configured to determine the deviation amount.

【0008】又、第4の特徴構成は、上記第3の特徴構
成において、前記複数個の光センサが、車体前後方向に
も所定間隔を置いて設置され、前記制御手段は、前記各
光センサの受光情報に基づいて、前記位置検出情報とし
て前記移動体の前記誘導経路に対する横方向への偏位及
び傾きを検出するように構成されている点にある。
A fourth characteristic configuration is the same as the third characteristic configuration, wherein the plurality of optical sensors are installed at predetermined intervals also in the front-rear direction of the vehicle body, and the control means controls the respective optical sensors. On the basis of the received light information, the position detection information is configured to detect a lateral displacement and inclination of the moving body with respect to the guide path.

【0009】又、第5の特徴構成は、上記第1又は第2
の特徴構成において、前記ビーム光受光手段が、横方向
に所定分解能の受光位置を備えた1個の光センサにて構
成され、前記制御手段は、前記1個の光センサが前記誘
導用ビーム光を受光した時間間隔情報に基づいて、前記
偏位状態として前記ビーム光受光手段の受光位置の前記
誘導用ビーム光走査範囲中央位置からの偏位量を判別
し、その偏位量情報に基づいて前記受光位置制御又は前
記投射位置制御を一方の作動方向に所定作動量で行った
結果、前記偏位量が減少する場合にはその作動方向に続
けて前記受光位置制御又は前記投射位置制御を行い、前
記偏位量が増加する場合にはその作動方向と反対方向に
前記受光位置制御又は前記投射位置制御を行うように構
成されている点にある。
A fifth characteristic configuration is the first or second above.
In the above characteristic configuration, the beam light receiving means is constituted by one optical sensor having a light receiving position of a predetermined resolution in the lateral direction, and the control means is configured such that the one optical sensor is the guiding beam light. On the basis of the time interval information received, the deviation amount from the center position of the guiding light beam scanning range of the light receiving position of the light beam receiving means is determined as the deviation state, and based on the deviation amount information. As a result of performing the light receiving position control or the projection position control in one operation direction with a predetermined operation amount, when the deviation amount decreases, the light receiving position control or the projection position control is continuously performed in the operation direction. The point is that when the deviation amount increases, the light receiving position control or the projection position control is performed in a direction opposite to the operating direction thereof.

【0010】[0010]

【作用】本発明による移動体のビーム光誘導用制御装置
の第1の特徴構成によれば、移動体側のビーム光受光手
段は、地上側において上下方向に所定角度範囲走査され
た誘導用ビーム光が下から上及び上から下に走査される
とき夫々受光する。そして、ビーム光受光手段の受光位
置が誘導用ビーム光走査範囲の中央に位置しているとき
は上記両受光間の時間間隔は等しいが、ビーム光受光手
段の受光位置が誘導用ビーム光走査範囲の中央位置から
上側又は下側に偏位するほど上記両受光間の時間間隔の
一方は長くなるのに対して他方は短くなるので、この受
光時間間隔情報によって、ビーム光受光手段の受光位置
の誘導用ビーム光走査範囲中央位置からの偏位状態が判
別され、その情報に基づいて上記両受光間の時間間隔が
等しくなるように受光位置変更手段を作動させてビーム
光受光手段の受光位置を上下方向に変更する受光位置制
御を行い、ビーム光受光手段の受光位置を誘導用ビーム
光走査範囲の中央に位置させる。そして、そのときのビ
ーム光受光手段の受光情報から検出される誘導経路に対
する横方向での位置情報に基づいて、移動体を操向制御
して誘導経路に沿って移動させる。
According to the first characteristic configuration of the control unit for guiding the beam light of the moving body according to the present invention, the beam light receiving means on the moving body side is a guiding beam light which is vertically scanned in a predetermined angle range on the ground side. Respectively receive light when scanned from bottom to top and from top to bottom. When the light receiving position of the light beam receiving means is located at the center of the guiding light beam scanning range, the time intervals between the two light receiving positions are equal, but the light receiving position of the light beam receiving means is set to the guiding light beam scanning range. As the time interval between the two light receptions becomes longer as the position deviates from the center position to the upper or lower side, the other becomes shorter, while the other becomes shorter, so that the light reception time interval information indicates the light reception position of the beam light receiving means. The deviation state from the central position of the guiding light beam scanning range is discriminated, and based on the information, the light receiving position changing means is operated so that the time intervals between the both light receiving sides become equal, and the light receiving position of the light beam receiving means is changed. The light receiving position control for changing in the vertical direction is performed, and the light receiving position of the beam light receiving means is positioned at the center of the guiding light beam scanning range. Then, based on the position information in the lateral direction with respect to the guide route detected from the light reception information of the light beam receiving means at that time, the moving body is steering-controlled to move along the guide route.

【0011】又、第2の特徴構成によれば、先ず、上記
第1の特徴構成と同様に、移動体側のビーム光受光手段
は地上側の誘導用ビーム光が下から上及び上から下に走
査されるとき夫々受光し、その両受光間の時間間隔の情
報によって、ビーム光受光手段の受光位置の誘導用ビー
ム光走査範囲中央位置からの偏位状態が判別される。次
に、その偏位状態判別情報が移動体側通信手段を介して
地上側通信手段に送信され、地上側において、受信した
偏位状態判別情報に基づいて上記両受光間の時間間隔が
等しくなるように投射位置変更手段を作動させて誘導用
ビーム光の投射位置を上下方向に変更する投射位置制御
を行い、ビーム光受光手段の受光位置を誘導用ビーム光
走査範囲の中央に位置させる。そして、そのときのビー
ム光受光手段の受光情報から検出される誘導経路に対す
る横方向での位置情報に基づいて、移動体を操向制御し
て誘導経路に沿って移動させる。
According to the second characteristic constitution, first, similarly to the above-mentioned first characteristic constitution, the beam light receiving means on the moving body side moves the guiding beam light on the ground side from the bottom to the top and from the top to the bottom. When scanning, the light is received respectively, and the deviation of the light receiving position of the beam light receiving means from the center position of the guiding light beam scanning range is determined based on the information on the time interval between the two light receptions. Next, the deviation state discrimination information is transmitted to the ground side communication means via the mobile body side communication means, and the time intervals between the two light receptions are equalized on the ground side based on the received deviation state discrimination information. The projection position changing means is operated to perform projection position control for changing the projection position of the guiding light beam in the vertical direction, and the light receiving position of the light beam receiving means is positioned at the center of the guiding light beam scanning range. Then, based on the position information in the lateral direction with respect to the guide route detected from the light reception information of the light beam receiving means at that time, the moving body is steering-controlled to move along the guide route.

【0012】又、第3の特徴構成によれば、上記第1又
は第2の特徴構成において、ビーム光受光手段の受光位
置が誘導用ビーム光走査範囲の中央に位置しているとき
は、ビーム光受光手段に上下方向に所定間隔で並置され
た複数個の各光センサにおいて、ビーム光が上から下へ
又は下から上へ走査される時の両受光間の時間間隔は2
つの異なる時間間隔の繰り返しになるが、その差は所定
範囲内に収まる。しかし、ビーム光受光手段の受光位置
が誘導用ビーム光走査範囲の中央位置から上方向に偏位
すると、上記2つの異なる時間間隔の差は、上側の光セ
ンサの方が下側の光センサに比べて大きくなり、逆に、
ビーム光受光手段の受光位置が誘導用ビーム光走査範囲
の中央位置から下方向に偏位すると、上記2つの異なる
時間間隔の差は、下側の光センサの方が上側の光センサ
に比べて大きくなるので、これより、ビーム光受光手段
の受光位置が誘導用ビーム光走査範囲の中央位置から偏
位した方向が判別され、同時に、上記2つの異なる時間
間隔の差の大きさによって、その偏位量が判別される。
According to the third characteristic constitution, in the first or second characteristic constitution, when the light receiving position of the beam light receiving means is located at the center of the guiding light beam scanning range, In each of the plurality of optical sensors arranged in the light receiving means in the vertical direction at predetermined intervals, the time interval between the two light receptions when the beam light is scanned from the top to the bottom or from the bottom to the top is 2
It is repeated at three different time intervals, but the difference is within a predetermined range. However, when the light receiving position of the beam light receiving means is deviated upward from the center position of the guiding light beam scanning range, the difference between the two different time intervals is that the upper optical sensor is lower in the lower optical sensor. It becomes bigger than the
When the light receiving position of the light beam receiving means is deviated downward from the center position of the guiding light beam scanning range, the difference between the two different time intervals is smaller in the lower optical sensor than in the upper optical sensor. Therefore, the direction in which the light receiving position of the beam light receiving means is deviated from the center position of the guiding beam light scanning range is determined from this, and at the same time, the deviation is detected depending on the magnitude of the difference between the two different time intervals. The quantity is determined.

【0013】そして、上記判別された偏位方向及び偏位
量の情報に基づいて、ビーム光受光手段の受光位置を上
方向又は下方向に所定量変更させるか、又はビーム光投
射位置を下方向又は上方向に所定量変更させて(尚、同
じ偏位方向情報に対して、受光位置の変更方向とビーム
光投射位置の変更方向は反対になる)、ビーム光受光手
段の受光位置が誘導用ビーム光走査範囲の中央に位置す
るようにする。そして、そのときの各光センサに横方向
に所定分解能で備えた受光位置のいずれで受光したかの
情報に基づいて誘導経路に対する横方向での位置を検出
し、その位置検出情報に基づいて移動体を操向制御して
誘導経路に沿って移動させる。
Then, based on the information of the determined deviation direction and deviation amount, the light receiving position of the beam light receiving means is changed by a predetermined amount in the upward or downward direction, or the beam light projection position is changed in the downward direction. Alternatively, the light receiving position of the beam light receiving means is used for guidance by changing a predetermined amount in the upward direction (for the same deviation information, the light receiving position changing direction and the beam light projecting position changing direction are opposite). It should be located at the center of the beam light scanning range. Then, the position in the lateral direction with respect to the guide path is detected based on the information of which of the light receiving positions provided in each optical sensor at a predetermined resolution in the lateral direction at that time, and the position is moved based on the position detection information. The body is steered to move along the guide route.

【0014】又、第4の特徴構成によれば、上記第3の
特徴構成において、車体前後方向に所定間隔を置いて設
置された複数個の各光センサにおいて、その横方向に所
定分解能で備えた受光位置のいずれで誘導用ビーム光を
受光したかの情報に基づいて、移動体の誘導経路に対す
る横方向への偏位が検出され、又、上記各光センサの横
方向に所定分解能で備えた受光位置のいずれで誘導用ビ
ーム光を受光したかの情報と、各光センサの車体前後方
向の設置間隔情報とに基づいて、移動体の誘導経路に対
する傾きが検出される。
According to the fourth characteristic configuration, in the third characteristic configuration, each of the plurality of optical sensors installed at a predetermined interval in the vehicle front-rear direction is provided with a predetermined resolution in the lateral direction. The lateral deviation of the moving body with respect to the guiding path is detected based on the information on which of the light receiving positions the guiding light beam is received, and the lateral displacement of each of the optical sensors is provided with a predetermined resolution. The inclination of the moving body with respect to the guiding path is detected based on the information on which of the light receiving positions the guiding light beam is received and the installation distance information of each optical sensor in the vehicle front-back direction.

【0015】又、第5の特徴構成によれば、上記第1又
は第2の特徴構成において、ビーム光受光手段の受光位
置が誘導用ビーム光走査範囲の中央に位置しているとき
は、ビーム光受光手段を構成する1個の光センサにおい
て、ビーム光が上から下へ又は下から上へ走査される時
の両受光間の時間間隔は等しいが、ビーム光受光手段の
受光位置が誘導用ビーム光走査範囲の中央位置から上側
又は下側に偏位するほど上記両受光間の時間間隔の一方
は長くなるのに対して他方は短くなるので、この受光時
間間隔情報によって、ビーム光受光手段の受光位置の誘
導用ビーム光走査範囲中央位置からの偏位量が判別され
る。そこで、この偏位量情報に基づいて、移動体側のビ
ーム光受光手段の受光位置を上方向又は下方向に所定距
離変更する受光位置制御、あるいは、地上側の誘導用ビ
ーム光の投射位置を下方向又は上方向に所定距離変更す
る投射位置制御を行い、その結果、上記偏位量が減少す
る場合には上記作動方向に続けて前記受光位置制御、あ
るいは、前記投射位置制御を行う。一方、上記偏位量情
報に基づいて、移動体側のビーム光受光手段の受光位置
を上方向又は下方向に所定距離変更する受光位置制御、
あるいは、地上側の誘導用ビーム光の投射位置を下方向
又は上方向に所定距離変更する投射位置制御を行った結
果、前記偏位量が増加する場合にはその作動方向と反対
方向に前記受光位置制御又は前記投射位置制御を行う。
According to the fifth characteristic configuration, in the first or second characteristic configuration, when the light receiving position of the beam light receiving means is located at the center of the guiding light beam scanning range, In one optical sensor that constitutes the light receiving means, the time interval between the two light receptions when the beam light is scanned from top to bottom or from bottom to top is the same, but the light reception position of the beam light reception means is for guiding. As the light beam is deviated from the center position of the beam light scanning range to the upper side or the lower side, one of the time intervals between the two light receptions becomes longer, while the other becomes shorter. The deviation amount of the light receiving position from the center position of the guiding light beam scanning range is determined. Therefore, based on this deviation amount information, the light receiving position control for changing the light receiving position of the beam light receiving means on the mobile side upward or downward by a predetermined distance, or the projection position of the guide light beam on the ground side is lowered. The projection position control is performed to change a predetermined distance upward or upward. As a result, when the deviation amount decreases, the light receiving position control or the projection position control is continuously performed in the operation direction. On the other hand, based on the deviation amount information, the light receiving position control for changing the light receiving position of the beam light receiving means on the moving body side by a predetermined distance in the upward or downward direction,
Alternatively, as a result of performing the projection position control for changing the projection position of the guide light beam on the ground side downward or upward by a predetermined distance, if the deviation amount increases, the light receiving direction is opposite to the operating direction. Position control or the projection position control is performed.

【0016】[0016]

【発明の効果】従って、本発明による移動体のビーム光
誘導用制御装置の第1又は第2の特徴構成によれば、移
動体側のビーム光受光手段の受光位置の誘導用ビーム光
走査範囲に対する偏位状態の情報に基づいて受光位置又
はビーム光投射位置の変更制御を行うので、移動体の移
動時における地面状態等の条件にかかわらず、ビーム光
受光手段が誘導用ビーム光に対してその受光位置をビー
ム光走査範囲の中央に位置させて誘導用ビーム光を安定
な状態で確実に受光して、その誘導用ビーム光の受光情
報に基づいて移動体を誘導経路に沿って適切な操向状態
で移動させることができるに至った。
Therefore, according to the first or second characteristic configuration of the control unit for guiding the beam light of the moving body according to the present invention, the light receiving position of the beam light receiving means on the moving body with respect to the guiding beam light scanning range. Since the change control of the light receiving position or the beam light projecting position is performed based on the information on the deviation state, the beam light receiving means is provided with respect to the guiding beam light regardless of the conditions such as the ground state when the moving body moves. The light receiving position is positioned in the center of the beam light scanning range to reliably receive the guiding light beam in a stable state, and the moving body is appropriately operated along the guiding route based on the received light information of the guiding light beam. It became possible to move in the facing state.

【0017】又、第3の特徴構成によれば、上下に並置
した複数個の光センサの受光情報から、移動体側のビー
ム光受光手段の受光位置の誘導用ビーム光走査範囲に対
する偏位方向と偏位量とを判別するので、例えば1個の
光センサの場合には、上記偏位方向の情報は得られない
のに比べて、上記偏位情報に基づいて受光位置又はビー
ム光投射位置の変更方向を設定して、迅速且つ的確にビ
ーム光受光手段の受光位置をビーム光走査範囲の中央に
位置させることができ、同時に、各光センサの横方向に
おける所定分解能の受光位置情報に基づいて移動体の誘
導経路に対する横方向での位置を的確に検出でき、もっ
て、上記第1又は第2の特徴構成の好適な手段が得られ
る。
Further, according to the third characteristic configuration, the deviation direction of the light receiving position of the beam light receiving means on the moving body side with respect to the guide beam light scanning range is determined based on the light reception information of the plurality of photosensors arranged side by side. Since the deviation amount is discriminated, for example, in the case of one optical sensor, the information on the deviation direction cannot be obtained. On the other hand, the light receiving position or the beam light projection position is determined based on the deviation information. By setting the changing direction, the light receiving position of the light beam receiving means can be quickly and accurately positioned in the center of the light beam scanning range, and at the same time, based on the light receiving position information of a predetermined resolution in the lateral direction of each optical sensor. The position of the moving body in the lateral direction with respect to the guide route can be accurately detected, and thus the preferable means of the first or second characteristic configuration can be obtained.

【0018】又、第4の特徴構成によれば、上記複数個
の光センサを車体前後方向にも所定間隔を置いて設置す
ることにより、各光センサの横方向における所定分解能
の受光位置情報に基づいて移動体の誘導経路に対する横
方向への偏位及び傾きを的確に検出できるので、例えば
1個の光センサの場合には、上記横方向への偏位しか検
出できず傾きは検出できないのに比べて、一層的確な誘
導経路に対する位置検出情報が得られ、もって、上記第
3の特徴構成の好適な手段が得られる。
According to the fourth characteristic configuration, by installing the plurality of optical sensors in the front-rear direction of the vehicle body at predetermined intervals, the light-receiving position information of each optical sensor having a predetermined resolution in the lateral direction can be obtained. Since the lateral displacement and inclination of the moving body with respect to the guide route can be accurately detected based on this, for example, in the case of one optical sensor, only the lateral deviation can be detected and the inclination cannot be detected. Compared with the above, more accurate position detection information for the guide route can be obtained, and therefore, the suitable means of the third characteristic configuration can be obtained.

【0019】又、第5の特徴構成によれば、移動体側の
ビーム光受光手段の受光位置の誘導用ビーム光走査範囲
に対する偏位状態を1個の光センサの受光情報から判別
した情報に基づいて受光位置又はビーム光投射位置の変
更制御を行うので、例えば複数個の光センサを設置して
偏位状態を判別するものに比べて、装置構成を簡素化し
ながら、ビーム光受光手段の受光位置をビーム光走査範
囲の中央に位置させることができ、もって、上記第1又
は第2の特徴構成の好適な手段が得られる。
According to the fifth characteristic configuration, the deviation state of the light receiving position of the beam light receiving means on the moving body side with respect to the guiding light beam scanning range is determined based on the information determined from the light receiving information of one optical sensor. Since the light receiving position or the beam light projecting position is controlled to be changed, the light receiving position of the beam light receiving means can be simplified while simplifying the configuration of the device as compared with, for example, a device in which a plurality of optical sensors are installed to determine the deviation state. Can be positioned in the center of the beam light scanning range, and thus, the preferable means of the first or second characteristic configuration can be obtained.

【0020】[0020]

【実施例】以下、本発明を移動体としての田植え用の作
業車に適用した場合の実施例を図面に基づいて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a work vehicle for rice planting as a moving body will be described below with reference to the drawings.

【0021】図1に示すように、矩形状の作業地(圃
場)Kを囲む複数辺のうちの一つの基準辺M1の上端部
に、その基準辺M1に隣接する隣接辺M2,M3の長手
方向に沿って走行して作業車Vが進入及び退出する出入
口Miを設け、隣接辺M2,M3の長手方向において、
作業地Kの両端側夫々を枕地部分K1,K2とし且つ中
央側部分を作業対象部分Ksとした状態で、隣接辺M
2,M3の長手方向に沿って作業車Vを往復走行させな
がら作業対象部分Ksに対して作業する往復作業を行
い、その後、両枕地部分K1,K2において、作業車V
を基準辺M1の長手方向に沿って往復走行させながら枕
地部分K1,K2に対して作業する枕地作業を行う。
尚、作業対象部分Ksと両枕地部分K1,K2とは、隣
接辺M2,M3の長手方向における作業対象部分Ksの
両端位置に基準辺M1に沿う状態で設けた右側及び左側
の2本の境界線Y,Yで区分けされている。
As shown in FIG. 1, at the upper end of one reference side M1 out of a plurality of sides surrounding a rectangular work site (field) K, the lengths of adjacent sides M2 and M3 adjacent to the reference side M1 are long. Provided with an entrance / exit Mi through which the work vehicle V enters and exits along the direction, and in the longitudinal direction of the adjacent sides M2, M3,
Adjacent sides M in a state in which both end sides of the work site K are headland parts K1 and K2 and a central part is a work target part Ks.
The work vehicle V is reciprocated along the longitudinal direction of M2 and M3 to perform the reciprocal work for the work target portion Ks. After that, in both headland portions K1 and K2, the work vehicle V is
The headland work is performed on the headland portions K1 and K2 while reciprocating along the longitudinal direction of the reference side M1.
The work target portion Ks and the two headland portions K1 and K2 are provided on the right side and the left side provided at both end positions of the work target portion Ks in the longitudinal direction of the adjacent sides M2 and M3 along the reference side M1. It is divided by boundary lines Y and Y.

【0022】前記作業対象部分Ksにおいて基準辺M1
の長手方向に並ぶ複数の誘導経路としての作業行程R1
の夫々に沿って作業車Vを誘導すべく、作業行程R1の
長手方向に沿って誘導用のビーム光A1を上下方向に所
定角度走査する状態で投射する誘導用ビーム光投射手段
としての第1ビーム光投射装置B1と、一対の枕地部分
K1,K2のうちの基準辺M1に隣接する第一枕地部分
K1及び基準辺M1に対向する対向辺M4に隣接する第
二枕地部分K2の夫々において隣接辺M2,M3の長手
方向に並ぶ複数の誘導経路としての作業行程R2の夫々
に沿って作業車Vを誘導すべく、作業行程R2の長手方
向に沿って誘導用のビーム光A2を上下方向に所定角度
走査する状態で投射する誘導用ビーム光投射手段として
の第2ビーム光投射装置B2とが、地上側に設けられて
いる。
The reference side M1 in the work target portion Ks
Process R1 as a plurality of guide paths lined up in the longitudinal direction of the
In order to guide the work vehicle V along each of the above, the first as the guiding beam light projection means for projecting the guiding beam light A1 in the vertical direction by a predetermined angle along the longitudinal direction of the work stroke R1. The beam light projector B1 and the first headland part K1 adjacent to the reference side M1 of the pair of headland parts K1 and K2 and the second headland part K2 adjacent to the facing side M4 facing the reference side M1. In order to guide the work vehicle V along each of the work strokes R2 as a plurality of guide paths lined up in the longitudinal direction of the adjacent sides M2, M3, the guide beam light A2 is provided along the longitudinal direction of the work stroke R2. A second beam light projecting device B2 as a guiding beam light projecting unit for projecting in a state of vertically scanning at a predetermined angle is provided on the ground side.

【0023】上記第1ビーム光投射装置B1は、基本的
に前記複数の作業行程R1のうちの隣接する2個の作業
行程に対して1個の割合でその両作業行程の境界位置に
設置されるが、図は作業行程R1の数が奇数の場合を示
しており、最上端の作業行程R1に対してのみ1個の第
1ビーム光投射装置B1が配置されている。又、第2ビ
ーム光投射装置B2は、前記複数の作業行程R2が2個
であるのでその作業行程の境界位置に設置される。又、
図には、隣接辺M2,M3の長手方向において第2ビー
ム光投射装置B2からのビーム光A2の投射位置よりも
内側位置に、そのビーム光A2と平行なビーム光A3を
投射する第3ビーム光投射装置B3が設けられている。
尚、詳述はしないが、各ビーム光投射装置B1,B2,
B3はレーザー装置等にて構成されている。
The first beam light projection device B1 is basically installed at a boundary position between two adjacent work strokes of the plurality of work strokes R1 at a ratio of one to two adjacent work strokes. However, the drawing shows the case where the number of work strokes R1 is odd, and one first beam light projection device B1 is arranged only for the work stroke R1 at the uppermost end. Further, the second beam light projection device B2 is installed at the boundary position of the work steps because the plurality of work steps R2 are two. or,
In the drawing, the third beam that projects the beam light A3 parallel to the beam light A2 at a position inside the projection position of the beam light A2 from the second beam light projection device B2 in the longitudinal direction of the adjacent sides M2 and M3. A light projection device B3 is provided.
Although not described in detail, each beam light projection device B1, B2,
B3 is composed of a laser device or the like.

【0024】次に、前記作業車Vの構成について説明す
れば、図2及び図3に示すように、左右一対の前輪3及
び後輪4を備えた車体5の後部に、対地作業状態と非作
業状態とに切換自在な苗植え付け装置6が、昇降自在で
且つ駆動停止自在に設けられている。つまり、下降状態
で駆動されているときが対地作業状態であり、これ以外
の状態は非作業状態となる。又、図4に示すように、前
後輪3,4は、左右を一対として各別に操向操作自在に
構成され、操向用の油圧シリンダ7,8と、それらに対
する電磁操作式の制御弁9,10とが設けられている。
つまり、前輪3又は後輪4の一方のみを操向する2輪ス
テアリング形式、前後輪3,4を逆位相で且つ同角度に
操向する4輪ステアリング形式、前後輪3,4を同位相
で且つ同角度に操向する平行ステアリング形式の3種類
のステアリング形式を選択使用できるようになってい
る。
Next, the structure of the work vehicle V will be described. As shown in FIGS. 2 and 3, a ground work state and a non-ground work state are provided on the rear portion of the vehicle body 5 having a pair of left and right front wheels 3 and rear wheels 4. A seedling planting device 6 that can be switched between a working state and a working state is provided so as to be able to move up and down and stop driving. In other words, when the vehicle is driven in the lowered state, it is the ground work state, and the other states are non-working states. Further, as shown in FIG. 4, the front and rear wheels 3 and 4 are configured such that the left and right wheels are paired so as to be individually steerable, and steering hydraulic cylinders 7 and 8 and an electromagnetically operated control valve 9 for them are provided. , 10 are provided.
That is, a two-wheel steering system that steers only one of the front wheels 3 or the rear wheels 4, a four-wheel steering system that steers the front and rear wheels 3, 4 in opposite phases and at the same angle, and the front and rear wheels 3, 4 in the same phase. In addition, it is possible to selectively use three types of steering types, that is, a parallel steering type that steers at the same angle.

【0025】図4中、11はエンジンEからの出力を変
速して前後輪3,4の夫々を同時に駆動する油圧式無段
変速装置、12はその変速操作用の電動モータ、13は
植え付け装置6の昇降用油圧シリンダ、14はその制御
弁、15はエンジンEによる植え付け装置6の駆動を断
続する電磁操作式の植え付けクラッチ、16は作業車V
の走行並びに植え付け装置6の作動を制御するためのマ
イクロコンピュータ利用の制御装置であって、後述の各
種センサによる検出情報及び予め記憶された作業データ
に基づいて、変速用モータ12、各制御弁9,10,1
4、及び、植え付けクラッチ15の夫々を制御するよう
に構成されている。
In FIG. 4, 11 is a hydraulic continuously variable transmission that shifts the output from the engine E to drive the front and rear wheels 3 and 4 simultaneously, 12 is an electric motor for gear shifting operation, and 13 is a planting device. 6, a hydraulic cylinder for raising and lowering, 14 a control valve thereof, 15 an electromagnetically operated planting clutch for intermittently driving the planting device 6 by the engine E, 16 a work vehicle V
Is a control device using a microcomputer for controlling the traveling of the plant and the operation of the planting device 6, and based on detection information by various sensors described later and work data stored in advance, the shift motor 12 and each control valve 9 , 10, 1
4 and each of the planting clutch 15 are controlled.

【0026】作業車Vに装備されるセンサ類について説
明すれば、図4に示すように、前後輪3,4夫々の操向
角を検出するポテンショメータ利用の操向角検出センサ
P1,P2と、変速装置11の変速状態に基づいて間接
的に前後進状態及び車速を検出するポテンショメータ利
用の車速センサP3と、変速装置11の出力軸の回転数
を計数して走行距離を検出するためのエンコーダS3
と、作業車Vの車体方位を検出する地磁気利用の方位セ
ンサS4とが設けられている。
The sensors mounted on the work vehicle V will be described. As shown in FIG. 4, steering angle detection sensors P1 and P2 using potentiometers for detecting the steering angles of the front and rear wheels 3 and 4, respectively. A vehicle speed sensor P3 using a potentiometer that indirectly detects the forward / backward traveling state and the vehicle speed based on the speed change state of the transmission 11, and an encoder S3 for detecting the traveling distance by counting the number of rotations of the output shaft of the transmission 11.
And a direction sensor S4 using geomagnetism for detecting the body direction of the work vehicle V.

【0027】又、図2及び図3にも示すように、作業車
Vには、第1ビーム光投射装置B1及び第2ビーム光投
射装置B2からの誘導用ビーム光A1,A2を受光する
ビーム光受光手段としての操向制御用の受光センサS1
と、作業車Vが第1又は第2ビーム光投射装置B1,B
2からのビーム光A1,A2に沿って自動走行している
ときに、そのビーム光A1,A2に交差する第2ビーム
光投射装置B2又は第1ビーム光投射装置B1からのビ
ーム光A2,A1並びに第3ビーム光投射装置B3から
のビーム光A3を受光するトリガー用の受光センサS2
とが設けられている。
Further, as shown in FIGS. 2 and 3, the work vehicle V has a beam for receiving the guiding light beams A1 and A2 from the first beam light projecting device B1 and the second beam light projecting device B2. Light receiving sensor S1 for steering control as light receiving means
And the work vehicle V is the first or second beam light projection device B1, B.
The second beam light projecting device B2 or the beam light A2, A1 from the first beam light projecting device B1 that intersects the beam lights A1, A2 when automatically traveling along the beam lights A1, A2 from the second beam light A1, A2. In addition, the light receiving sensor S2 for the trigger that receives the light beam A3 from the third light beam projector B3
Are provided.

【0028】上記操向制御用の受光センサS1は、車体
左右何れの側のビーム光A1,A2も受光できるよう
に、車体前部の左右両側部に、平面視において前輪3の
両軸芯を結ぶ線上に位置させて左右一対設けられ、トリ
ガー用の受光センサS2は、平面視において車体左右中
央の上部に位置する前後一対のセンサS2a,S2bか
らなり、その前方側センサS2aは前輪3の両軸芯を結
ぶ線上よりも所定距離前方に位置し、後方側センサS2
bは後輪4の両軸芯を結ぶ線上に位置している。尚、ト
リガー用センサS2は、車体左右両側からのビーム光A
1,A2,A3に対する受光の有無のみを検出するよう
になっている。
The steering control light-receiving sensor S1 has both axial cores of the front wheel 3 in plan view on both left and right sides of the front portion of the vehicle body so that it can receive the beam light A1, A2 on either side of the vehicle body. A pair of left and right sensors are provided on the connecting line, and the light receiving sensor S2 for the trigger is composed of a pair of front and rear sensors S2a and S2b located in the upper center of the left and right center of the vehicle body in a plan view. It is located a predetermined distance in front of the line connecting the axes, and the rear sensor S2
b is located on a line connecting both shaft cores of the rear wheel 4. In addition, the sensor S2 for the trigger is used for the light beam A
Only the presence / absence of light reception for 1, A2 and A3 is detected.

【0029】前記操向制御用の受光センサS1について
説明を加えれば、図5にも示すように、車体前後方向に
所定間隔dを置き且つ上下方向にも所定間隔を置いて並
置された複数個つまり前後一対の光センサS1a,S1
bから構成されている。そして、各光センサS1a,S
1bは、横方向に所定の分解能の受光位置を備えるべく
複数個の受光素子Dを車体横方向に並置したものであっ
て、横方向でのセンサ中心に位置する受光素子D0の位
置を基準として、誘導用ビーム光A1,A2の車体横方
向での受光位置即ち受光素子Dの位置X1,X2夫々を
検出できるように構成されている。又、誘導用ビーム光
A1,A2が車体前後の何れの方向から入射される場合
でも差のない状態で受光できるようにするために、車体
前後の各方向からの入射光を両光センサS1a,S1b
夫々の受光面に向けて反射する反射鏡18が設けられて
いる。
The light receiving sensor S1 for steering control will be described. As shown in FIG. 5, a plurality of light receiving sensors S1 are arranged side by side with a predetermined distance d in the longitudinal direction of the vehicle body and a predetermined distance in the vertical direction. That is, a pair of front and rear optical sensors S1a, S1
b. Then, each optical sensor S1a, S
Reference numeral 1b denotes a plurality of light receiving elements D juxtaposed in the lateral direction of the vehicle body so as to have a light receiving position with a predetermined resolution in the lateral direction. The position of the light receiving element D0 located at the center of the sensor in the lateral direction is used as a reference. The light receiving positions of the guiding light beams A1 and A2 in the lateral direction of the vehicle body, that is, the positions X1 and X2 of the light receiving element D, respectively, can be detected. Further, in order to be able to receive the guiding beam lights A1 and A2 from the front and rear directions of the vehicle body without any difference, the incident light from the front and rear directions of the vehicle body is detected by the two optical sensors S1a and S1a. S1b
Reflecting mirrors 18 that reflect light toward the respective light receiving surfaces are provided.

【0030】又、図2に示すように、前記操向制御用の
受光センサS1は、上下方向に伸縮する状態に配置され
たセンサ昇降用の油圧シリンダ20の可動アーム19の
上端部に取り付けられ、この油圧シリンダ20を作動さ
せるための電磁操作式の制御弁21が前記制御装置16
から駆動信号を受けるようになっている(図4参照)。
以上より、上記センサ昇降用の油圧シリンダ20によっ
て、受光センサS1の受光位置を上下方向に変更する受
光位置変更手段が構成される。
Further, as shown in FIG. 2, the light receiving sensor S1 for steering control is attached to the upper end of the movable arm 19 of the hydraulic cylinder 20 for vertically moving the sensor, which is arranged so as to extend and contract in the vertical direction. The electromagnetically operated control valve 21 for operating the hydraulic cylinder 20 is the control device 16
The drive signal is received from (see FIG. 4).
As described above, the hydraulic cylinder 20 for raising and lowering the sensor constitutes a light receiving position changing means for vertically changing the light receiving position of the light receiving sensor S1.

【0031】前記制御装置16は、前記受光センサS
1,S2等の各種センサの検出情報及び予め設定された
作業予定情報に基づいて、前記作業車Vを走行制御し又
前記植え付け部6等の各種装置の作動を制御するように
構成されている。そして、前記制御装置16を利用し
て、前記操向制御用の受光センサS1の受光情報に基づ
いて作業車Vの作業行程R1,R2に対する横方向での
位置を検出して、その位置検出情報に基づいて作業車V
が作業行程R1,R2に沿って移動するように操向制御
する制御手段100が設けられている。
The control device 16 controls the light receiving sensor S.
Based on the detection information of various sensors such as 1, S2 and preset work schedule information, the work vehicle V is controlled to travel and the operation of various devices such as the planting section 6 is controlled. . Then, the control device 16 is used to detect the position of the work vehicle V in the lateral direction with respect to the work strokes R1 and R2 based on the light reception information of the light receiving sensor S1 for steering control, and the position detection information is detected. Based on work vehicle V
Control means 100 is provided for controlling the steering so that the vehicle moves along the work strokes R1 and R2.

【0032】前記制御手段100による作業車Vの作業
行程R1,R2に対する横方向での位置検出について説
明すれば、図5に示すように、前後一対の光センサS1
a,S1bの夫々の受光素子の位置X1,X2とその車
体前後方向での間隔dとに基づいて、下式から、前記位
置検出情報として、作業車Vの誘導用ビーム光A1,A
2の投射方向即ち作業行程R1,R2に対する横方向へ
の偏位x及び傾きφを求める。
The lateral position detection of the work vehicle V by the control means 100 with respect to the work strokes R1, R2 will be described. As shown in FIG. 5, a pair of front and rear optical sensors S1.
Based on the positions X1 and X2 of the respective light receiving elements a and S1b and the distance d in the vehicle body front-rear direction from the following equation, as the position detection information, the guiding beam lights A1 and A of the work vehicle V are obtained.
The deviation x and the inclination φ in the lateral direction with respect to the two projection directions, that is, the work strokes R1 and R2 are obtained.

【0033】[0033]

【数1】φ=tan-1(|X1−X2|/d) x=X1## EQU1 ## φ = tan -1 (| X1-X2 | / d) x = X1

【0034】尚、この例では、横方向への偏位xは、前
後一対の光センサS1a,S1bの一方(S1a)の受
光位置としているが、車体の傾きφによる誤差が生じな
いようにするために、前後一対の光センサS1a,S1
b夫々の受光位置X1,X2の平均値を用いるようにし
てもよい。そして、前記作業車Vは、前記偏位x及び傾
きφが共に零となるように、目標操向角を設定して操向
制御されることになる。但し、本実施例では、各作業行
程における直進走行時には、前輪3のみを操向する2輪
ステアリング形式で操向制御する。
In this example, the lateral deviation x is set to the light receiving position of one of the front and rear photosensors S1a and S1b (S1a), but an error due to the inclination φ of the vehicle body should not occur. For this purpose, a pair of front and rear optical sensors S1a, S1
The average value of the light receiving positions X1 and X2 of each b may be used. Then, the work vehicle V is subjected to steering control by setting a target steering angle such that the deviation x and the inclination φ are both zero. However, in the present embodiment, steering control is performed by a two-wheel steering system in which only the front wheels 3 are steered during straight traveling in each work stroke.

【0035】又、前記制御手段100は、前記操向制御
用の受光センサS1が前記誘導用ビーム光A1,A2を
受光した時間間隔情報に基づいて前記受光センサS1の
受光位置の前記誘導用ビーム光走査範囲中央位置からの
偏位状態を判別し、その偏位状態判別情報に基づいて前
記受光センサS1の受光位置が前記誘導用ビーム光走査
範囲の中央に位置するように前記センサ昇降用の油圧シ
リンダ20を作動させる受光位置制御を行うように構成
されている。そして、上記偏位状態の判別は、上下に間
隔を置いて設置した各光センサS1a,S1bが前記誘
導用ビーム光A1,A2を受光した時間間隔情報に基づ
いて、前記偏位状態として前記受光センサS1の受光位
置が前記誘導用ビーム光走査範囲中央位置から偏位して
いる方向と偏位量とを判別する。
Further, the control means 100 controls the light guide sensor at the light receiving position of the light receive sensor S1 based on the time interval information when the light receiving sensor S1 for steering control receives the light beams A1 and A2 for guide. A deviation state from the center position of the light scanning range is discriminated, and based on the deviation state discrimination information, the sensor elevating / lowering unit is arranged so that the light receiving position of the light receiving sensor S1 is located at the center of the guiding beam light scanning range. It is configured to perform light receiving position control for operating the hydraulic cylinder 20. Then, the deviation state is determined based on the time interval information when the optical sensors S1a and S1b installed at intervals above and below receive the guidance beam lights A1 and A2. The direction in which the light receiving position of the sensor S1 is displaced from the center position of the guiding light beam scanning range and the displacement amount are determined.

【0036】以下、図6及び図7に基づいて具体的に説
明すると、図6(イ)のように、一対の光センサS1
a,S1bの上下中間位置で代表させた受光センサS1
の受光位置が誘導用ビーム光走査範囲中央位置cにある
ときは、上下の各光センサS1a,S1bは上記中央位
置cから上側及び下側に同じ短い距離だけずれているの
で、各光センサS1a,S1bが誘導用ビーム光A1,
A2を受光する時間間隔は、図7(イ)のように、少し
時間幅が異なる2つの時間間隔を繰り返したもので且つ
両光センサS1a,S1bで同じになる。つまり、上側
の光センサS1aの2つの受光時間間隔の差|t1−t
2|と、下側の光センサS1bの2つの受光時間間隔の
差|t3−t4|とは、小さい値で等しい。
A specific description will be given below with reference to FIGS. 6 and 7, and as shown in FIG. 6A, a pair of optical sensors S1.
Photoreceptive sensor S1 represented by the vertical position between a and S1b
When the light receiving position of is at the center position c of the guiding light beam scanning range, the upper and lower photosensors S1a and S1b are deviated by the same short distance from the center position c to the upper side and the lower side. , S1b is the guiding light beam A1,
As shown in FIG. 7A, the time interval for receiving A2 is a repetition of two time intervals with slightly different time widths, and is the same for both photosensors S1a and S1b. That is, the difference between two light receiving time intervals of the upper optical sensor S1a | t1-t
2 | and the difference | t3−t4 | between the two light receiving time intervals of the lower optical sensor S1b are equal to each other with a small value.

【0037】これに対して、図6(ロ)のように、例え
ば、上記受光センサS1の受光位置が誘導用ビーム光走
査範囲中央位置cから上側に大きく位置ずれしていると
きは、上下の各光センサS1a,S1bのうちで上側の
光センサS1aが上記中央位置cから上側にずれた距離
の方が下側の光センサS1bが上記中央位置cから上側
にずれた距離よりも大であるので、図7(ロ)のよう
に、各光センサS1a,S1bが誘導用ビーム光A1,
A2を受光する時間間隔は、両光センサS1a,S1b
間で大きく異なるものとなる。つまり、上側の光センサ
S1aの2つの受光時間間隔の差|t1−t2|は、下
側の光センサS1bの2つの受光時間間隔の差|t3−
t4|に比べて著しく大きい。
On the other hand, as shown in FIG. 6B, for example, when the light receiving position of the light receiving sensor S1 is largely displaced upward from the center position c of the guiding light beam scanning range, Of the respective optical sensors S1a and S1b, the distance that the upper optical sensor S1a is displaced upward from the central position c is greater than the distance that the lower optical sensor S1b is displaced upward from the central position c. Therefore, as shown in FIG. 7B, each of the optical sensors S1a and S1b is connected to the guiding beam light A1,
The time interval for receiving A2 is equal to that of both optical sensors S1a and S1b.
It will be very different. That is, the difference | t1-t2 | between the two light receiving time intervals of the upper optical sensor S1a is equal to the difference | t3- between the two light receiving time intervals of the lower optical sensor S1b.
It is significantly larger than t4 |.

【0038】従って、この両光センサS1a,S1bの
2つの受光時間間隔の情報より、受光センサS1の受光
位置が誘導用ビーム光走査範囲中央位置cから偏位して
いる方向が上方向であると判別され、又、上側の光セン
サS1aの上記2つの受光時間間隔の差|t1−t2|
が大きいほど、受光位置の上方向への偏位量が大である
と判別される。そして、その偏位量はビーム光A1,A
2の上下走査角度や両光センサS1a,S1bの上下間
隔等の条件に基づいて所定の計算式にて算出される。そ
して、これに基づいて、受光位置が下がるように、セン
サ昇降用の油圧シリンダ20を上記偏位量に対応した操
作量で収縮作動させる。尚、受光センサS1の受光位置
が誘導用ビーム光走査範囲中央位置cから下側にずれて
いる場合も、上下反対であることを除いて全く同様に受
光位置制御がなされる。
Therefore, based on the information on the two light receiving time intervals of the both light sensors S1a and S1b, the direction in which the light receiving position of the light receiving sensor S1 is deviated from the guiding beam light scanning range central position c is the upward direction. And the difference between the two light-receiving time intervals of the upper optical sensor S1a | t1-t2 |
Is larger, it is determined that the upward displacement of the light receiving position is larger. Then, the deviation amount is equal to the beam light A1, A
It is calculated by a predetermined calculation formula based on the conditions such as the vertical scanning angle of 2 and the vertical distance between the optical sensors S1a and S1b. Then, based on this, the hydraulic cylinder 20 for raising and lowering the sensor is contracted by the operation amount corresponding to the deviation amount so that the light receiving position is lowered. Even when the light receiving position of the light receiving sensor S1 is shifted downward from the center position c of the guiding light beam scanning range, the light receiving position control is performed in exactly the same manner except that it is upside down.

【0039】又、前記制御装置16は、前記ビーム光A
1,A2の交差箇所において、作業車Vを一方の作業行
程R1,R2に沿うビーム光A1,A2に誘導される状
態から他方の誘導経路R1,R2に沿うビーム光A1,
A2に誘導される状態に旋回移動させるように構成され
ている。つまり、制御装置16は、作業車Vが前記往復
作業及び前記枕地作業における各作業行程R1,R2の
夫々を前進状態で行うように作業車Vを一行程分前進走
行させたのち、作業車Vが誘導用ビーム光A1,A2に
沿って自動走行しているときに、その誘導用ビーム光A
1,A2に交差するビーム光A2,A1を受光するトリ
ガー用センサS2の受光情報に基づいて、各行程の終端
部からそれに隣接する次の行程の始端部に向けての18
0度又は90度の旋回動作の開始位置を設定するように
構成されている。
Further, the control device 16 controls the light beam A
At the intersection of A1 and A2, the work vehicle V is guided by the beam lights A1 and A2 along one of the work paths R1 and R2, and the beam light A1 along the other guide route R1 and R2.
It is configured so as to turn and move to a state guided by A2. That is, the control device 16 causes the work vehicle V to travel forward by one stroke so that the work vehicle V performs each of the work steps R1 and R2 in the reciprocating work and the headland work in the forward state, and then the work vehicle V travels forward. When V automatically travels along the guidance beam lights A1 and A2, the guidance beam light A
1, based on the light reception information of the trigger sensor S2 that receives the light beams A2 and A1 that intersect with A1 and A2, 18 from the end of each stroke to the start of the next stroke adjacent to the stroke.
It is configured to set the start position of the turning motion of 0 degree or 90 degrees.

【0040】次に、図1に基づいて、作業車Vの走行経
路について説明する。先ず、隣接辺M2,M3の長手方
向に沿って出入口Miに連なる最終作業地部分R1a、
及び、出入口Miから離れて位置する方の隣接辺M3に
隣接する中継用作業地部分R1bを残して前記往復作業
を行う。ここで、最終作業地部分R1aは、基準辺M1
の長手方向に並ぶ複数の作業行程R1のうちの最上端の
作業行程に対応する作業地部分であり、中継用作業地部
分R1bは、上記複数の作業行程R1のうちの下端側の
2つの作業行程に対応する作業地部分である。
Next, the travel route of the work vehicle V will be described with reference to FIG. First, the final work site portion R1a connected to the entrance Mi along the longitudinal direction of the adjacent sides M2, M3,
Also, the reciprocating work is performed while leaving the relay work site portion R1b adjacent to the adjacent side M3 located away from the entrance Mi. Here, the final work site portion R1a is the reference side M1.
Of the plurality of work steps R1 arranged in the longitudinal direction of the work area corresponding to the uppermost work step, and the relay work area portion R1b is the two work pieces on the lower end side of the plurality of work steps R1. It is the work site part corresponding to the process.

【0041】前記往復作業は、具体的には、中継用作業
地部分R1bを除いて出入口Miから一番遠い位置の作
業行程R1を、その始端部の作業開始位置を示す右側の
境界線Y上のPst点から図の左方向に向かって開始さ
れる。そのため、図に示す経路に沿って、途中のNh点
で停止して最初の苗補給を行いながら、Pst点まで非
作業状態で前走行させる。尚、この後も、作業車Vが各
作業行程R1,R2の基準辺M1側の始端部に停止した
ときに苗の消費状態に応じて適宜苗補給がなされる。P
st点に着いたら、植え付け装置6を駆動して植え付け
作業を開始し、以後、左右の枕地部分K1,K2で18
0度旋回しながら各作業行程R1を往復走行し、作業対
象部分Ksの最終作業行程R1(図の上から2番目の行
程)において、右側の操向制御用の受光センサS1の検
出情報に基づいて誘導用ビーム光A1に誘導されなが
ら、右側境界線Y上の終端位置Penまで走行する。
In the reciprocating work, specifically, the work stroke R1 farthest from the entrance Mi except for the relay work site portion R1b is taken on the right boundary line Y indicating the work start position of the start end portion thereof. It starts from the Pst point in the left direction of the figure. Therefore, along the route shown in the drawing, the vehicle is stopped at the Nh point on the way and the first seedling replenishment is performed, while the vehicle travels forward to the Pst point in the non-working state. Even after this, when the work vehicle V is stopped at the starting end of the work strokes R1 and R2 on the side of the reference side M1, the seedlings are appropriately replenished according to the consumption state of the seedlings. P
When reaching the st point, the planting device 6 is driven to start the planting work, and thereafter, the headland portions K1 and K2 on the left and right are 18
While reciprocating in each work stroke R1 while turning 0 degree, based on the detection information of the light receiving sensor S1 for steering control on the right side in the final work stroke R1 (second stroke from the top of the figure) of the work target portion Ks. While being guided by the guiding light beam A1, the vehicle travels to the end position Pen on the right boundary line Y.

【0042】この後、一対の枕地部分K1,K2のうち
の基準辺M1に隣接する第一枕地部分K1、及び、基準
辺M1に対向する対向辺M4に隣接する第二枕地部分K
2を作業する前記枕地作業を行い、且つ、その枕地作業
において、第一枕地部分K1と第二枕地部分K2間の移
行の際に前記中継用作業地部分R1bを走行させながら
その中継用作業地部分R1bを作業し、最後に、第二枕
地部分K2から出入口Miに向けて最終作業地部分R1
aを走行させながら最終作業地部分R1aを作業するよ
うに設定されている。
After this, of the pair of headland parts K1 and K2, the first headland part K1 adjacent to the reference side M1 and the second headland part K adjacent to the opposite side M4 opposite to the reference side M1.
The above-mentioned headland work for working 2 is performed, and in the headland work, during the transition between the first headland part K1 and the second headland part K2, while the relay work site part R1b is running, Work on the relay work site part R1b, and finally, from the second headland part K2 toward the entrance Mi, the final work site part R1
It is set to work the final work site portion R1a while traveling a.

【0043】具体的には、先ず、上記終端位置Penか
ら第二枕地部分K2の2つの作業行程R2のうちの内側
の作業行程R2の始端部に移動すべく、右側の受光セン
サS1の受光情報に基づいて誘導用ビーム光A1に誘導
されながら、上記終端位置Penから図の一番右側の誘
導用ビーム光A2を前方側センサS2aが受光する位置
まで後進した後、前進状態に切り換えて90度右旋回
し、更に、受光センサS1を左側に切り換え、その左側
の受光センサS1の受光情報に基づいて誘導用ビーム光
A2に誘導されながら、横から投射される誘導用ビーム
光A1をトリガー用の後方側センサS2bが受光した位
置から所定距離の位置まで後進状態で走行して植付開始
位置に至る。そして、その作業行程R2を、前進状態で
左側の受光センサS1の受光情報に基づいて誘導用ビー
ム光A2に誘導されながら自動走行する。
Specifically, first, in order to move from the end position Pen to the start end portion of the inner working stroke R2 of the two working strokes R2 of the second headland portion K2, the light receiving sensor S1 on the right side receives light. While being guided by the guidance beam light A1 based on the information, the vehicle moves backward from the end position Pen to the position where the front side sensor S2a receives the guidance beam light A2 on the far right side in the figure, and then switches to the forward state 90 Turn to the right, and further switch the light receiving sensor S1 to the left side, and while being guided by the guiding beam light A2 based on the light receiving information of the left light receiving sensor S1, the guiding beam light A1 projected from the side is used as a trigger. The vehicle travels in the backward state from the position where the rear sensor S2b receives the light to a position of a predetermined distance to reach the planting start position. Then, the work process R2 is automatically traveled in the forward state while being guided by the guiding beam light A2 based on the light reception information of the left light receiving sensor S1.

【0044】以後、第二枕地部分K2の内側の作業行程
R2、中継用作業地部分R1bの内側の行程R1b、第
一枕地部分K1の内側の作業行程R2、第一枕地部分K
1の外側の作業行程R2、中継用作業地部分R1bの外
側の行程R1b、及び、第二枕地部分K2の外側の作業
行程R2をその順序で、各行程の終端部で次の行程の始
端部へ旋回移動しながら自動走行し、最後に、最終作業
地部分R1aを前進状態で直進走行して出入口Miから
作業地外に退出する。
After that, the work stroke R2 inside the second headland portion K2, the work stroke R1b inside the relay work ground portion R1b, the work stroke R2 inside the first headland portion K1, and the first headland portion K.
1, the work stroke R2 outside, the work stroke R1b outside the relay work land portion R1b, and the work stroke R2 outside the second headland portion K2, in that order, at the beginning of the next stroke at the end of each stroke. The vehicle automatically travels while swinging to the other part, and finally travels straight through the final work site portion R1a in a forward state and exits from the work site through the entrance Mi.

【0045】〔別実施例〕上記実施例では、ビーム光受
光手段S1を構成する複数個の光センサを、上下一対つ
まり2個の光センサS1a,S1bにて構成したが、3
個以上の光センサで構成してもよく、この場合は、それ
ら複数個の光センサの受光時間間隔情報に基づいて、よ
り高い精度で誘導用ビーム光走査範囲中央位置cに対す
る受光位置の偏位状態が判別できることになる。
[Other Embodiments] In the above embodiment, the plurality of optical sensors constituting the beam light receiving means S1 are composed of a pair of upper and lower optical sensors, that is, two optical sensors S1a and S1b.
It may be composed of more than one optical sensor. In this case, based on the light receiving time interval information of the plurality of optical sensors, the deviation of the light receiving position with respect to the guiding beam light scanning range central position c with higher accuracy. The state can be determined.

【0046】次に、誘導用ビーム光A1,A2を受光す
るビーム光受光手段(操向制御用の受光センサS1)の
受光位置が誘導用ビーム光走査範囲の中央に位置するよ
うに制御するための別の手段を、第1別実施例(図8〜
図11)及び第2別実施例(図12〜図13)に基づい
て説明する。
Next, in order to control the light receiving position of the beam light receiving means (light receiving sensor S1 for steering control) that receives the guiding beam lights A1 and A2 to be located at the center of the guiding beam light scanning range. Another means of the first alternative embodiment (Fig. 8 ~
11) and a second alternative embodiment (FIGS. 12 to 13).

【0047】第1別実施例では、上記実施例と同様に、
地上側に、作業車Vの誘導経路(作業行程R1,R2)
の長手方向に沿って誘導用ビーム光A1,A2を上下方
向に所定角度走査する状態で投射する誘導用ビーム光投
射手段(第1及び第2ビーム光投射装置B1,B2)が
設けられるとともに、さらに、各ビーム光投射装置B
1,B2を集中制御するビーム光制御装置23が設けら
れ、このビーム光制御装置23に、地上側通信手段とし
ての地上側通信装置24と、制御装置25とが設けられ
ている。制御装置25は、地上側通信装置24の受信情
報を入力して、各ビーム光投射装置B1,B2に設けら
れたレーザー光発生器26及び、このレーザー光発生器
26からのレーザー光を上下方向に走査するガルバノミ
ラー28の駆動回路29に対して制御信号を出力する。
そして、制御装置25を利用して、地上側通信装置24
の受信情報に基づいて前記誘導用ビーム光A1,A2の
投射位置を上下方向に変更する投射位置変更手段101
が構成されている。
In the first alternative embodiment, as in the above embodiment,
On the ground side, the guide route of the work vehicle V (work strokes R1, R2)
A guide beam light projection means (first and second beam light projecting devices B1 and B2) for projecting the guide beam lights A1 and A2 in the vertical direction along the longitudinal direction of the above is provided. Furthermore, each beam light projection device B
A beam light control device 23 for centrally controlling 1 and B2 is provided, and this beam light control device 23 is provided with a ground side communication device 24 as a ground side communication means and a control device 25. The control device 25 inputs the reception information of the ground communication device 24, and outputs the laser light generator 26 provided in each of the beam light projection devices B1 and B2 and the laser light from the laser light generator 26 in the vertical direction. The control signal is output to the drive circuit 29 of the galvanometer mirror 28 that scans the.
Then, by using the control device 25, the ground communication device 24
Projection position changing means 101 for changing the projection position of the guiding light beams A1, A2 in the vertical direction based on the reception information of
Is configured.

【0048】一方、作業車Vには、上記実施例と同様
に、ビーム光受光手段(操向制御用の受光センサS1)
と制御手段100とが設けられ、さらに、移動体側通信
手段としての作業車側通信装置22が設けられている。
そして、制御手段100は、上記実施例と同様に(図6
及び図7参照)、前記受光センサS1が前記誘導用ビー
ム光A1,A2を受光した時間間隔情報に基づいて前記
受光センサS1の受光位置の前記誘導用ビーム光走査範
囲中央位置からの偏位状態を判別する。次に、制御手段
100は、上記偏位状態判別情報を上記作業車側通信装
置22を介して前記地上側通信装置24に送信して、受
光センサS1の受光位置が前記誘導用ビーム光走査範囲
の中央に位置するように前記送信された偏位状態判別情
報に基づいて前記投射位置変更手段101を作動させる
投射位置制御を行う。具体的には、この投射位置制御
は、前記ガルバノミラー28に対して駆動回路29から
供給される駆動信号において、走査用の交流信号の振幅
を同じにした状態で直流レベルを変更して、図11に点
線で示すようにビーム光走査範囲を上下に移動させるこ
とによって行われる。
On the other hand, in the work vehicle V, as in the above embodiment, the beam light receiving means (light receiving sensor S1 for steering control) is provided.
And a control means 100, and a work vehicle side communication device 22 as a mobile body side communication means.
Then, the control means 100 is similar to the above embodiment (see FIG. 6).
7 and FIG. 7), the light receiving position of the light receiving sensor S1 is deviated from the center position of the guiding light beam scanning range based on the time interval information when the light receiving sensor S1 receives the guiding light beams A1 and A2. To determine. Next, the control means 100 transmits the deviation state determination information to the ground side communication device 24 via the work vehicle side communication device 22 so that the light receiving position of the light receiving sensor S1 is the guiding beam light scanning range. The projection position control for operating the projection position changing means 101 is performed based on the transmitted deviation state determination information so that the projection position changing unit 101 is located at the center of the position. Specifically, in this projection position control, in the drive signal supplied from the drive circuit 29 to the galvano mirror 28, the DC level is changed while the amplitude of the AC signal for scanning is made the same, This is performed by moving the light beam scanning range up and down as indicated by a dotted line in FIG.

【0049】第2別実施例では、上記実施例と同様の制
御手段100が設けられているが、ビーム光受光手段S
1は、上記実施例と異なって、横方向に所定分解能の受
光位置を備えた1個の光センサ(例えば前記光センサS
1aと同じ構成の光センサS1c)にて構成され、又、
この光センサS1cの受光位置を上下方向に変更させる
手段(前記油圧シリンダ20)が設けられている(図1
3参照)。そして、制御手段100は、1個の光センサ
S1cが誘導用ビーム光A1,A2を受光した時間間隔
情報に基づいて、前記偏位状態として光センサS1cの
受光位置の前記誘導用ビーム光走査範囲中央位置からの
偏位量を判別し、その偏位量情報に基づいて前記受光位
置制御を一方の作動方向に所定作動量で行った結果、偏
位量が減少する場合にはその作動方向に続けて前記受光
位置制御を行い、偏位量が増加する場合にはその作動方
向と反対方向に前記受光位置制御を行う。
In the second embodiment, the control means 100 similar to the above embodiment is provided, but the beam light receiving means S is used.
1 is different from the above embodiment in that one optical sensor (for example, the optical sensor S described above) having a light receiving position with a predetermined resolution in the lateral direction is provided.
The optical sensor S1c) has the same configuration as that of 1a, and
Means (the hydraulic cylinder 20) for changing the light receiving position of the optical sensor S1c in the vertical direction is provided (FIG. 1).
3). Then, the control means 100 sets the guiding beam light scanning range of the light receiving position of the optical sensor S1c as the deviation state based on the time interval information when one optical sensor S1c receives the guiding beam lights A1 and A2. When the deviation amount from the central position is determined and the light receiving position control is performed with a predetermined operation amount in one operation direction based on the deviation amount information, when the deviation amount decreases, the operation direction is changed. Subsequently, the light receiving position control is performed, and when the deviation amount increases, the light receiving position control is performed in the direction opposite to the operating direction.

【0050】以下、図14及び図15に基づいて、具体
的に説明すると、図14(イ)のように、光センサS1
cの受光位置が誘導用ビーム光走査範囲中央位置cにあ
るときは、その光センサS1cが誘導用ビーム光A1,
A2を受光する時間間隔は、図15(イ)のように、同
じ時間間隔t0になる。これに対して、図14(ロ)の
ように、例えば、上記受光センサS1cの受光位置が誘
導用ビーム光走査範囲中央位置cから上側に偏位してい
るときは、その光センサS1cの受光間隔は、図15
(ロ)のように、時間幅の異なる2つの時間間隔t5,
t6の繰り返しであり、その時間間隔の差|t5−t6
|が大きいほど、光センサS1cが誘導用ビーム光走査
範囲中央位置cからの偏位量が大きいことになる。ここ
で、受光位置を所定距離上方向に上げると、上記時間間
隔の差|t5−t6|は大きくなり偏位量が増加するの
で、次に、受光位置を所定距離反対の下方向に下げる
と、上記時間間隔の差|t5−t6|は小さくなり偏位
量が減少するので、続けて下方向に受光位置を下げるよ
うに制御する。その結果、上記時間間隔の差|t5−t
6|が0になり、光センサS1cの受光位置が誘導用ビ
ーム光走査範囲中央位置cに位置することになる。受光
センサS1cの受光位置が誘導用ビーム光走査範囲中央
位置cから下側に偏位しているときも、同様にして、誘
導用ビーム光走査範囲中央位置cに位置させるように制
御できる。
A concrete description will be given below with reference to FIGS. 14 and 15. As shown in FIG.
When the light receiving position of c is at the center position c of the guiding light beam scanning range, the optical sensor S1c of the guiding light beam A1,
The time interval for receiving A2 is the same time interval t0 as shown in FIG. On the other hand, as shown in FIG. 14B, for example, when the light receiving position of the light receiving sensor S1c is deviated to the upper side from the guiding beam light scanning range central position c, the light receiving of the light sensor S1c is performed. The interval is shown in FIG.
As shown in (b), two time intervals t5 having different time widths
It is the repetition of t6, and the difference of the time intervals | t5-t6
The larger the |, the larger the deviation amount of the optical sensor S1c from the guiding beam light scanning range central position c. Here, if the light receiving position is moved upward by a predetermined distance, the time interval difference | t5-t6 | becomes large and the amount of deviation increases. Therefore, if the light receiving position is lowered downward by a predetermined distance. , The time interval difference | t5-t6 | becomes smaller and the amount of deviation decreases, so that the light receiving position is continuously controlled downward. As a result, the time interval difference | t5-t
6 | becomes 0, and the light receiving position of the optical sensor S1c is located at the center position c of the guiding light beam scanning range. Even when the light receiving position of the light receiving sensor S1c is deviated to the lower side from the guiding beam light scanning range central position c, it can be similarly controlled to be positioned at the guiding beam light scanning range central position c.

【0051】尚、上記第2別実施例の説明では、受光位
置制御を行うものを示したが、前記第1別実施例のよう
に、投射位置制御を行うようにすることもできる。つま
り、この場合には、前記制御手段100は、前記1個の
光センサS1cが前記誘導用ビーム光A1,A2を受光
した時間間隔情報に基づいて、前記偏位状態として前記
光センサS1cの受光位置の前記誘導用ビーム光走査範
囲中央位置cからの偏位量を判別し、その偏位量情報に
基づいて前記投射位置制御を一方の作動方向に所定作動
量で行った結果、前記偏位量が減少する場合にはその作
動方向に続けて前記投射位置制御を行い、前記偏位量が
増加する場合にはその作動方向と反対方向に前記投射位
置制御を行う。又、第2別実施例では、1個の光センサ
S1cの受光情報に基づいて誘導経路(作業行程R1,
R2)に対する横方向への偏位xは検出できるが、傾き
φは検出できないので、これに代えて例えば方位センサ
S4の方位検出情報を使用したり、あるいは、横方向へ
の偏位xのみを位置検出情報とするものでもよい。
In the description of the second alternative embodiment, the light receiving position control is shown, but the projection position control may be performed as in the first alternative embodiment. That is, in this case, the control means 100 determines that the optical sensor S1c is in the deviation state based on the time interval information when the one optical sensor S1c receives the guiding beam lights A1 and A2. The deviation amount from the central position c of the guiding light beam scanning range of the position is discriminated, and the projection position control is performed with a predetermined operation amount in one operation direction based on the deviation amount information. When the amount decreases, the projection position control is performed continuously in the operation direction, and when the deviation amount increases, the projection position control is performed in the direction opposite to the operation direction. In the second embodiment, the guide route (working process R1,
The lateral deviation x with respect to R2) can be detected, but the inclination φ cannot be detected. Instead, for example, the azimuth detection information of the azimuth sensor S4 is used, or only the lateral deviation x is detected. It may be the position detection information.

【0052】上記実施例では、ビーム光受光手段S1を
構成する光センサS1a,S1bが横方向に所定の分解
能の受光位置を備えるのに、複数個の受光素子Dを車体
横方向に並置したものを示したが、これに限るものでは
なく、例えば、横方向に連続した受光部と、この受光部
の前面を横方向に所定タイミングで移動する所定面積の
光通過窓とで構成してもよい。
In the above embodiment, the light sensors S1a and S1b forming the light beam receiving means S1 have a light receiving position with a predetermined resolution in the lateral direction, but a plurality of light receiving elements D are arranged side by side in the lateral direction of the vehicle body. However, the present invention is not limited to this, and may include, for example, a light receiving portion that is continuous in the horizontal direction and a light passage window that has a predetermined area and that moves the front surface of the light receiving portion in the horizontal direction at a predetermined timing. .

【0053】又、上記実施例では、誘導用ビーム光A
1,A2を投射するビーム光投射手段B1,B2をレー
ザー光発生器等で構成したが、レーザー光以外のビーム
光を発生する装置でもよい。
Further, in the above embodiment, the guiding light beam A
Although the beam light projecting means B1 and B2 for projecting 1 and A2 are constituted by laser light generators or the like, they may be devices that generate beam light other than laser light.

【0054】上記実施例では、誘導経路を作業車Vが田
植え作業等の作業をしながら走行する作業行程R1,R
2に構成したものを示したが、作業しないで単に移動す
る移動体を誘導する経路でもよい。
In the above embodiment, the work vehicle R travels along the guide route while performing work such as rice planting work.
Although the configuration shown in FIG. 2 is shown, the route may be a route for guiding a moving body that simply moves without working.

【0055】又、上記実施例では、本発明を移動体とし
ての田植え用の作業車Vに適用したものを例示したが、
田植え用以外の農作業用作業車及び農作業用以外の各種
作業車等にも適用できるものであって、その際の各部の
具体構成は、作業車の目的や作業条件等に合わせて適宜
変更される。
In the above embodiment, the present invention is applied to the work vehicle V for rice planting as a moving body.
It can be applied to agricultural work vehicles other than rice planting and various work vehicles other than agricultural work, and the specific configuration of each part at that time is appropriately changed according to the purpose and working conditions of the work vehicle. .

【0056】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】誘導経路の全体及び誘導用ビーム光の投射位置
を示す平面図
FIG. 1 is a plan view showing an entire guide path and a projection position of a guide light beam.

【図2】作業車及び誘導用ビーム光投射手段の概略側面
FIG. 2 is a schematic side view of a work vehicle and a beam light projection means for guidance.

【図3】作業車及びビーム光受光手段を示す概略平面図FIG. 3 is a schematic plan view showing a work vehicle and a beam light receiving means.

【図4】作業車側の制御構成のブロック図FIG. 4 is a block diagram of a control configuration on the work vehicle side.

【図5】操向制御用の受光センサの受光位置の説明図FIG. 5 is an explanatory diagram of a light receiving position of a light receiving sensor for steering control.

【図6】受光位置の偏位状態判別を説明する側面図FIG. 6 is a side view for explaining the deviation state determination of the light receiving position.

【図7】受光位置の偏位状態判別を説明するタイミング
チャート
FIG. 7 is a timing chart for explaining the deviation state determination of the light receiving position.

【図8】第1別実施例の誘導経路の全体及び誘導用ビー
ム光の投射位置を示す平面図
FIG. 8 is a plan view showing an entire guide path and a projection position of a guide light beam according to a first embodiment.

【図9】第1別実施例の作業車及び誘導用ビーム光投射
手段の概略側面図
FIG. 9 is a schematic side view of a work vehicle and a guiding beam light projection means of a first alternative embodiment.

【図10】第1別実施例の作業車側の制御構成のブロッ
ク図
FIG. 10 is a block diagram of a control configuration on the work vehicle side according to the first alternative embodiment.

【図11】第1別実施例の投射位置変更の制御構成のブ
ロック図
FIG. 11 is a block diagram of a control configuration for changing a projection position according to the first alternative embodiment.

【図12】第2別実施例の作業車及び誘導用ビーム光投
射手段の概略側面図
FIG. 12 is a schematic side view of a work vehicle and a guiding beam light projection means of a second alternative embodiment.

【図13】第2別実施例の作業車側の制御構成のブロッ
ク図
FIG. 13 is a block diagram of a control configuration on the working vehicle side according to a second alternative embodiment.

【図14】第2別実施例の受光位置の偏位状態判別を説
明する側面図
FIG. 14 is a side view for explaining the deviation state determination of the light receiving position according to the second alternative embodiment.

【図15】第2別実施例の受光位置の偏位状態判別を説
明するタイミングチャート
FIG. 15 is a timing chart for explaining the deviation state determination of the light receiving position of the second alternative embodiment.

【符号の説明】[Explanation of symbols]

V 移動体 B1,B2 誘導用ビーム光投射手段 S1 ビーム光受光手段 100 制御手段 20 受光位置変更手段 24 地上側通信手段 101 投射位置変更手段 22 移動体側通信手段 S1a 光センサ S1b 光センサ S1c 光センサ V moving body B1, B2 guiding beam light projecting means S1 beam light receiving means 100 control means 20 light receiving position changing means 24 ground side communication means 101 projection position changing means 22 moving body side communication means S1a optical sensor S1b optical sensor S1c optical sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 地上側に、移動体(V)の誘導経路の長
手方向に沿って誘導用ビーム光を上下方向に所定角度走
査する状態で投射する誘導用ビーム光投射手段(B1,
B2)が設けられ、 前記移動体(V)に、前記誘導用ビーム光を受光するビ
ーム光受光手段(S1)と、そのビーム光受光手段(S
1)の受光情報に基づいて前記移動体(V)の前記誘導
経路に対する横方向での位置を検出して、その位置検出
情報に基づいて前記移動体(V)が前記誘導経路に沿っ
て移動するように操向制御する制御手段(100)とが
設けられた移動体のビーム光誘導用制御装置であって、 前記移動体(V)に、前記ビーム光受光手段(S1)の
受光位置を上下方向に変更する受光位置変更手段(2
0)が設けられ、 前記制御手段(100)は、前記ビーム光受光手段(S
1)が前記誘導用ビーム光を受光した時間間隔情報に基
づいて前記ビーム光受光手段(S1)の受光位置の前記
誘導用ビーム光走査範囲中央位置からの偏位状態を判別
し、その偏位状態判別情報に基づいて前記ビーム光受光
手段(S1)の受光位置が前記誘導用ビーム光走査範囲
の中央に位置するように前記受光位置変更手段(20)
を作動させる受光位置制御を行うように構成されている
移動体のビーム光誘導用制御装置。
1. A guide beam light projecting means (B1,) for projecting a guide beam light on the ground side along a longitudinal direction of a guide path of a moving body (V) in a state of vertically scanning a predetermined angle.
B2) is provided, and the beam light receiving means (S1) for receiving the guiding beam light and the beam light receiving means (S) are provided on the moving body (V).
The position of the moving body (V) in the lateral direction with respect to the guide route is detected based on the light reception information of 1), and the moving body (V) moves along the guide route based on the position detection information. And a control means (100) for controlling the steering so as to control the beam light of the moving body, and the light receiving position of the beam light receiving means (S1) to the moving body (V). Light receiving position changing means (2
0) is provided, and the control means (100) controls the beam light receiving means (S).
1) discriminates the deviation state of the light receiving position of the light beam receiving means (S1) from the central position of the light beam scanning region for guidance based on the time interval information of receiving the light beam for guidance, and the deviation thereof. The light receiving position changing means (20) is arranged so that the light receiving position of the light beam receiving means (S1) is located in the center of the guiding light beam scanning range based on the state discrimination information.
A controller for guiding a light beam of a moving object, which is configured to perform a light receiving position control that activates the.
【請求項2】 地上側に、移動体(V)の誘導経路の長
手方向に沿って誘導用ビーム光を上下方向に所定角度走
査する状態で投射する誘導用ビーム光投射手段(B1,
B2)が設けられ、 前記移動体(V)に、前記誘導用ビーム光を受光するビ
ーム光受光手段(S1)と、そのビーム光受光手段(S
1)の受光情報に基づいて前記移動体(V)の前記誘導
経路に対する横方向での位置を検出して、その位置検出
情報に基づいて前記移動体(V)が前記誘導経路に沿っ
て移動するように操向制御する制御手段(100)とが
設けられた移動体のビーム光誘導用制御装置であって、 地上側に、地上側通信手段(24)と、その地上側通信
手段(24)の受信情報に基づいて前記誘導用ビーム光
の投射位置を上下方向に変更する投射位置変更手段(1
01)とが設けられ、 前記移動体(V)に、移動体側通信手段(22)が設け
られ、 前記制御手段(100)は、前記ビーム光受光手段(S
1)が前記誘導用ビーム光を受光した時間間隔情報に基
づいて前記ビーム光受光手段(S1)の受光位置の前記
誘導用ビーム光走査範囲中央位置からの偏位状態を判別
して、その偏位状態判別情報を前記移動体側通信手段
(22)を介して前記地上側通信手段(24)に送信
し、 前記ビーム光受光手段(S1)の受光位置が前記誘導用
ビーム光走査範囲の中央に位置するように前記送信され
た偏位状態判別情報に基づいて前記投射位置変更手段
(101)を作動させる投射位置制御を行うように構成
されている移動体のビーム光誘導用制御装置。
2. A guidance beam light projection means (B1, for projecting a guidance beam light on the ground side along a longitudinal direction of a guidance path of a moving body (V) in a state of vertically scanning a predetermined angle.
B2) is provided, and the beam light receiving means (S1) for receiving the guiding beam light and the beam light receiving means (S) are provided on the moving body (V).
The position of the moving body (V) in the lateral direction with respect to the guide route is detected based on the light reception information of 1), and the moving body (V) moves along the guide route based on the position detection information. A controller for controlling a beam light of a moving body, which is provided with a control means (100) for controlling the steering so that the ground side communication means (24) and the ground side communication means (24) are provided on the ground side. ) Projection position changing means (1) for changing the projection position of the guiding light beam in the vertical direction based on the received information of (1).
01) is provided, the mobile body (V) is provided with a mobile body side communication means (22), and the control means (100) is provided with the beam light receiving means (S).
1) discriminates the deviation state of the light receiving position of the light beam receiving means (S1) from the central position of the light beam scanning region for guidance based on the time interval information when the light beam for guidance is received. The position state determination information is transmitted to the ground side communication means (24) via the mobile body side communication means (22), and the light receiving position of the beam light receiving means (S1) is at the center of the guiding light beam scanning range. A controller for guiding a light beam of a moving body, which is configured to perform a projection position control for operating the projection position changing means (101) based on the transmitted deviation state determination information so as to be positioned.
【請求項3】 前記ビーム光受光手段(S1)が、横方
向に所定分解能の受光位置を備え且つ上下方向に所定間
隔を置いて並置された複数個の光センサ(S1a,S1
b)にて構成され、 前記制御手段(100)は、前記各光センサ(S1a,
S1b)が前記誘導用ビーム光を受光した時間間隔情報
に基づいて、前記偏位状態として前記ビーム光受光手段
(S1)の受光位置が前記誘導用ビーム光走査範囲中央
位置から偏位している方向と偏位量とを判別するように
構成されている請求項1又は2記載の移動体のビーム光
誘導用制御装置。
3. A plurality of optical sensors (S1a, S1), wherein said beam light receiving means (S1) has a light receiving position of a predetermined resolution in the lateral direction and is arranged in parallel at a predetermined interval in the vertical direction.
b), the control means (100) includes the optical sensors (S1a, S1a,
The light receiving position of the beam light receiving means (S1) is deviated from the center position of the guiding light beam scanning range as the deviation state based on the time interval information when S1b) receives the guiding light beam. The control device for guiding a beam of a moving body according to claim 1 or 2, which is configured to determine a direction and a deviation amount.
【請求項4】 前記複数個の光センサ(S1a,S1
b)が、車体前後方向にも所定間隔を置いて設置され、 前記制御手段(100)は、前記各光センサ(S1a,
S1b)の受光情報に基づいて、前記位置検出情報とし
て前記移動体(V)の前記誘導経路に対する横方向への
偏位及び傾きを検出するように構成されている請求項3
記載の移動体のビーム光誘導用制御装置。
4. The plurality of optical sensors (S1a, S1)
b) is also installed at a predetermined interval in the front-rear direction of the vehicle body, and the control means (100) includes the optical sensors (S1a, S1a,
The lateral displacement and inclination of the moving body (V) with respect to the guide path are detected as the position detection information based on the light reception information of S1b).
A controller for guiding a light beam of a moving body as described above.
【請求項5】 前記ビーム光受光手段(S1)が、横方
向に所定分解能の受光位置を備えた1個の光センサ(S
1c)にて構成され、 前記制御手段(100)は、前記1個の光センサ(S1
c)が前記誘導用ビーム光を受光した時間間隔情報に基
づいて、前記偏位状態として前記ビーム光受光手段(S
1)の受光位置の前記誘導用ビーム光走査範囲中央位置
からの偏位量を判別し、その偏位量情報に基づいて前記
受光位置制御又は前記投射位置制御を一方の作動方向に
所定作動量で行った結果、前記偏位量が減少する場合に
はその作動方向に続けて前記受光位置制御又は前記投射
位置制御を行い、前記偏位量が増加する場合にはその作
動方向と反対方向に前記受光位置制御又は前記投射位置
制御を行うように構成されている請求項1又は2記載の
移動体のビーム光誘導用制御装置。
5. The light beam receiving means (S1) comprises a single optical sensor (S) having a light receiving position with a predetermined resolution in the lateral direction.
1c), the control means (100) includes the one optical sensor (S1).
c) sets the beam light receiving means (S) as the deviation state based on the time interval information when the guiding beam light is received.
The amount of deviation of the light receiving position of 1) from the center position of the guiding light beam scanning range is determined, and the light receiving position control or the projection position control is performed in one operation direction by a predetermined operation amount based on the deviation amount information. As a result of the above, when the deviation amount decreases, the light receiving position control or the projection position control is continuously performed in the operation direction, and when the deviation amount increases, the operation direction is opposite to the operation direction. The beam light guiding control device for a moving body according to claim 1 or 2, which is configured to perform the light receiving position control or the projection position control.
JP7003657A 1995-01-13 1995-01-13 Controller for beam light guidance for mobile object Pending JPH08194533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7003657A JPH08194533A (en) 1995-01-13 1995-01-13 Controller for beam light guidance for mobile object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7003657A JPH08194533A (en) 1995-01-13 1995-01-13 Controller for beam light guidance for mobile object

Publications (1)

Publication Number Publication Date
JPH08194533A true JPH08194533A (en) 1996-07-30

Family

ID=11563545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7003657A Pending JPH08194533A (en) 1995-01-13 1995-01-13 Controller for beam light guidance for mobile object

Country Status (1)

Country Link
JP (1) JPH08194533A (en)

Similar Documents

Publication Publication Date Title
JPH0944240A (en) Guide device for moving vehicle
JPH07281742A (en) Traveling controller for beam light guided work vehicle
JPH01316808A (en) Steering controller for self-traveling vehicle
JPH08194533A (en) Controller for beam light guidance for mobile object
JPH0944241A (en) Beam light guidance device for moving object
JP3005152B2 (en) Traveling control device for beam-guided work vehicle
JP3005153B2 (en) Travel control device for beam-guided work vehicle
JPH075915A (en) Traveling controller for beam light guided work vehicle
JPH08179827A (en) Controller for light beam guide for mobile object
JPH0937608A (en) Control information detector of working vehicle
JPH07281743A (en) Method for traveling work vehicle for ground work and controller therefor
JPH08179829A (en) Guide controller for mobile object
JPH08179828A (en) Controller for light beam guide for mobile object
JPS63308609A (en) Working vehicle guide device using beam light
JPH06149371A (en) Traveling controller for automatic traveling working vehicle
JP3046718B2 (en) Beam light guiding device for work vehicles
JPH07291140A (en) Steering controller for working vehicle
JPH09222919A (en) Device for guiding work wagon by utilizing beam light
JPH08159764A (en) Apparatus for receiving beam light and guidance and control apparatus for moving body
JP3044160B2 (en) Light receiving device and traveling control device for beam light guided work vehicle
JPH07295631A (en) Beam light projection device for work vehicle guidance
JPH0876843A (en) Light receiving device and travel controller for beam light guide type working vehicle
JPH08178650A (en) Position detecting device for work vehicle
JPH07175516A (en) Photodetector for beam light guide type operating vehicle
JPH01188906A (en) Travel controller for beam light guided work vehicle