JPH0614520B2 - Processing equipment in low-pressure atmosphere - Google Patents
Processing equipment in low-pressure atmosphereInfo
- Publication number
- JPH0614520B2 JPH0614520B2 JP58243869A JP24386983A JPH0614520B2 JP H0614520 B2 JPH0614520 B2 JP H0614520B2 JP 58243869 A JP58243869 A JP 58243869A JP 24386983 A JP24386983 A JP 24386983A JP H0614520 B2 JPH0614520 B2 JP H0614520B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gas
- pressure
- low
- pressure atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 94
- 239000012530 fluid Substances 0.000 claims description 6
- 238000011282 treatment Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 95
- 238000000034 method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空内において基板に食刻,成膜,ベーキング
処理等の処理を行う低圧雰囲気内の処理装置に関するも
のである。Description: FIELD OF THE INVENTION The present invention relates to a processing apparatus in a low-pressure atmosphere for performing processing such as etching, film formation, and baking processing on a substrate in the air.
詳しくはドライエッチング装置においては、基板がプラ
ズマから受ける熱により加熱されて基板上のフォトレジ
ストが変質しないように基板を冷却するための装置、ま
た、基板の脱ガスのためのベーキング処理においては基
板を効果的に加熱する必要があるため、この基板を加熱
する装置、また蒸着、スパッタ蒸着装置などにおいて生
成膜の粒径、光学的反射率などの制御のために必要な基
板の温度制御装置に関するものである。Specifically, in a dry etching device, a device for cooling the substrate so that the photoresist on the substrate is not deteriorated by being heated by heat received from the plasma, and a substrate for degassing the substrate in the baking process. The present invention relates to a device for heating a substrate, and a temperature control device for the substrate necessary for controlling the grain size of the formed film, the optical reflectance, etc. in a vapor deposition, sputter vapor deposition device, etc. It is a thing.
低圧雰囲気内の処理装置では、基板と基板支持台間の熱
の授受は、常圧における熱の授受のように十分には行な
われないことが知られている。これは、2面間の熱の授
受には介在気体分子が大きな役割を果たしているからで
ある。It is known that in a processing apparatus in a low-pressure atmosphere, heat transfer between the substrate and the substrate support is not performed sufficiently like heat transfer at normal pressure. This is because intervening gas molecules play a large role in exchanging heat between the two surfaces.
そのため、単に、基板支持台の温度制御を行っただけで
は、基板の温度制御を効果的に行うことはできない。Therefore, it is not possible to effectively control the temperature of the substrate simply by controlling the temperature of the substrate support.
そこで、2面間の熱の授受を効果的に増大する方法がい
くつか知られている。Therefore, some methods are known for effectively increasing the transfer of heat between the two surfaces.
この従来の基板温度制御装置は、特開昭58−32410号に
示すように第1図に示す如く構成されている。This conventional substrate temperature control device is constructed as shown in FIG. 1 as shown in JP-A-58-32410.
即ちこのスパッタリングまたはドライエッチング等の処
理装置は、主に真空室10、スパッタ源19、陽極20、及び
基板支持台12から構成されている。That is, this processing apparatus for sputtering or dry etching mainly comprises a vacuum chamber 10, a sputtering source 19, an anode 20, and a substrate support 12.
そして真空室10は排気装置18により低圧まで排気され
る。陰極であるスパッタ源19と陽極20との間で放電を発
生し、生じたイオンがスパッタ源19にたたかれることに
より分子がとび出し、基板支持台12に支持された基板15
に達し、基板15上にスパッタ源と同じ材質の薄膜が形成
される。Then, the vacuum chamber 10 is exhausted to a low pressure by the exhaust device 18. A discharge is generated between the sputtering source 19 which is the cathode and the anode 20, and the generated ions are hit by the sputtering source 19 so that the molecules jump out, and the substrate 15 supported by the substrate support 12 is formed.
And a thin film made of the same material as the sputtering source is formed on the substrate 15.
ここで、基板支持台12内には導管11が設けられていて、
管5を通じて水供給装置2から、温度が制御された水が
流されることにより、基板支持台12は適当な温度に保た
れる。Here, the conduit 11 is provided in the substrate support 12,
The temperature of the water controlled by the water supply device 2 flows through the pipe 5, so that the substrate support 12 is kept at an appropriate temperature.
基板15は、バネ14を設けた基板支持具13により全周にわ
たって均一な荷重で押え付けられている。またこの時基
板15と基板支持台12との間にはOリング17が設けられて
いて、ガス室16が作られ、このガス室はOリング17によ
り真空室10からシールされている。The substrate 15 is pressed by a substrate support 13 provided with a spring 14 with a uniform load over the entire circumference. At this time, an O-ring 17 is provided between the substrate 15 and the substrate support 12, and a gas chamber 16 is created, and this gas chamber is sealed from the vacuum chamber 10 by the O-ring 17.
ここで、ガスだめ4は、ガス圧計8、制御系9、及び弁
3により、ガス供給源1からのガス流入量が制御され
る。基板15と基板支持台12との間隙に形成されるガス室
16は弁6およびガス管7を通して上記ガスだめ4と結合
され、常に一定の圧力に制御されている。Here, in the gas sump 4, the gas inflow amount from the gas supply source 1 is controlled by the gas pressure gauge 8, the control system 9, and the valve 3. Gas chamber formed in the gap between the substrate 15 and the substrate support 12
The valve 16 is connected to the gas reservoir 4 through a valve 6 and a gas pipe 7, and is constantly controlled to have a constant pressure.
以上の従来の処理装置においては、基板15と基板支持台
12との間に設けられたガス室内の気体分子により、基板
15と温度制御された基板支持台との間の熱の授受が行な
われ、基板を単に基板支持台12上に載置した場合より効
果的な基板温度制御が行なわれる。In the above conventional processing apparatus, the substrate 15 and the substrate support base are
By the gas molecules in the gas chamber provided between
Heat is transferred between the substrate 15 and the temperature-controlled substrate support, and the substrate temperature is controlled more effectively than when the substrate is simply placed on the substrate support 12.
しかしながら、この従来の処理装置において、次のよう
な問題点を有していた。However, this conventional processing device has the following problems.
即ち例えば、基板15を厚さt=0.5mm、半径a=50mmの
シリコン基板とし、ガス室16内の圧力Pを1000Pa、真空
室10内の圧力はPより十分小さいとした場合、基板はガ
ス室16内の気体の圧力により変形を受け、中心から半径
方向にγの位置での変形量δγは以下の式(1)に従う。That is, for example, when the substrate 15 is a silicon substrate having a thickness t = 0.5 mm and a radius a = 50 mm, the pressure P in the gas chamber 16 is 1000 Pa, and the pressure in the vacuum chamber 10 is sufficiently smaller than P, the substrate is gas. The amount of deformation Δγ at the position of γ in the radial direction from the center is subject to the deformation due to the pressure of the gas in the chamber 16 and follows the following equation (1).
ここで、E、Vはそれぞれシリコンの縦弾性係数および
ポアソン比で、E=13.1×1010(N/m2)、V0.3と
する。 Here, E and V are the longitudinal elastic modulus and Poisson's ratio of silicon, and E = 13.1 × 10 10 (N / m 2 ) and V 0.3.
この時、基板中心すなわちγ=0の位置での変位量δ0
は約270μmになる。At this time, the displacement amount δ 0 at the substrate center, that is, at the position of γ = 0
Is about 270 μm.
この値は、ガスとしてHeを用いた時の適切なガス室16の
厚さ134μmを大きく上まわっている。すなわち、設計
どおりの効果が得られないことになる。This value greatly exceeds the appropriate thickness of 134 μm of the gas chamber 16 when using He as the gas. That is, the effect as designed cannot be obtained.
さらに、高い熱伝導性を持つHeであっても、ガス室16中
の気体による十分な伝熱効果が得られないわけであるか
ら、アルゴンなど真空室10内の処理ガスと同種のガスを
用いた場合、ヘリウムに見られるような高い伝熱効果を
得られないのは明白である。Furthermore, even with He having high thermal conductivity, a sufficient heat transfer effect due to the gas in the gas chamber 16 cannot be obtained, so a gas of the same type as the processing gas in the vacuum chamber 10 such as argon is used. If not, it is obvious that the high heat transfer effect seen in helium cannot be obtained.
以上のように、従来の基板温度制御方法では、高伝導性
ガスであるヘリウムを用いても十分な伝熱特性を得られ
ないし、ガス室16内のガスを真空室10内のガスと同種の
ものを用いた場合、現実的にはガス室16による効果的な
伝熱特性は得られないという問題点を有していた。As described above, in the conventional substrate temperature control method, sufficient heat transfer characteristics cannot be obtained even by using helium, which is a highly conductive gas, and the gas in the gas chamber 16 is of the same type as the gas in the vacuum chamber 10. However, in the case of using such a material, there is a problem that the effective heat transfer characteristics of the gas chamber 16 cannot be obtained in reality.
さらに、Oリングのシール効果が発生するOリングのつ
ぶししろまで、基板15を押えつけることは、基板の機械
的強度の観点から不可能である。Further, it is impossible from the viewpoint of mechanical strength of the substrate to press down the substrate 15 to the crushed portion of the O ring where the sealing effect of the O ring occurs.
そこで、どうしても気体のもれが発生してしまい、真空
室10内に導入する処理気体と異なる気体を伝熱用気体と
した場合、リークした伝熱用気体が真空室10内の処理に
悪影響を及ぼすという問題点も有していた。Therefore, if gas leaking occurs inevitably, and a gas different from the processing gas introduced into the vacuum chamber 10 is used as the heat transfer gas, the leaked heat transfer gas adversely affects the processing in the vacuum chamber 10. It also had the problem of affecting.
本発明の目的は、上記従来技術の問題点に鑑み、低圧雰
囲気内で食刻、成膜、ベーキングなど、処理を行う装置
において、基板の温度制御を効果的に、かつ、均一に行
なうことができるようにした低圧雰囲気内の処理装置を
提供することにある。In view of the above-mentioned problems of the prior art, it is an object of the present invention to effectively and uniformly control the temperature of a substrate in an apparatus that performs processing such as etching, film formation and baking in a low pressure atmosphere. An object of the present invention is to provide a processing device in a low-pressure atmosphere that is made possible.
本発明は、上記目的を達成するために、基板と基板支持
台の間隙距離が、間隙内に存在する気体の平均自由行程
より小さい範囲では、2面間の熱の授受量は、任意の圧
力において気体の種類には依存しないことに着目し、基
板支持台を凸面にして基板が気体圧力により凸に変形し
た場合でも気体層の厚さもその気体の平均自由行程より
小さくすることにより効果的な2面間の伝熱特性を高伝
導性気体以外の気体においても良くしたことにある。In order to achieve the above-mentioned object, the present invention provides a heat transfer amount between two surfaces at an arbitrary pressure within a range in which the gap distance between the substrate and the substrate support is smaller than the mean free path of the gas existing in the gap. It is effective by making the thickness of the gas layer smaller than the mean free path of the gas even when the substrate support is convex and the substrate is convexly deformed by the gas pressure. This is to improve the heat transfer characteristics between the two surfaces even in a gas other than the highly conductive gas.
以下本発明を図に示す実施例にもとづいて具体的に説明
する。The present invention will be specifically described below based on the embodiments shown in the drawings.
即ち第2図を用いて本発明の特徴点を具体的に説明す
る。That is, the features of the present invention will be specifically described with reference to FIG.
基板と基板支持台間の気体層の厚さをdとして、気体層
の圧力を変えた時単位温度差当りに2面間を単位時間、
単位面積あたり通過する熱量(熱通過率)の変化をヘリ
ウム、ちっ素、四塩化炭素について実験により測定した
のが第2図である。Assuming that the thickness of the gas layer between the substrate and the substrate support is d, when the pressure of the gas layer is changed, a unit time between two surfaces per unit time temperature difference,
FIG. 2 shows the change in the amount of heat passing through per unit area (heat transfer rate) measured by experiments for helium, nitrogen, and carbon tetrachloride.
更に本発明の一実施例を第3図,第4図および第5図に
もとづいて具体的に説明する。Further, one embodiment of the present invention will be specifically described with reference to FIGS. 3, 4, and 5.
本実施例は、真空室24、上部電極30、下部電極37、高周
波電源42から主に構成される平行平板形のドライエッチ
ング装置である。The present embodiment is a parallel plate type dry etching apparatus mainly composed of a vacuum chamber 24, an upper electrode 30, a lower electrode 37, and a high-frequency power source 42.
真空室24は、排気系41により低圧まで排気され、真空計
39及び制御系40により定圧にされ処理気体導入口25から
処理気体である例えば四塩化炭素が導入される。また、
上部電極30および絶縁物38を介した下部電極37間には、
高周波電源42から高周波が印加され、処理気体はプラズ
マ状態になり、下部電極37上の基板34の表面が表面のレ
ジストにより形成されたパターン通りに食刻される。The vacuum chamber 24 is evacuated to a low pressure by the exhaust system 41, and the vacuum gauge
The pressure is made constant by 39 and the control system 40, and for example, carbon tetrachloride as a processing gas is introduced from the processing gas inlet 25. Also,
Between the upper electrode 30 and the lower electrode 37 via the insulator 38,
A high frequency is applied from the high frequency power source 42, the processing gas is brought into a plasma state, and the surface of the substrate 34 on the lower electrode 37 is etched according to the pattern formed by the resist on the surface.
この図から明らかなように、気体層の厚さdを10μm以
下にすると、圧力400Pa程度まではちっ素および四塩化
炭素を気体層に用いても例えば四フッ化炭素、酸素、ヘ
リウムを用いた場合と同様の熱通過率を得られる。As is clear from this figure, when the thickness d of the gas layer is set to 10 μm or less, carbon tetrafluoride, oxygen and helium are used even if nitrogen and carbon tetrachloride are used in the gas layer up to a pressure of about 400 Pa. The same heat transfer rate as in the case can be obtained.
すなわち、気体層の厚さは常時10μm程度以下にしてお
くと伝熱効果は大きい。That is, the heat transfer effect is large when the thickness of the gas layer is constantly kept to about 10 μm or less.
また、ガスの圧力は、気体の種類にもよるが、気体層の
厚さが10μm程度(機械的接触の限界)であれば、約13
00Pa以上にしても熱通過率は上昇せず、意味がない。The gas pressure depends on the type of gas, but if the thickness of the gas layer is about 10 μm (the limit of mechanical contact), it will be about 13
Even if it is more than 00Pa, the heat transfer rate does not increase and it is meaningless.
さらに、例えば半径50mmの基板が1300Paの気体から受け
る荷重は1kgであり、これ以上の荷重を加えるのは基板
の破壊の起こる可能性が出てくる。従って1300Pa程度が
限界だと考えられる。Furthermore, for example, a substrate having a radius of 50 mm receives a load of 1 kg from a gas of 1300 Pa, and if a load larger than this is applied, the substrate may be broken. Therefore, the limit is considered to be about 1300Pa.
この図において、直線部21は、気体分子の平均自由行程
が、気体層の厚さより十分大きい場合であり、気体の圧
力とともに線形に熱通過率は上昇し、気体層の厚さや気
体の種類に関係しない。In this figure, the straight line portion 21 is the case where the mean free path of the gas molecules is sufficiently larger than the thickness of the gas layer, the heat transfer rate increases linearly with the pressure of the gas, and the thickness of the gas layer and the type of gas vary. It doesn't matter.
一方、直線部22は、気体分子の平均自由行程が、気体層
の厚さより十分小さい場合であり、気体層の厚さが大き
くなると熱通過率は下がる。この時熱通過率は、同種の
気体であれば圧力が大きくなっても変化しない。On the other hand, in the straight portion 22, the mean free path of gas molecules is sufficiently smaller than the thickness of the gas layer, and the heat transmission rate decreases as the thickness of the gas layer increases. At this time, the heat transfer rate does not change even if the pressure increases as long as the gases are the same.
また曲線部23はこれら2つの場合の過渡的な状態であ
る。The curved portion 23 is a transitional state in these two cases.
ここで、下部電極37は、内部に導管32が設けられてい
て、流体供給源43から、設定温度に保たれた流体が供給
され、設定温度に保たれる。下部電極37を設定温度に保
つ方法としては、流体を流す方法に限らず、ヒートパイ
プと冷却源あるいは発熱導線などを用いる方法であって
もさしつかえない。Here, the lower electrode 37 is provided with the conduit 32 therein, and the fluid maintained at the set temperature is supplied from the fluid supply source 43. The method of maintaining the lower electrode 37 at the set temperature is not limited to the method of flowing a fluid, and may be the method of using a heat pipe and a cooling source or a heating wire.
基板34は、バネ36が設けられた環状または3〜4点のつ
めからなり駆動系29により駆動される基板支持具35によ
り総加重3〜4kgで押えつけられる。The substrate 34 is pressed with a total weight of 3 to 4 kg by a substrate supporting member 35 which is formed of an annular member provided with a spring 36 or a claw at 3 to 4 points and is driven by a driving system 29.
さらに、伝熱用気体が、流量制御装置46および真空計45
により圧力が制御された気体だめ44から導管47を通じ下
部電極37に導入され、第4図に示したように円48上に設
けられた直径1mm程度の多数の気体導入穴31を通じ、基
板34と下部電極37が作る間隙に送られる。Further, the heat transfer gas is flown by the flow rate controller 46 and the vacuum gauge 45.
Is introduced into the lower electrode 37 from a gas reservoir 44 whose pressure is controlled by a conduit 47, and through a large number of gas introduction holes 31 with a diameter of about 1 mm provided on a circle 48 as shown in FIG. It is sent to the gap created by the lower electrode 37.
また、気体導入口25を通じ真空室24内に導入される気体
および下部電極37を通じ真空室24内に導入される気体は
合せて一本の導管28から供給され、流量制御装置27によ
り制御され、気体供給源26から真空室に供給される気体
の総量を制御する。Further, the gas introduced into the vacuum chamber 24 through the gas introduction port 25 and the gas introduced into the vacuum chamber 24 through the lower electrode 37 are supplied together from a single conduit 28 and controlled by the flow rate control device 27, The total amount of gas supplied from the gas supply source 26 to the vacuum chamber is controlled.
また、下部電極37は、凸面形状に加工され、表面は、表
面荒さ3.2S程度まで研摩されている。The lower electrode 37 is processed into a convex shape, and the surface thereof is polished to a surface roughness of 3.2S.
この時、凸面の形状は、式(1)に従うか式(1)よりやや大
きく加工される。これは、気体が導入されて基板が裏面
から荷重を受けてもさらに変形しないようにするためで
あり、そ結果基板34は下部電極37に密着し、かつ必要以
上に基板を変形させずにすむ。At this time, the shape of the convex surface is processed according to the expression (1) or slightly larger than the expression (1). This is to prevent the substrate from being further deformed even when a load is applied from the back surface by introducing gas, and as a result, the substrate 34 adheres to the lower electrode 37 and does not deform the substrate more than necessary. .
以上の装置構成において、基板の温度制御が行なわれる
過程について説明する。A process of controlling the temperature of the substrate in the above device configuration will be described.
気体導入穴31から基板34の裏面に導入された気体は、2
面の間隙を通して真空室24内に排気される一方、円48の
内部にも導入され、円48の内部の気体の圧力は気体導入
穴31における気体の圧力と同じ値になる。この定常状態
になるまでの時間は、3.2S程度の面とシリコン基板と
の間隙であれば数秒とかからないことが実験により確認
されている。The gas introduced from the gas introduction hole 31 to the back surface of the substrate 34 is 2
While being evacuated into the vacuum chamber 24 through the surface gap, it is also introduced into the circle 48, and the gas pressure inside the circle 48 becomes the same value as the gas pressure in the gas introduction hole 31. It has been confirmed by experiments that the time required to reach the steady state does not take several seconds if the gap between the surface of about 3.2 S and the silicon substrate.
また、真空室24側に排気される段階で、円48の外側に
は、圧力の勾配が生じる。これは、間隙距離10μmとい
うこの部分の持つコンダクタンスによるものである。Further, at the stage of exhausting to the vacuum chamber 24 side, a pressure gradient is generated outside the circle 48. This is due to the conductance of this portion with the gap distance of 10 μm.
この時の、気体層33の半径方向の圧力分布を第5図に示
す。The radial pressure distribution of the gas layer 33 at this time is shown in FIG.
この時、基板34上の多くの点において、裏面の気体層33
の圧力は設定圧力例えば700Paにしておくとすると、第
2図に示したグラフより明らかなように、ヘリウム,窒
素,四塩化炭素(この他の気体においても同様だと考え
られる。)などの気体全てにおいて、熱通過率300W/m2
・degという大きな値を示す。At this time, at many points on the substrate 34, the backside gas layer 33
Assuming that the pressure is set to, for example, 700 Pa, as is apparent from the graph shown in FIG. 2, gases such as helium, nitrogen, carbon tetrachloride (which is considered to be the same for other gases), etc. Heat transfer rate of 300 W / m 2 in all
・ It shows a large value of deg.
ここで、円48の外側の部分では基板裏面の圧力が低い
が、基板自身のもつ熱伝導性が気体層の持つ熱通過率に
比べて十分大きいため、基板中心との温度の差は問題に
ならない。Here, the pressure on the backside of the substrate is low in the area outside the circle 48, but the thermal conductivity of the substrate itself is sufficiently higher than the heat transfer coefficient of the gas layer, so the temperature difference from the substrate center is a problem. I won't.
ここで、高周波電源42により約200Wの電力を印加し、
シリコン基板上のアルミニウム膜をドライエッチングし
た場合の基板の温度は、下部電極を20℃に設定した場
合、30℃程度であった。これは、基板を単に載置した場
合の250℃という値に比べると極めて良好な値である。Here, about 200 W of electric power is applied by the high frequency power source 42,
The temperature of the substrate when the aluminum film on the silicon substrate was dry-etched was about 30 ° C. when the lower electrode was set at 20 ° C. This is an extremely good value compared to the value of 250 ° C. when the substrate is simply placed.
さらに、下部電極37を通じ真空室24に導入される気体の
量を測定してみると、直径100mmのシリコン基板を3.2S
面に研摩した下部電極上に載置し、気体層の圧力を1000
Paにし、半径45mmの円周上に設けた気体導入穴から導入
した場合のリーク量は、約0.02〜0.03Pa・m3/sec程度
であり、ドライエッチングを行う場合の通常の反応気体
流量である0.5〜2Pa・m3/secに比べ1〜2桁小さい値
になっており、さらに、10-2Pa〜10-1Paの低圧雰囲気で
処理を行う電子磁共気鳴によるマイクロ波プラズマ処理
装置における反応気体流量0.04〜0.06Pa・m3/secより
も少い値になっている。このため、マイクロ波放電によ
るプラズマ処理装置における基板温度制御装置としても
用いることもできる。Furthermore, when the amount of gas introduced into the vacuum chamber 24 through the lower electrode 37 is measured, a silicon substrate with a diameter of 100 mm is 3.2S.
Place it on the lower electrode that has been polished on the surface and set the pressure of the gas layer to 1000.
The amount of leak when introducing Pa from a gas introduction hole provided on the circumference of a radius of 45 mm is about 0.02 to 0.03 Pa · m 3 / sec, which is the normal reaction gas flow rate when performing dry etching. Compared with a certain 0.5 to 2 Pa · m 3 / sec, it is a value that is 1 to 2 orders of magnitude smaller, and microwave plasma processing by electron magnetic resonance is performed in a low pressure atmosphere of 10 -2 Pa to 10 -1 Pa. The flow rate of the reaction gas in the device is less than 0.04 to 0.06 Pa · m 3 / sec. Therefore, it can also be used as a substrate temperature control device in a plasma processing apparatus using microwave discharge.
また、基板支持台を400〜500℃に熱した状態で基板のベ
ーキングに用いた場合、基板温度Tは以下の式(2)によ
り上昇する。When the substrate support is used for baking the substrate while being heated to 400 to 500 ° C., the substrate temperature T rises according to the following equation (2).
ここで、T0,Teはそれぞれ基板の初期温度、電極の温
度、λは基板全面における熱通過量、cは基板の熱容量
である。ここで、λ=3.4W/deg、c=5.8J/deg、To
=20℃、Te=400℃とすると、約4秒で360℃まで上昇す
ることになる。この値は、実験によってもほぼ近い値が
でている。 Here, T 0 and T e are the initial temperature of the substrate, the temperature of the electrodes, λ is the amount of heat passing through the entire surface of the substrate, and c is the heat capacity of the substrate. Here, λ = 3.4W / deg, c = 5.8J / deg, T o
= 20 ℃, T e = 400 ℃, it will rise to 360 ℃ in about 4 seconds. This value is almost the same even in experiments.
さらに、本発明は、真空中における基板温度制御が必要
となる本実施例に説明していない他のプロセス処理に適
用できることは当業者にとって明らかである。Furthermore, it will be apparent to those skilled in the art that the present invention can be applied to other process treatments not described in the present embodiment, which require substrate temperature control in vacuum.
以上説明したように本発明によれば、基板と基板支持台
との間隙に700Pa前後の気体を介在させた上で、間隙距
離を10μm程度以下にすることができるので高伝導性気
体であるヘリウム以外の処理気体に用いる分子量の大き
いプロセス処理気体を用いても基板と基板支持台との間
の熱通過率を大きくでき、これにより、良好な温度制御
特性を得られ、かつ、伝熱用気体に処理気体と同種の気
体を使用できるので伝熱用気体のリークの問題をも解決
することができる効果を有する。更に、基板は伝熱用気
体を介して基板支持体とだけ熱の伝達を行っており、且
つ、伝熱用気体の導入部を小穴で形成して基板と基板支
持体との間の熱伝達率の分布への影響が極力小さくなる
ように構成してあるので、分布が小さく均一性の優れた
基板温度の制御が行えるという効果を有する。また、基
板支持台の内部に温度制御された流体を循環させること
と、伝熱気体による基板と基板支持台との熱伝達とを組
み合わせることにより、基板の加熱・冷却を容易に行え
るという効果も有する。As described above, according to the present invention, a gas of about 700 Pa is interposed in the gap between the substrate and the substrate support, and the gap distance can be set to about 10 μm or less. Even if a process gas having a large molecular weight used as a process gas other than the above is used, the heat transfer rate between the substrate and the substrate support can be increased, whereby good temperature control characteristics can be obtained and a heat transfer gas can be obtained. In addition, since the same kind of gas as the processing gas can be used, there is an effect that the problem of leakage of the heat transfer gas can be solved. Further, the substrate transfers heat only to the substrate support through the heat transfer gas, and the heat transfer gas introduction part is formed by a small hole to transfer heat between the substrate and the substrate support. Since the influence on the distribution of the rate is made as small as possible, there is an effect that the substrate temperature can be controlled with a small distribution and excellent uniformity. In addition, by circulating a temperature-controlled fluid inside the substrate support and combining heat transfer between the substrate and the substrate support by heat transfer gas, it is possible to easily heat and cool the substrate. Have.
第1図は従来の処理装置を示す縦断面図、第2図は熱通
過率と気体圧力の関係を示した図、第3図は本発明の一
実施例を示す縦断面図、第4図は下部電極および基板の
透し図、第5図は気体層の圧力分布を示す図である。 24……真空室、31……気体導入穴 33……気体層、34……基板 35……基板支持具、37……下部電極 44……気体だめFIG. 1 is a vertical cross-sectional view showing a conventional processing apparatus, FIG. 2 is a view showing the relationship between heat transfer rate and gas pressure, and FIG. 3 is a vertical cross-sectional view showing one embodiment of the present invention, FIG. Is a see-through view of the lower electrode and the substrate, and FIG. 5 is a view showing pressure distribution of the gas layer. 24 ... Vacuum chamber, 31 ... Gas introduction hole 33 ... Gas layer, 34 ... Substrate 35 ... Substrate support, 37 ... Lower electrode 44 ... Gas reservoir
フロントページの続き (56)参考文献 特開 昭58−213434(JP,A) 特開 昭57−145321(JP,A) 特開 昭58−32410(JP,A) 特開 昭56−131931(JP,A)Continuation of the front page (56) Reference JP 58-213434 (JP, A) JP 57-145321 (JP, A) JP 58-32410 (JP, A) JP 56-131931 (JP , A)
Claims (4)
囲気の処理室内に、処理する基板を支持する支持台と、
前記基板を前記支持台に押しつける押しつけ部材を有
し、前記支持台は内部に温度制御された流体を流す流路
を設け、前記支持台の前記基板を支持する支持面は中央
部が高い凸状に形成され、かつ前記支持面には多数の小
孔を有し、前記支持台と前記押しつけ部材により前記支
持台に押しつけられる前記基板との間に、0.02〜
0.03Pa・m3/Sの流量で前記多数の小孔から圧
力を調整された気体を導入し、前記処理室から排気する
ことを特徴とする低圧雰囲気内の処理装置。1. A processing apparatus in a low-pressure atmosphere, comprising a support table for supporting a substrate to be processed in a processing chamber in a low-pressure atmosphere,
There is a pressing member that presses the substrate against the support table, the support table is provided with a flow path through which a temperature-controlled fluid flows, and the support surface of the support table that supports the substrate is convex with a high central portion. And having a large number of small holes in the supporting surface, and between the supporting base and the substrate pressed against the supporting base by the pressing member, 0.02 to
A processing apparatus in a low-pressure atmosphere, characterized in that a gas whose pressure is adjusted is introduced from the large number of small holes at a flow rate of 0.03 Pa · m 3 / S and exhausted from the processing chamber.
面上で支持する基板の外周に近い位置に設けられ、前記
低圧処理雰囲気内に導入する気体と同種の気体を、前記
多数の小孔から前記基板と前記支持面との間に導入する
ことを特徴とする特許請求の範囲第1項記載の低圧雰囲
気内の処理装置。2. The large number of small holes are provided at a position close to the outer periphery of a substrate supported on the supporting surface of the support table, and the same kind of gas as the gas introduced into the low pressure processing atmosphere is introduced into the large number of small holes. The treatment device in a low pressure atmosphere according to claim 1, wherein the treatment device is introduced through the small hole between the substrate and the support surface.
気体は、前記支持台と前記基板とのギャップが10μm
以下になるように圧力を調整することを特徴とする特許
請求の範囲第2項記載の低圧雰囲気内の処理装置。3. The gas introduced between the supporting base and the substrate has a gap of 10 μm between the supporting base and the substrate.
The processing apparatus in a low-pressure atmosphere according to claim 2, wherein the pressure is adjusted as follows.
制御された流体を前記支持台の温度を制御することを特
徴とする特許請求の範囲第3項記載の低圧雰囲気内の処
理装置。4. A low-pressure atmosphere according to claim 3, wherein a temperature-controlled fluid is controlled in a flow path provided inside the support base to control the temperature of the support base. Processing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58243869A JPH0614520B2 (en) | 1983-12-26 | 1983-12-26 | Processing equipment in low-pressure atmosphere |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58243869A JPH0614520B2 (en) | 1983-12-26 | 1983-12-26 | Processing equipment in low-pressure atmosphere |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7012276A Division JP2581026B2 (en) | 1995-01-30 | 1995-01-30 | Processing method and apparatus in low pressure atmosphere |
JP8083542A Division JP2960678B2 (en) | 1996-04-05 | 1996-04-05 | Substrate processing method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60136314A JPS60136314A (en) | 1985-07-19 |
JPH0614520B2 true JPH0614520B2 (en) | 1994-02-23 |
Family
ID=17110184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58243869A Expired - Lifetime JPH0614520B2 (en) | 1983-12-26 | 1983-12-26 | Processing equipment in low-pressure atmosphere |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0614520B2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5871811A (en) * | 1986-12-19 | 1999-02-16 | Applied Materials, Inc. | Method for protecting against deposition on a selected region of a substrate |
US5198034A (en) * | 1987-03-31 | 1993-03-30 | Epsilon Technology, Inc. | Rotatable substrate supporting mechanism with temperature sensing device for use in chemical vapor deposition equipment |
JPH01227438A (en) * | 1988-03-07 | 1989-09-11 | Tokyo Electron Ltd | Base plate for semiconductor substrate |
ATE95949T1 (en) * | 1988-07-15 | 1993-10-15 | Balzers Hochvakuum | HOLDING DEVICE FOR A DISK AND USE OF THE SAME. |
JP2700254B2 (en) * | 1988-09-07 | 1998-01-19 | 東京エレクトロン株式会社 | Ashing equipment |
JPH036366A (en) * | 1989-06-02 | 1991-01-11 | Nippon Steel Corp | Substrate holder fixing base for reaction vapor-deposition device |
JP2714178B2 (en) * | 1989-09-20 | 1998-02-16 | 株式会社日立製作所 | Vacuum processing equipment |
US5094885A (en) * | 1990-10-12 | 1992-03-10 | Genus, Inc. | Differential pressure cvd chuck |
US5620525A (en) * | 1990-07-16 | 1997-04-15 | Novellus Systems, Inc. | Apparatus for supporting a substrate and introducing gas flow doximate to an edge of the substrate |
US5578532A (en) * | 1990-07-16 | 1996-11-26 | Novellus Systems, Inc. | Wafer surface protection in a gas deposition process |
US5843233A (en) * | 1990-07-16 | 1998-12-01 | Novellus Systems, Inc. | Exclusion guard and gas-based substrate protection for chemical vapor deposition apparatus |
US5230741A (en) * | 1990-07-16 | 1993-07-27 | Novellus Systems, Inc. | Gas-based backside protection during substrate processing |
AU1151592A (en) * | 1991-01-28 | 1992-08-27 | Materials Research Corporation | Target for cathode sputtering |
US5698070A (en) * | 1991-12-13 | 1997-12-16 | Tokyo Electron Limited | Method of etching film formed on semiconductor wafer |
US5318801A (en) * | 1993-05-18 | 1994-06-07 | United States Of America As Represented By The Secretary Of The Navy | Substrate temperature control apparatus and technique for CVD reactors |
US5562947A (en) * | 1994-11-09 | 1996-10-08 | Sony Corporation | Method and apparatus for isolating a susceptor heating element from a chemical vapor deposition environment |
JP3537269B2 (en) * | 1996-05-21 | 2004-06-14 | アネルバ株式会社 | Multi-chamber sputtering equipment |
JP5570359B2 (en) * | 2010-09-10 | 2014-08-13 | キヤノンアネルバ株式会社 | Rotary joint and sputtering apparatus |
JP2012146935A (en) * | 2011-01-14 | 2012-08-02 | Sharp Corp | Wafer processor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56131931A (en) * | 1980-03-19 | 1981-10-15 | Hitachi Ltd | Controlling device of wafer temperature |
JPS57145321A (en) * | 1981-03-03 | 1982-09-08 | Nec Corp | Dry etching device |
JPS5832410A (en) * | 1981-08-06 | 1983-02-25 | ザ・パ−キン−エルマ−・コ−ポレイシヨン | Method and device for treating structure under gas reduced pressure environment |
US4512391A (en) * | 1982-01-29 | 1985-04-23 | Varian Associates, Inc. | Apparatus for thermal treatment of semiconductor wafers by gas conduction incorporating peripheral gas inlet |
US4457359A (en) * | 1982-05-25 | 1984-07-03 | Varian Associates, Inc. | Apparatus for gas-assisted, solid-to-solid thermal transfer with a semiconductor wafer |
-
1983
- 1983-12-26 JP JP58243869A patent/JPH0614520B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60136314A (en) | 1985-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0614520B2 (en) | Processing equipment in low-pressure atmosphere | |
JP3176305B2 (en) | Substrate cooling device, chemical vapor reaction device, and substrate temperature control control method | |
JP5946640B2 (en) | Temperature controlled hot edge ring assembly | |
US20030030960A1 (en) | Semiconductor wafer processing apparatus and method | |
JPH08316215A (en) | Gas heat transfer plasma treating device | |
JP2002009064A (en) | Processing device for sample and processing method therefor | |
JP2951903B2 (en) | Processing equipment | |
JP2003243490A (en) | Wafer treatment device and wafer stage, and wafer treatment method | |
JP2000252261A (en) | Plasma process equipment | |
JPH09320799A (en) | Plasma processor and plasma processing method | |
JP2697432B2 (en) | Etching equipment | |
US6830653B2 (en) | Plasma processing method and apparatus | |
JP4642358B2 (en) | Wafer mounting electrode | |
JP2960678B2 (en) | Substrate processing method and apparatus | |
JP2002305188A (en) | Apparatus and method for processing | |
JP4355159B2 (en) | Electrostatic chuck holder and substrate processing apparatus | |
JP2581026B2 (en) | Processing method and apparatus in low pressure atmosphere | |
JP2001338914A (en) | Gas introducing mechanism, method for gas introduction, method for detecting gas leakage, and vacuum processing equipment | |
JP2951876B2 (en) | Substrate processing method and substrate processing apparatus | |
JP2728381B2 (en) | Substrate processing method and substrate processing apparatus | |
JPS6136931A (en) | Control method of temperature of wafer | |
JPS60102742A (en) | Controller for substrate temperature | |
JPH098108A (en) | Semiconductor substrate heating holder | |
JPS63131519A (en) | Dry etching apparatus | |
JP7121121B2 (en) | Vacuum processing equipment, support shaft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |