JPH06140662A - Photocoupling type semiconductor device - Google Patents

Photocoupling type semiconductor device

Info

Publication number
JPH06140662A
JPH06140662A JP29164392A JP29164392A JPH06140662A JP H06140662 A JPH06140662 A JP H06140662A JP 29164392 A JP29164392 A JP 29164392A JP 29164392 A JP29164392 A JP 29164392A JP H06140662 A JPH06140662 A JP H06140662A
Authority
JP
Japan
Prior art keywords
light
light receiving
cells
semiconductor device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29164392A
Other languages
Japanese (ja)
Other versions
JP3026396B2 (en
Inventor
Kenji Mizuuchi
賢二 水内
Yutaka Akiyama
豊 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP29164392A priority Critical patent/JP3026396B2/en
Publication of JPH06140662A publication Critical patent/JPH06140662A/en
Application granted granted Critical
Publication of JP3026396B2 publication Critical patent/JP3026396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To provide a photocoupling type semiconductor device which is so constituted as to make the outputs of respective light receiving cells uniform by taking not only distances from a light emitting device but also a whole photocoupling structure, especially the reflection from light transmitting resin, into account. CONSTITUTION:Areas of light receiving cells 2a which are placed at a center part are largest and the areas of light receiving cells 2b and 2c placed in circumferential parts are getting smaller in accordance with the distance from the center part to lower the receiving sensitivity of a direct light from a light emitting device. When a current is applied to the light emitting device and a light is generated, the light is applied to a photodetector 10 and photovoltages are generated by a plurality of the respective light receiving cells 2a, 2b and 2c. A voltage generated by one light receiving cell is, if the light receiving cell is composed of a light receiving diode, about 0.5 to 0.6 V which corresponds to a junction potential difference. If a plurality of the light receiving cells are connected in series, the junction potential difference is multiplied by the number of connected cells.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光結合型半導体装置に係
り、特に複数個の受光セルを直列接続して形成された受
光素子を含む光結合型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optically coupled semiconductor device, and more particularly to an optically coupled semiconductor device including a light receiving element formed by connecting a plurality of light receiving cells in series.

【0002】[0002]

【従来の技術】図3は光結合型半導体装置の構造を示す
断面図である。受光素子10に対向する位置に発光素子
20が設けられ、この受光素子10と発光素子20とが
光透過樹脂30によって固定されて光結合が行われる。
発光素子20は受光素子10の中央部に対向配置される
ように通常は形成される。
2. Description of the Related Art FIG. 3 is a sectional view showing the structure of an optically coupled semiconductor device. A light emitting element 20 is provided at a position facing the light receiving element 10, and the light receiving element 10 and the light emitting element 20 are fixed by a light transmitting resin 30 to perform optical coupling.
The light emitting element 20 is usually formed so as to be opposed to the central portion of the light receiving element 10.

【0003】図2は従来の受光素子の受光セルの配列を
示す平面図である。通常、受光素子は発光素子と異なり
単一の受光セルで形成される場合は少なく、複数個の受
光セルが直列接続されて光起電力を得るように構成され
る。図2に示す従来の受光素子10は、ポリシリコン等
の基板1の表面に酸化膜等の絶縁物を介して複数個の単
結晶シリコン島を形成し、この単結晶シリコン島内に受
光ダイオード等の受光セルを形成する方法が用いられて
いる。
FIG. 2 is a plan view showing an arrangement of light receiving cells of a conventional light receiving element. Generally, unlike a light emitting element, a light receiving element is rarely formed of a single light receiving cell, and a plurality of light receiving cells are connected in series to obtain a photovoltaic force. In the conventional light receiving element 10 shown in FIG. 2, a plurality of single crystal silicon islands are formed on the surface of a substrate 1 made of polysilicon or the like via an insulator such as an oxide film, and the single crystal silicon islands are provided with light receiving diodes or the like. A method of forming a light receiving cell is used.

【0004】図2に示すように16個の受光セル2a
a,2bb,2ccが形成され、これらの受光セルは直
列に接続され、光が照射されると光起電力が発生する。
複数個の受光セルを直列接続する場合、発生光電流を均
一にするほど光起電力の効率が良くなる。これは直列接
続しているため全体の光電流が複数の受光セル中の最も
小さい光電流によって律速されてしまうためである。
As shown in FIG. 2, 16 light receiving cells 2a are provided.
a, 2bb, and 2cc are formed, these light receiving cells are connected in series, and a photoelectromotive force is generated when light is irradiated.
When a plurality of light receiving cells are connected in series, the more uniform the generated photocurrent, the better the photovoltaic efficiency. This is because the total photocurrent is rate-controlled by the smallest photocurrent in the plurality of light-receiving cells because they are connected in series.

【0005】一般的に光の強度は距離の二乗に反比例す
るため、図3に示すような光結合構造を有する半導体装
置の場合、受光素子10の周辺部の受光セルの面積を大
きくし発生光電流の均一化を行っている。図2に示す受
光セルの配列においては中央部に位置する受光セル2a
aに対向する位置に発光素子20が配置される場合、周
辺部に位置する受光セル2bbは中央部の受光セル2a
aよりも大きくし更に最周辺部に位置する受光セル2c
cはその面積を大きく形成する。
In general, the intensity of light is inversely proportional to the square of the distance. Therefore, in the case of a semiconductor device having an optical coupling structure as shown in FIG. The current is made uniform. In the arrangement of the light receiving cells shown in FIG. 2, the light receiving cell 2a located at the central portion
When the light emitting element 20 is arranged at a position facing a, the light receiving cells 2bb located in the peripheral portion are the light receiving cells 2a in the central portion
A light receiving cell 2c which is larger than a and is located at the outermost periphery
c forms a large area.

【0006】[0006]

【発明が解決しようとする課題】従来の光結合型半導体
装置に用いられる受光素子は、発光素子からの距離のみ
を考慮して各受光セルの出力の均一化を行っていた。し
かし、図3に示すように受光素子10と発光素子20と
は光透過樹脂30を介して対向配置されているため、こ
の光透過樹脂30の影響も考慮して受光素子の受光セル
配列を考慮する必要があった。従来の受光素子の配列に
あたっては光透過樹脂の影響を考慮することなく単に発
光素子と受光セルとの間の距離のみを考慮して受光セル
の面積を定めていたため、各受光セル出力は必ずしも均
一化されず発光光起電力の低下を招くという問題点があ
った。
In the light receiving element used in the conventional optical coupling type semiconductor device, the outputs of the respective light receiving cells are made uniform by considering only the distance from the light emitting element. However, as shown in FIG. 3, since the light receiving element 10 and the light emitting element 20 are arranged to face each other with the light transmitting resin 30 in between, the light receiving cell array of the light receiving element is considered in consideration of the influence of the light transmitting resin 30. Had to do. In the conventional arrangement of light-receiving elements, the area of the light-receiving cells was determined only by considering only the distance between the light-emitting elements and the light-receiving cells without considering the influence of the light-transmitting resin, so the output of each light-receiving cell is not always uniform. However, there is a problem in that the emission photoelectromotive force is not reduced.

【0007】本発明は上述した従来の問題点を解消する
ためになされたもので、発光素子からの距離だけではな
く光結合構造全体を考え、特に光透過樹脂からの反射を
も考慮して各受光セルの出力の均一化を図った光結合型
半導体装置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and considers not only the distance from the light emitting element but also the entire optical coupling structure, and in particular, considering the reflection from the light transmitting resin. An object of the present invention is to provide an optical coupling type semiconductor device in which the outputs of the light receiving cells are made uniform.

【0008】[0008]

【課題を解決するための手段】本発明はこのような従来
技術における課題を解決するために、同一基板上に形成
された複数の受光セルを直列接続してなる受光素子と、
この受光素子に対向する位置に設けられ受光素子と光結
合して受光素子に光起電力を発生させる発光素子と、受
光素子と発光素子とを光結合可能に固定する光透過樹脂
とからなる光結合型半導体装置は、発光素子に対向する
受光素子の周辺部における受光セル面積を、発光素子の
中央部における前記受光セル面積より小さく形成した。
In order to solve the above problems in the prior art, the present invention provides a light receiving element formed by connecting a plurality of light receiving cells formed on the same substrate in series,
Light composed of a light-emitting element provided at a position facing the light-receiving element to optically couple with the light-receiving element to generate a photoelectromotive force in the light-receiving element, and a light-transmitting resin that fixes the light-receiving element and the light-emitting element in an optically coupleable manner. In the coupled semiconductor device, the light receiving cell area in the peripheral portion of the light receiving element facing the light emitting element is formed smaller than the light receiving cell area in the central portion of the light emitting element.

【0009】[0009]

【作用】本発明では受光セルが周辺部において小さく形
成されている為、周辺部の受光セルの感度は中心部のそ
れに較べて小さくなる。しかし、光透過樹脂からの反射
光が十分に周辺部のセルでは高いため、この反射効果を
考慮すると発光素子からの受光感度は中心部のそれと等
しくなる。従って受光素子の全領域にわたって受信感度
が均一となる。
In the present invention, since the light receiving cell is formed small in the peripheral portion, the sensitivity of the light receiving cell in the peripheral portion is smaller than that in the central portion. However, since the reflected light from the light-transmitting resin is sufficiently high in the peripheral cells, the light receiving sensitivity from the light emitting element becomes equal to that in the central portion in consideration of this reflection effect. Therefore, the receiving sensitivity becomes uniform over the entire area of the light receiving element.

【0010】[0010]

【実施例】図1は本発明の受光素子の受光セルの配列を
示す平面図である。受光素子10の形成方法は図2に示
す従来の場合と同様である。本発明では従来の受光セル
の配列と異なり、中央部に位置する受光セル2aの面積
を最大とし、周辺部に位置する受光セル2b,2cの面
積を中心部から遠ざかるに従って小さくし、発光素子2
0からの直接光による受信感度を低くなるようにしてい
る。
1 is a plan view showing an arrangement of light receiving cells of a light receiving element of the present invention. The method of forming the light receiving element 10 is the same as that of the conventional case shown in FIG. In the present invention, unlike the conventional arrangement of the light receiving cells, the area of the light receiving cell 2a located in the central portion is maximized, and the area of the light receiving cells 2b and 2c located in the peripheral portion is reduced as the distance from the central portion increases, and the light emitting element 2
The reception sensitivity of direct light from 0 is reduced.

【0011】発光素子20に電流を流し、光を発生させ
ると光透過樹脂30を介して受光素子10上に光が照射
され受光素子10上の複数個の受光セル2a,2b,2
cはそれぞれ光起電力を発生する。1個の受光セルで発
生する電圧は受光ダイオードで受光セルを形成した場
合、接合電位差分の0.5〜0.6V程度となるが、複
数個直列接続すると接続数の個数倍でこの接合電位差が
増幅される。
When an electric current is applied to the light emitting element 20 to generate light, the light is applied to the light receiving element 10 through the light transmitting resin 30 so that the plurality of light receiving cells 2a, 2b, 2 on the light receiving element 10 are irradiated.
Each of c generates a photoelectromotive force. When a light receiving cell is formed by a light receiving diode, the voltage generated in one light receiving cell is about 0.5 to 0.6 V, which is the junction potential difference. However, when a plurality of cells are connected in series, the junction potential difference is multiplied by the number of connections. Is amplified.

【0012】図1に示す実施例の場合、16個直列接続
されているため8〜9.6V程度の電圧が得られる。発
生する電流に関しては照射される光の強度とそれぞれの
受光セルの面積等に依存する受光感度により決定される
が、全体の出力電流は各受光セルが直列接続されている
ため最も小さい受光セルの光電流に律速される。限られ
た面積の中で最も効率よく出力電流を得ようとした場
合、各受光セルの出力電流を均一化することが有効な手
段となる。
In the case of the embodiment shown in FIG. 1, since 16 pieces are connected in series, a voltage of about 8 to 9.6V can be obtained. The current generated is determined by the intensity of the emitted light and the photosensitivity that depends on the area of each photocell, etc., but the overall output current of each photocell is the smallest because the photocells are connected in series. It is rate-controlled by photocurrent. When trying to obtain the output current most efficiently in a limited area, it is an effective means to make the output current of each light receiving cell uniform.

【0013】一般的に光の強度は光源からの距離の二乗
に反比例する。従って光源から直接受光ダイオードに照
射される光は周辺部ほど弱くなる。
Generally, the intensity of light is inversely proportional to the square of the distance from the light source. Therefore, the light emitted from the light source directly to the light receiving diode becomes weaker in the peripheral portion.

【0014】しかし前述したように図3に示すような光
結合型半導体装置の場合周辺部に位置する受光セルは光
透過樹脂30の壁30aから近くなっているためこの壁
30aからの反射光が発光素子20からの直接光に加算
されて照射される。従って壁30aからの反射光を考慮
した場合、周辺部に位置する受光セルの受信感度を低下
させておけば各受光セルの出力電流は均一化されて取り
出される。そこで図1に示すように発光素子から最も遠
ざかるコーナー部の受光セル2cの面積を最も小さく
し、次いで周辺部に位置する受光セル2bの面積を中心
部に位置する受光セル2aに較べて小さくする。なお周
辺部の受光セルの面積を中央部に属する受光セルの面積
に較べてどの程度小さく形成するかは光透過樹脂30の
材料及び壁30aの形状とこの壁30aから周辺部に属
する受光セルがどの程度離れているか等によって異な
り、実験的にその面積を定めるのがよい。
However, as described above, in the case of the optical coupling type semiconductor device as shown in FIG. 3, the light receiving cells located in the peripheral portion are close to the wall 30a of the light transmitting resin 30, so that the reflected light from this wall 30a is generated. The direct light from the light emitting element 20 is added and irradiated. Therefore, when the reflected light from the wall 30a is taken into consideration, if the receiving sensitivity of the light receiving cells located in the peripheral portion is lowered, the output currents of the respective light receiving cells are made uniform and taken out. Therefore, as shown in FIG. 1, the area of the light receiving cell 2c at the corner farthest from the light emitting element is minimized, and then the area of the light receiving cell 2b located in the peripheral portion is made smaller than that of the light receiving cell 2a located in the central portion. . It should be noted that the extent to which the area of the light receiving cells in the peripheral portion is made smaller than the area of the light receiving cells belonging to the central portion depends on the material of the light transmitting resin 30 and the shape of the wall 30a and the light receiving cells belonging to the peripheral portion from the wall 30a. It depends on how far you are from each other, and it is better to determine the area experimentally.

【0015】[0015]

【発明の効果】以上実施例に基づいて詳細に説明したよ
うに、本発明では光透過樹脂の壁からの反射光を考慮し
周辺部の受光素子の受光感度を中央部の受光素子の受光
感度より低くして各受光セルの受信感度の均一化を行う
ようにした。従って出力電流を効率よく最大限引き出す
ことのできる光結合型半導体装置を得ることができる。
As described above in detail with reference to the embodiments, in the present invention, the light receiving sensitivity of the light receiving element in the peripheral portion is set in consideration of the light reflected from the wall of the light transmitting resin. The receiving sensitivity of each light receiving cell is made even lower by making it even lower. Therefore, it is possible to obtain an optically coupled semiconductor device that can efficiently maximize the output current.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の受光素子の受光セルの配列を示す平面
図。
FIG. 1 is a plan view showing an arrangement of light receiving cells of a light receiving element of the present invention.

【図2】従来の受光素子の受光セルの配列を示す平面
図。
FIG. 2 is a plan view showing an arrangement of light receiving cells of a conventional light receiving element.

【図3】光結合型半導体装置の断面図。FIG. 3 is a cross-sectional view of an optically coupled semiconductor device.

【符号の説明】[Explanation of symbols]

1 基板 2 単結晶島 2a,2b,2c 受光セル 10 受光素子 20 発光素子 30 光透過樹脂 30a 光透過樹脂の壁 1 substrate 2 single crystal islands 2a, 2b, 2c light receiving cell 10 light receiving element 20 light emitting element 30 light transmitting resin 30a light transmitting resin wall

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同一基板上に形成された複数の受光セル
を直列接続してなる受光素子と、この受光素子に対向す
る位置に設けられ前記受光素子と光結合して前記受光素
子に光起電力を発生させる発光素子と、前記受光素子と
前記発光素子とを光結合可能に固定する光透過樹脂とか
らなる光結合型半導体装置において、 前記発光素子に対向する前記受光素子の周辺部における
前記受光セル面積を、前記発光素子の中央部における前
記受光セル面積より小さく形成した事を特徴とする光結
合型半導体装置。
1. A light receiving element formed by connecting a plurality of light receiving cells formed on the same substrate in series, and a light receiving element provided at a position facing the light receiving element and optically coupled to the light receiving element. In a light-coupled semiconductor device including a light-emitting element that generates electric power, and a light-transmitting resin that fixes the light-receiving element and the light-emitting element so that they can be optically coupled, the peripheral portion of the light-receiving element facing the light-emitting element An optical coupling type semiconductor device characterized in that a light receiving cell area is formed smaller than the light receiving cell area in the central portion of the light emitting element.
JP29164392A 1992-10-29 1992-10-29 Optically coupled semiconductor device Expired - Fee Related JP3026396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29164392A JP3026396B2 (en) 1992-10-29 1992-10-29 Optically coupled semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29164392A JP3026396B2 (en) 1992-10-29 1992-10-29 Optically coupled semiconductor device

Publications (2)

Publication Number Publication Date
JPH06140662A true JPH06140662A (en) 1994-05-20
JP3026396B2 JP3026396B2 (en) 2000-03-27

Family

ID=17771606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29164392A Expired - Fee Related JP3026396B2 (en) 1992-10-29 1992-10-29 Optically coupled semiconductor device

Country Status (1)

Country Link
JP (1) JP3026396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086098A (en) * 2014-10-27 2016-05-19 パナソニックIpマネジメント株式会社 Optical coupling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381280B2 (en) 2009-04-23 2014-01-08 オムロン株式会社 Optical coupling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086098A (en) * 2014-10-27 2016-05-19 パナソニックIpマネジメント株式会社 Optical coupling device

Also Published As

Publication number Publication date
JP3026396B2 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
TWI278616B (en) Method and apparatus for optical detector with spectral discrimination
KR910004992B1 (en) Light receiving element
US4835595A (en) Optical interconnections for integrated circuits
JPS6195581A (en) Photocoupler
US7276770B1 (en) Fast Si diodes and arrays with high quantum efficiency built on dielectrically isolated wafers
JP2001168369A (en) Power generation device using globular semiconductor element and light emitting device using globular semiconductor element
US4199376A (en) Luminescent solar collector
GB2188482A (en) Optical sensor
US4183034A (en) Pin photodiode and integrated circuit including same
JPH06140662A (en) Photocoupling type semiconductor device
JPH0738136A (en) Photodetector
US4714824A (en) Photoelectric transducer with adjustable sensitivity to incident light wavelength
JP2002314116A (en) Lateral semiconductor photodetector of pin structure
JPS6461966A (en) Photocoupler
JP2770810B2 (en) Light receiving element
GB2238165A (en) A photodetector device
JPS58201355A (en) Photoelectric conversion device
Hinckley et al. Modelling of device structure effects on electrical crosstalk in back illuminated CMOS compatible photodiodes
JPH073881B2 (en) Photoelectric conversion device
JPH0323678A (en) Light-receiving generation element
JPS63204645A (en) Photodetector and optoelectronic device having such photodetector built-in
JP2002270883A (en) Solar battery module
CN117542906A (en) Photosensitive element, manufacturing method thereof and photosensitive detector
JPS63112357U (en)
JPH05206500A (en) Photoelectric conversion module

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991221

LAPS Cancellation because of no payment of annual fees