JPH0323678A - Light-receiving generation element - Google Patents

Light-receiving generation element

Info

Publication number
JPH0323678A
JPH0323678A JP1158979A JP15897989A JPH0323678A JP H0323678 A JPH0323678 A JP H0323678A JP 1158979 A JP1158979 A JP 1158979A JP 15897989 A JP15897989 A JP 15897989A JP H0323678 A JPH0323678 A JP H0323678A
Authority
JP
Japan
Prior art keywords
light
receiving
area
receiving surface
generation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1158979A
Other languages
Japanese (ja)
Inventor
Hajime Takano
元 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1158979A priority Critical patent/JPH0323678A/en
Publication of JPH0323678A publication Critical patent/JPH0323678A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To increase a light-receiving area without increasing a substrate area by forming a light-receiving surface of a semiconductor substrate where a pn junction is formed in unevenness. CONSTITUTION:Light-receiving surfaces 8a and 8b of a light-receiving generation element 10 and a pn junction 3a are formed in triangular unevenness, thus increasing the light-receiving area essentially. That is, rumples are attached as in the light-receiving surfaces 8a and 8b and the relative angle between the light-receiving surface 8a and the light-receiving surface 8b is set to 90 degrees, thus increasing the surface of the light-receiving area by approximately 40% as compared with the one with a flat surface shape. In this case, the irradiation method of solar rays is discussed and solar rays 7a and 7b are slanted using a mirror, a prism, etc., thus enabling light to be irradiated vertically for each light-receiving surface 8a and 8b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、基板面積を増大させることなく、受光面積
を増加させた受光発電素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a photovoltaic power generation element whose light-receiving area is increased without increasing the substrate area.

〔従来の技術〕[Conventional technology]

受光発電素子、例えば太陽電池は一般にシリコン基板,
ガリウム砒素基板等の半導体基板に作り付けられるが、
発電の容量《起電力》を大きく取るためには、その受光
部分の@積に比例することを考慮する必要がある。一方
、半導体基板の面積は、コス1・面からできるだけ小さ
くする必要がある。
Photovoltaic power generation elements, such as solar cells, are generally made of silicon substrates,
Although it is built into a semiconductor substrate such as a gallium arsenide substrate,
In order to increase the power generation capacity (electromotive force), it is necessary to consider that it is proportional to the product of the light receiving part. On the other hand, the area of the semiconductor substrate needs to be made as small as possible in terms of cost 1.

第3図(a),(b)は従来の受光発電素子の構造を示
す図で、第3図(1!)は一部回路を含む断面図、第3
図(b)は、第3図(a)の受光面の平面図である。第
3図において、1はn型(またはp型)のシリコン基板
、2はこのシリコン基板1の表面に拡散等で作られたp
型(またはn型)層であり、3はpn接合である。また
、4,5は電極、6は負荷であり、11は受光発電素子
を示す。
Figures 3 (a) and (b) are diagrams showing the structure of a conventional photovoltaic power generation element, Figure 3 (1!) is a cross-sectional view including a part of the circuit,
FIG. 3(b) is a plan view of the light receiving surface of FIG. 3(a). In FIG. 3, 1 is an n-type (or p-type) silicon substrate, and 2 is a p-type silicon substrate made by diffusion etc. on the surface of this silicon substrate 1.
It is a type (or n-type) layer, and 3 is a pn junction. Further, 4 and 5 are electrodes, 6 is a load, and 11 is a photovoltaic power generation element.

このような構造をpn接合構造といい、この接合を含む
半導体基板1の受光面8に太陽光s7等を照射すると、
これらのpn接合3間に起電力が発生することはよく知
られている。また、その起電力は受光面8の面積に比例
することもよく知られている。
Such a structure is called a pn junction structure, and when the light receiving surface 8 of the semiconductor substrate 1 including this junction is irradiated with sunlight s7, etc.,
It is well known that an electromotive force is generated between these pn junctions 3. It is also well known that the electromotive force is proportional to the area of the light receiving surface 8.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように構成された従来の受光発電素子は、受光W
i8の表画の形状が平坦状に作られており、単位面積当
りの起電力はこの受光面8の面積で制限されていたため
、大きな発電容量を得ることが困難であった。
The conventional photovoltaic power generation element configured as described above has a photodetection W
The surface of the i8 was made flat, and the electromotive force per unit area was limited by the area of the light-receiving surface 8, making it difficult to obtain a large power generation capacity.

一方、受光発電素子11の受光面8は鏡面状に滑らかに
作られることも周知である。このため、受光した光はp
n接合3まで透過する光と受光面8で反射される光があ
り、受光効率が低下する欠点があった。
On the other hand, it is also well known that the light-receiving surface 8 of the light-receiving power generating element 11 is made smooth and mirror-like. Therefore, the received light is p
There is light that passes through to the n-junction 3 and light that is reflected at the light-receiving surface 8, which has the drawback of reducing light-receiving efficiency.

この発明は、上記のような従来の問題点を解決するため
になされたもので、半導体基板面積を増大させることな
く、実効的に受光面積を増大せしめた受光発電素子を得
るものである。
The present invention was made in order to solve the above-mentioned conventional problems, and provides a photovoltaic power generation element that effectively increases the light-receiving area without increasing the area of the semiconductor substrate.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る受光発電素子は、pn接合が形成された
半導体基板の受光面を、半導体基板面積を増大させるこ
となく、受光面を実効的に増加せしめる凹凸状に形成し
たものである。
In the photoelectric power generating element according to the present invention, the light receiving surface of a semiconductor substrate on which a pn junction is formed is formed into an uneven shape that effectively increases the light receiving surface without increasing the area of the semiconductor substrate.

〔作用〕[Effect]

この発明においては、受光面を凹凸状に形成することに
より、基板面積を増大させることなく、受光面積を増加
させることができる。
In this invention, by forming the light-receiving surface in an uneven shape, the light-receiving area can be increased without increasing the substrate area.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図(aL (b)はこの発明の受光発電素子の構造
を示す図で、第2図と同様な断面図および平面図である
FIG. 1 (aL (b) is a diagram showing the structure of the photovoltaic power generation element of the present invention, and is a sectional view and a plan view similar to FIG. 2.

この実施例は、受光面8a,8bおよびpn接合3aが
三角形状(鋸歯状)の凹凸状に形成されており、受光面
積が実効的に増加している。すなわち、第1図の実施例
では、受光面8aおよび8bのように襞をつけ、受光面
8aと受光面8bの相対角度を90度とすれば、受光面
積は、第3図の従来の受光面積と比較し約40%増加す
ることは容易にわかる。ただし、受光面積が第1図のよ
うに増加しても、第3図のように太陽光線7が受光発電
素子10に直角に照射したのでは、この発明の場合の起
電力は従来例と大差なくなる。このため、太陽光!4I
7の照射の方法を工夫し、例えば反射効率の高い(理想
的には100%)鏡または屈折効率の良いプリズム等を
用い、第1図(a)に示す太陽光線7aおよび7bのよ
うに傾け、各受光面8aおよび8bに対し垂直に照射す
るようにする。
In this embodiment, the light-receiving surfaces 8a, 8b and the pn junction 3a are formed in a triangular (sawtooth-like) uneven shape, thereby effectively increasing the light-receiving area. That is, in the embodiment shown in FIG. 1, if the light-receiving surfaces 8a and 8b are folded and the relative angle between the light-receiving surfaces 8a and 8b is 90 degrees, the light-receiving area is equal to that of the conventional light-receiving surface shown in FIG. It can be easily seen that the area increases by about 40%. However, even if the light-receiving area increases as shown in FIG. 1, the electromotive force in the case of this invention is significantly different from the conventional example if the sunlight 7 irradiates the photo-receiving power generation element 10 at right angles as shown in FIG. It disappears. For this reason, sunlight! 4I
By devising the irradiation method in step 7, for example, using a mirror with high reflection efficiency (ideally 100%) or a prism with high refraction efficiency, the irradiation method is tilted as shown in the sunlight rays 7a and 7b shown in Fig. 1(a). , the light is irradiated perpendicularly to each of the light receiving surfaces 8a and 8b.

第2図(a),(b)はこの発明の他の実施例を示す受
光発電素子の構造を示す図で、第1図(a),(b)と
同様な構成図である。
FIGS. 2(a) and 2(b) are diagrams showing the structure of a light-receiving power generating element showing another embodiment of the present invention, and are similar configuration diagrams to FIGS. 1(a) and (b).

この実施例は、受光面8にこの受光面8の一部分を残し
て曲面状、例えば円筒状の受光面8Cを多数形成したも
のである。すなわち、平坦状の受光面8およびpn接合
3の他に、円筒状の受光面8Cおよびpn接合3bが多
数形成されている。
In this embodiment, a large number of curved, for example cylindrical, light receiving surfaces 8C are formed on the light receiving surface 8, leaving a portion of the light receiving surface 8 intact. That is, in addition to the flat light receiving surface 8 and the pn junction 3, a large number of cylindrical light receiving surfaces 8C and pn junctions 3b are formed.

このように、多数の円筒状の受光面8Cを形成すること
により、受光面積が増大するとともに円筒状の受光面8
Cで反射された入射光が円筒内で袋小路に入ることによ
り、その反射光が他の円筒状の受光面8Cに照射され、
結果的に受光効率が向上することになる。
In this way, by forming a large number of cylindrical light receiving surfaces 8C, the light receiving area increases and the cylindrical light receiving surface 8C is formed.
When the incident light reflected by C enters a blind alley within the cylinder, the reflected light is irradiated onto another cylindrical light-receiving surface 8C,
As a result, light receiving efficiency is improved.

なお、上記実施例では、実効的に受光面積を増加させる
手段として、受光面を鋸歯状に形成したり、多数の円筒
状の受光面を形成したが、形状はこれに限4ず、曲面形
状,矩形状,球面状,多角形状,多角球面状等、受光面
積が実効的に増加する形状であればよい。
In the above embodiment, as a means to effectively increase the light receiving area, the light receiving surface is formed in a sawtooth shape or a large number of cylindrical light receiving surfaces are formed. , a rectangular shape, a spherical shape, a polygonal shape, a polygonal spherical shape, etc., any shape that effectively increases the light receiving area may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、pn接合が形成され
た半導体基板の受光面を、半導体基板面積を増大させる
ことなく、受光面を実効的に増加せしめる凹凸状に形成
したので、基板面積を増木させることなく、受光面積を
実効的に増加させることができる。したがって、受光効
率が゜向上するとともに、変換効率のすぐれた受光発電
素子が得られる効果がある。
As explained above, in the present invention, the light-receiving surface of a semiconductor substrate on which a pn junction is formed is formed into an uneven shape that effectively increases the light-receiving surface without increasing the semiconductor substrate area. The light-receiving area can be effectively increased without increasing the number of trees. Therefore, the light receiving efficiency is improved and a light receiving power generating element with excellent conversion efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a),(b)はこの発明の一実施例を示す受光
発電素子の構造を示す図で、第1図(a)は一部回路を
含む断面図、第1図(b)は、第1図(a)の受光面の
平面図、第2図(aL (b)はこの発明の他の実施例
を示す第1図(a),(b)と同様な断面図および平面
図、第3図(a),(b)は従来の受光発電素子を示す
第1図と同様な断面図および平面図である。 図において、1はn型シリコン基板、2はp型層であり
、3,3a,3bはpn接合、4,5はfl極、6は負
荷、7.7a,7bは太陽光線、8,8a,8bは受光
面、10は受光発電素子である。 なお、各図中の同一符号は同一または相当部分を示す。
FIGS. 1(a) and 1(b) are diagrams showing the structure of a photovoltaic power generation element showing an embodiment of the present invention, FIG. 1(a) is a cross-sectional view including a part of the circuit, and FIG. 1(b) is a plan view of the light-receiving surface in FIG. 1(a), and FIG. 2(b) is a sectional view and plan view similar to FIGS. 3(a) and 3(b) are a cross-sectional view and a plan view similar to FIG. 1 showing a conventional photovoltaic power generation element. In the figure, 1 is an n-type silicon substrate, and 2 is a p-type layer. 3, 3a, 3b are pn junctions, 4, 5 are fl poles, 6 is a load, 7.7a, 7b are sunlight rays, 8, 8a, 8b are light receiving surfaces, and 10 is a photovoltaic power generation element. The same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] pn接合が形成された半導体基板の受光面を、前記半導
体基板面積を増大させることなく、前記受光面を実効的
に増加せしめる凹凸状に形成したことを特徴とする受光
発電素子。
1. A light-receiving power generation element, characterized in that a light-receiving surface of a semiconductor substrate on which a pn junction is formed is formed in an uneven shape that effectively increases the light-receiving surface without increasing the area of the semiconductor substrate.
JP1158979A 1989-06-20 1989-06-20 Light-receiving generation element Pending JPH0323678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1158979A JPH0323678A (en) 1989-06-20 1989-06-20 Light-receiving generation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158979A JPH0323678A (en) 1989-06-20 1989-06-20 Light-receiving generation element

Publications (1)

Publication Number Publication Date
JPH0323678A true JPH0323678A (en) 1991-01-31

Family

ID=15683560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158979A Pending JPH0323678A (en) 1989-06-20 1989-06-20 Light-receiving generation element

Country Status (1)

Country Link
JP (1) JPH0323678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403931A2 (en) * 2002-09-30 2004-03-31 Canon Kabushiki Kaisha Method for growing a silicon film, method for manufacturing a solar cell, semiconductor substrate, and solar cell
JP2011077359A (en) * 2009-09-30 2011-04-14 Tokyo Electron Ltd Solar cell
US10184471B2 (en) 2014-01-09 2019-01-22 Shinhang Co., Ltd. Trochoid pump for transferring high-viscosity liquid under high pressure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914682A (en) * 1982-07-16 1984-01-25 Denkaihaku Kogyo:Kk Amorphous silicon solar battery
JPS60158678A (en) * 1983-12-23 1985-08-20 ユニサーチ リミテツド Solar battery and method of producing same
JPS60178671A (en) * 1984-02-24 1985-09-12 Agency Of Ind Science & Technol Solar ray power generation system
JPS62101084A (en) * 1985-10-28 1987-05-11 Sharp Corp Optical confinement solar battery
JPS6381986A (en) * 1986-09-26 1988-04-12 Anelva Corp Photoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914682A (en) * 1982-07-16 1984-01-25 Denkaihaku Kogyo:Kk Amorphous silicon solar battery
JPS60158678A (en) * 1983-12-23 1985-08-20 ユニサーチ リミテツド Solar battery and method of producing same
JPS60178671A (en) * 1984-02-24 1985-09-12 Agency Of Ind Science & Technol Solar ray power generation system
JPS62101084A (en) * 1985-10-28 1987-05-11 Sharp Corp Optical confinement solar battery
JPS6381986A (en) * 1986-09-26 1988-04-12 Anelva Corp Photoelectric conversion element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403931A2 (en) * 2002-09-30 2004-03-31 Canon Kabushiki Kaisha Method for growing a silicon film, method for manufacturing a solar cell, semiconductor substrate, and solar cell
EP1403931A3 (en) * 2002-09-30 2009-04-22 Canon Kabushiki Kaisha Method for growing a silicon film, method for manufacturing a solar cell, semiconductor substrate, and solar cell
JP2011077359A (en) * 2009-09-30 2011-04-14 Tokyo Electron Ltd Solar cell
US10184471B2 (en) 2014-01-09 2019-01-22 Shinhang Co., Ltd. Trochoid pump for transferring high-viscosity liquid under high pressure

Similar Documents

Publication Publication Date Title
US6498336B1 (en) Integrated light sensors with back reflectors for increased quantum efficiency
Sarusi et al. Improved performance of quantum well infrared photodetectors using random scattering optical coupling
Campbell et al. The limiting efficiency of silicon solar cells under concentrated sunlight
US8153888B2 (en) Lateral ultra-high efficiency solar cell
EP1835539A3 (en) Photodiode array, method of manufacturing the same, and radiation detector
Schuster et al. A monolithic mosaic of photon sensors for solid-state imaging applications
JP2661341B2 (en) Semiconductor light receiving element
JPH0323678A (en) Light-receiving generation element
JPH0671093B2 (en) Photovoltaic element
JP2002314116A (en) Lateral semiconductor photodetector of pin structure
JPS63244688A (en) Photovoltaic element
JP3107923B2 (en) Power generation device using sunlight
JPS63234566A (en) Solar cell
JPS5996777A (en) Photovoltaic element
JPS62101084A (en) Optical confinement solar battery
JPH0234975A (en) Photovoltaic element
JPS63161680A (en) Semiconductor photodetector
JP3026396B2 (en) Optically coupled semiconductor device
JPS6031259A (en) Photovoltaic device
JPS6334980A (en) Photovoltaic generating element
JPH01216581A (en) Semiconductor device
JPS6222405B2 (en)
JPH06104473A (en) Generator using solar radiation
RU2133414C1 (en) Solar photoelectric module with energy concentrator (options)
JPH04109681A (en) Vertical pn junction solar battery