JPS5996777A - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JPS5996777A
JPS5996777A JP57207395A JP20739582A JPS5996777A JP S5996777 A JPS5996777 A JP S5996777A JP 57207395 A JP57207395 A JP 57207395A JP 20739582 A JP20739582 A JP 20739582A JP S5996777 A JPS5996777 A JP S5996777A
Authority
JP
Japan
Prior art keywords
photovoltaic element
photovoltaic device
photovoltaic
layer
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57207395A
Other languages
Japanese (ja)
Inventor
Hajime Ichiyanagi
一柳 肇
Nobuhiko Fujita
藤田 順彦
Hiroshi Kawai
弘 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57207395A priority Critical patent/JPS5996777A/en
Publication of JPS5996777A publication Critical patent/JPS5996777A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To enable to effectively convert light into electricity by a method wherein an amorphous photovoltaic element and a semiconductor photovoltaic element of a smaller energy gap than that of amorphous Si are composed in optically series connection. CONSTITUTION:The photovoltaic element is composed of the a-Si photovoltaic element 10 and the c-Si photovoltaic element 12 as the semiconductor photovoltaic element of a smaller energy gap than that of the a-Si, further the a-Si photovoltaic element 10 consists of an N-layer 1, an I-layer 2, and a P-layer 3, and c-Si photovoltaic element 11 consists of an N-layer 7 and a P-layer 8. When the light 4 becomes incident from the side of the a-Si photovoltaic element 10, the short wavelength light 5 is absorbed and then electrically converted into electricity in the a-Si photovoltaic element 10. The long wavelength light 6 is transmitted through the a-Si photovoltaic element, absorbed and electrically converted into electricity in the c-Si photovoltaic element 11. The hole generated in the a-Si photovoltaic element 10 and the electron generated in the c-Si photovoltaic element 11 reach the interface between the a-Si photovoltaic element 10 and the c-Si photovoltaic element 11, and then recombine at the interface.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光を電気に変換する光起電力素子に関する。[Detailed description of the invention] (Technical field) The present invention relates to a photovoltaic device that converts light into electricity.

(背景技術) 従来、光起電力素子として結晶シリコン(以下c−5i
と記す)、結晶ガリウムヒ素(以下c −GaAsと記
す)およびアモルファスシリコン(以下a−3iと記す
)などが利用されておりこれらを用いた光起電力素子は
公知である。
(Background technology) Conventionally, crystalline silicon (hereinafter referred to as C-5i) has been used as a photovoltaic element.
), crystalline gallium arsenide (hereinafter referred to as c-GaAs), amorphous silicon (hereinafter referred to as a-3i), etc., and photovoltaic elements using these are well known.

しかるに、上記の光起電力素子のエネルギー・ギャップ
は例えばc−5i 、 c−GaAs、 a−3i各々
1,11eV、1.4.3 eV、1.8evと材料固
有であるため、光起電力素子として光を利用できる波長
範囲に自ら制約があった。殊に太陽光の如き広い波長範
囲を有する光を有効に電気として・とり出すにはエネル
ギーギャップが固有であることが高変換効率化の太ぎな
妨げとなっていた。
However, since the energy gaps of the above photovoltaic elements are material-specific, e.g. 1.11 eV, 1.4.3 eV, and 1.8 eV for c-5i, c-GaAs, and a-3i, respectively, the photovoltaic There were limitations on the wavelength range in which light could be used as an element. In particular, the energy gap inherent in effectively converting and extracting light with a wide wavelength range, such as sunlight, into electricity has been a major hindrance to achieving high conversion efficiency.

従来の光起電力素子の欠点を明らかにするため従来の光
起電力素子の一例として第1図にa−5i光起電力素子
の構造図(A)とエネルギー・バンド図(B)を、また
従来の光起電力素子の他の例として第2図にc−5i光
起電力素子の構造図1A)とエネルギー・バンド図(B
)を示す。a −S i光起電力素子は1層1.1層2
.9層3で構成される。この素子に0層1側から光4が
入射した場合、光4のうち短波長光5は1層2中で吸収
され電気に変換されるが、a−5iのエネルギー・ギャ
ップよりも小さいエネルギーを有する長波長光6は吸収
されずに透過してしまうためa−5i光起電力素子のみ
では光4・を有効に利用できない欠点があった。
In order to clarify the drawbacks of conventional photovoltaic devices, Figure 1 shows a structural diagram (A) and an energy band diagram (B) of an a-5i photovoltaic device as an example of a conventional photovoltaic device. As another example of a conventional photovoltaic device, Fig. 2 shows a structural diagram 1A) and an energy band diagram (B) of a c-5i photovoltaic device.
) is shown. a-Si photovoltaic element has 1 layer 1.1 layer 2
.. It is composed of 9 layers and 3 layers. When light 4 enters this element from the 0 layer 1 side, the short wavelength light 5 of the light 4 is absorbed in the 1 layer 2 and converted into electricity, but the energy is smaller than the energy gap of a-5i. Since the long wavelength light 6 contained in the photovoltaic device is transmitted without being absorbed, the a-5i photovoltaic element alone has the disadvantage that the light 4 cannot be used effectively.

また、第2図n層7および9層8からなるc −5i光
起電力素子では、エネルギー・ギャップが小さいため短
波長光5のみならず長波長光6も吸収され電気に変換さ
れるが、短波長光5のエネルギーはc−8lのエネルギ
ー・ギャップより太きいため、吸収された短波長光5の
エネルギーの一部は価電子帯下端9へ電子が遷移する際
に熱に変換し損失となるためc−5l光起電力素子のみ
では光4を有効に利用できない欠点があった。
Furthermore, in the c-5i photovoltaic element consisting of the n layer 7 and the nine layers 8 in FIG. 2, the energy gap is small, so not only the short wavelength light 5 but also the long wavelength light 6 is absorbed and converted into electricity. Since the energy of the short wavelength light 5 is larger than the energy gap of c-8l, a part of the energy of the absorbed short wavelength light 5 is converted into heat when electrons transition to the lower end of the valence band 9, resulting in loss. Therefore, the C-5L photovoltaic element alone has the disadvantage that the light 4 cannot be used effectively.

上述の如く、従来の光起電力素子は、エネルギー・ギャ
ップが固有であるため、入射する光が太陽光の如く種々
の波長を有する場合、光を電気に有効に変換できない欠
点があった。
As described above, conventional photovoltaic devices have a disadvantage that they cannot effectively convert light into electricity when incident light has various wavelengths, such as sunlight, because of their inherent energy gap.

(発明の開示) 本発明は上記の欠点を鑑みなされたもので、本発明の目
的は、光を有効に電気に変換する光起電力素子を提供す
ることにある。
(Disclosure of the Invention) The present invention has been made in view of the above drawbacks, and an object of the present invention is to provide a photovoltaic element that effectively converts light into electricity.

本発明者は、上記目白(を達成せんと検討を行なった結
果、アモルファス光起電力素子およびアモルファス・シ
リコンよりエネルギー・ギャップの小さい半導体光起電
力素子を光学的に直列に接続構成することにより、目的
にかなう光起電力素子が得られることを見出した。
As a result of conducting studies to achieve the above-mentioned objective, the inventors of the present invention discovered that by optically connecting in series an amorphous photovoltaic element and a semiconductor photovoltaic element with a smaller energy gap than amorphous silicon, It has been found that a photovoltaic device suitable for the purpose can be obtained.

以下、本発明の具体的実施例を図を用いて詳細に説明す
る。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

本発明による一実施例を第3図に示す。第3図に示した
光起電力素子はa−5i光起電力素子10とa−5iよ
りエネルギー・ギャップの小さい半導体光起電力素子と
して(−3i光起電力素子11で構成され、さらにa 
−S i光起電力素子10は1層1.1層2および9層
3からなり、またc−5i光起電力素子11はn層7お
よび9層8からなる。
An embodiment according to the present invention is shown in FIG. The photovoltaic device shown in FIG.
-Si photovoltaic element 10 consists of 1 layer 1, 1 layer 2 and 9 layers 3, and c-5i photovoltaic element 11 consists of n layer 7 and 9 layers 8.

第3図に示した光起電力素子にa−3i光起電力素子I
O側から光4が入射すると、光4のうち短波長光5はa
 −5i光起電力素子10内で吸収され電気に変換され
る。このときa −S iのエネルギー・ギャップは前
述の如<1.8eVと太きいため第1図において述べた
ように損失なく短波長光5を電気に変換することができ
る。−力先4のうち長波長光6はa−3i光起電力素子
を透過し、c−5i光起電力素子11内で吸収され電気
に変換される。
A-3i photovoltaic element I is added to the photovoltaic element shown in Figure 3.
When light 4 enters from the O side, short wavelength light 5 of light 4 is a
-5i It is absorbed within the photovoltaic element 10 and converted into electricity. At this time, since the energy gap of a-Si is as large as <1.8 eV as described above, the short wavelength light 5 can be converted into electricity without loss as described in FIG. - Long wavelength light 6 of the force tip 4 passes through the a-3i photovoltaic element, is absorbed within the c-5i photovoltaic element 11, and is converted into electricity.

a−5i光起電力素子10内で生成−した正孔およびc
−5i光起電力素子11内で生成した電子は各々の光起
電力素子内での内部電界によりa−5i光起電力素子I
Oとc−5i光起電力素子11との界面に蓮し、前記界
面にて再結合し、a−5i光起電力素子10内で生成し
た電子およびC−8l光起電力素子ll内で生成した正
孔は外部へとり出すことができる。
a-5i Holes generated within the photovoltaic element 10 and c
Electrons generated within the -5i photovoltaic element 11 are transferred to the a-5i photovoltaic element I due to the internal electric field within each photovoltaic element.
Electrons generated in the a-5i photovoltaic element 10 and electrons generated in the C-8l photovoltaic element The holes can be taken out to the outside.

第1図および第2図に示した従来の光起電力素子にA 
M l 、 100 mW/cm”の強度を有する光を
入射したところ、それぞれ光電変換効率は7.2%オ工
ヒ12.5%であったのに対し、第3図に示した本発明
による光起電力素子に上記の光を入射した・場合、光電
変換効率は16.4%であった。
In the conventional photovoltaic device shown in Figs. 1 and 2,
When light having an intensity of M l and 100 mW/cm was incident, the photoelectric conversion efficiency was 7.2% and 12.5%, whereas the photoelectric conversion efficiency of the present invention shown in FIG. When the above light was incident on the photovoltaic element, the photoelectric conversion efficiency was 16.4%.

以上は半導体光起電力素子がc−5iである場合につい
て述べたが、a−5iよりエネルギー・ギャップの小さ
い半導体光起電力素子であればc −5iに限らないこ
とは明らかである。
Although the case where the semiconductor photovoltaic element is c-5i has been described above, it is clear that the semiconductor photovoltaic element is not limited to c-5i as long as it has a smaller energy gap than a-5i.

また、本発明の一実施例ではアモルファス光起電力素子
としてa−5i光起電力素子を取り上げたがa−5i以
外のアモルファス光起電力素子でも同様の効果を得るこ
とができる。
Further, in one embodiment of the present invention, an a-5i photovoltaic device is used as an amorphous photovoltaic device, but similar effects can be obtained with amorphous photovoltaic devices other than a-5i.

さらに、半導体光起電力素子が結晶Ge(0,66eV
)(カッコ内はエネルギー・ギャップを示す)結晶Ga
As(1,43eV) 、結晶GaSb (0,68e
■)、結晶1nP(1,27eV) 、結晶1nAs 
(0,36eV)、結晶1nSb (0,17eV)、
結晶CdTe (1,44eV) 、結晶PbTe (
0,29eV)、結晶Cu2S (1,2eV)などか
らなる結晶半導体光起電力素子であってもよいことは明
白である。また、アモルファス光起電力素子と半導体光
起電力素子との間に、透明膜を設けても同様の効果を得
ることができるのは明らかである。
Furthermore, the semiconductor photovoltaic device is crystalline Ge (0.66 eV
) (The energy gap is shown in parentheses) Crystal Ga
As (1,43eV), crystalline GaSb (0,68e
■), crystal 1nP (1,27eV), crystal 1nAs
(0,36eV), crystal 1nSb (0,17eV),
Crystalline CdTe (1,44eV), Crystalline PbTe (
It is clear that a crystalline semiconductor photovoltaic device made of crystalline Cu2S (0.29eV), crystalline Cu2S (1.2eV), etc. may also be used. Furthermore, it is clear that the same effect can be obtained even if a transparent film is provided between the amorphous photovoltaic element and the semiconductor photovoltaic element.

さらに、前記透明膜がInまたは/およびSnの酸化物
または金属などの導電性を有してもよい。
Furthermore, the transparent film may have conductivity such as an oxide or metal of In and/or Sn.

また、前記透明膜が5i02 、 SiC,Si3N4
、BNなどの絶縁膜をInまたは/およびSnの酸化物
膜で挾持してもよいことは明らである。この場合、アモ
ルファス光起電力素子と半導体光起電力素子を並列に使
用することが可能となるため自由度を広げることができ
る。
Further, the transparent film may be 5i02, SiC, Si3N4
It is clear that an insulating film such as , BN, etc. may be sandwiched between In and/or Sn oxide films. In this case, it becomes possible to use the amorphous photovoltaic element and the semiconductor photovoltaic element in parallel, so the degree of freedom can be expanded.

さらに、アモルファス光起電力素子が、アモルファス・
シリコン光起電力素子およびS】とGeまたはSiとS
n 、またはSiとPbなとのアモルファス・シリコン
合金光起電力素子を光学的かつ電気的に直列Vて接続構
成してなるものであっても同様の効果が得られる。
Furthermore, amorphous photovoltaic elements
Silicon photovoltaic element and S] and Ge or Si and S
Similar effects can be obtained even if the photovoltaic elements are formed by optically and electrically connecting amorphous silicon alloy photovoltaic elements such as n or Si and Pb in series V.

また、本発明による一実施例では光入射側からa−3i
(7)n層、i層およびp層さらにc −S iのn層
お工びp層の構成としたが、光入射側からa−3iQp
層、1層およびn層さらにc−5iのp層およびn層の
構成でも構わないことは言うまでもない0 以上詳細に説明した如く、本発明により、光を有効に電
気に変換する光起電力素子を得ることができる。
Further, in one embodiment according to the present invention, a-3i
(7) The n-layer, i-layer, and p-layer are composed of c-Si n-layer and p-layer, but from the light incident side, a-3iQp
It goes without saying that a structure of a layer, a single layer, an n layer, or a c-5i p layer and an n layer may be used.As explained in detail above, the present invention provides a photovoltaic element that effectively converts light into electricity. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光起電力素子の構造図(A)およびエネ
ルギー・バンド図(B)であり、第2図は従来の他の光
起電力素子の構造図(8)およびエネルギー・バンド図
(B)であり、第3図は本発明による光起電力素子の一
実施例である。 1− a −5i光起電力素子n層 2 a−5i光起電力素子1層 3  a−5i光起電力素子p層 4・・・光 5・・短波長光 6・・・長波長光 7 ・c −S i光起電力素子n層 8・c−5i光光起電力素子層 9 伝導帯下端 10− a−5i光起電力素子 11・ c−5i光起電力素子
Figure 1 is a structural diagram (A) and energy band diagram (B) of a conventional photovoltaic element, and Figure 2 is a structural diagram (8) and energy band diagram of another conventional photovoltaic element. (B), and FIG. 3 is an embodiment of the photovoltaic device according to the present invention. 1- a-5i photovoltaic element n layer 2 a-5i photovoltaic element 1 layer 3 a-5i photovoltaic element p layer 4...light 5...short wavelength light 6...long wavelength light 7・c-Si photovoltaic element n layer 8 ・c-5i photovoltaic element layer 9 Lower end of conduction band 10 - a-5i photovoltaic element 11 ・c-5i photovoltaic element

Claims (7)

【特許請求の範囲】[Claims] (1)アモルファス光起電力素子およびアモルファスシ
リコンよりエネルギー・ギャップの小さい半導体光起電
力素子を光学的に直列に接続構成したことを特徴とする
光起電力素子。
(1) A photovoltaic device characterized in that an amorphous photovoltaic device and a semiconductor photovoltaic device having a smaller energy gap than amorphous silicon are optically connected in series.
(2)前記半導体光起電力素子が結晶Si、結晶Ge。 結晶GaAs 、結晶GaSb 、結晶1nP、結晶I
nAs、結晶InSb 、結晶CdTe 、結晶PbT
e 、結晶Cu2S  から選ばれた結晶半導体光起電
力素子であることを特徴とする特許請求の範囲第1項記
載の光起電力素子。
(2) The semiconductor photovoltaic element is crystalline Si or crystalline Ge. Crystal GaAs, Crystal GaSb, Crystal 1nP, Crystal I
nAs, crystalline InSb, crystalline CdTe, crystalline PbT
2. The photovoltaic device according to claim 1, wherein the photovoltaic device is a crystalline semiconductor photovoltaic device selected from crystalline Cu2S.
(3)前記アモルファス光起電力素子と、前記半導体光
起電力素子との間に、透明膜を設けることを特徴とする
特許請求の範囲第1項および第2項記載の光起電力素子
(3) The photovoltaic device according to claims 1 and 2, characterized in that a transparent film is provided between the amorphous photovoltaic device and the semiconductor photovoltaic device.
(4)前記透明膜がInまたは/およびSnの酸化物ま
たは金属などの導電性を有することを特徴とする特許請
求の範囲第3項記載の光起電力素子。
(4) The photovoltaic device according to claim 3, wherein the transparent film is made of an oxide or metal of In and/or Sn and has conductivity.
(5)前記透明膜が、5i02 、 SiC、Si3N
4 、 BNなどの絶縁膜をInまたメンおよびSnの
酸化物膜で挾持してなることを特徴とする特許請求の範
囲第3項記載の光起電力素子。
(5) The transparent film is made of 5i02, SiC, Si3N
4. The photovoltaic device according to claim 3, characterized in that an insulating film such as BN is sandwiched between oxide films of In, Men, and Sn.
(6)前記アモルファス光起電力素子が、アモルファス
・シリコン光起電力素子であることを特徴とする特許請
求の範囲第1項、第2項、第3項、第4項および第5項
記載の光起電力素子。
(6) Claims 1, 2, 3, 4, and 5, wherein the amorphous photovoltaic device is an amorphous silicon photovoltaic device. Photovoltaic element.
(7)前記アモルファス光起電力素子が、アモルファス
・シリコン光起電力素子およびSiとGeまたはSiと
SnまたはSiとPbなどのアモルファス・シリコン合
金光起電力素子を光学的かつ電気的に直列に接続構成し
てなることを特徴とする特許請求の範囲第1項、第12
項、第3項、第4項および第5項記載の光起電力素子。
(7) The amorphous photovoltaic device optically and electrically connects an amorphous silicon photovoltaic device and an amorphous silicon alloy photovoltaic device such as Si and Ge, Si and Sn, or Si and Pb in series. Claims 1 and 12 are characterized in that:
3. The photovoltaic device according to item 3, item 4, and item 5.
JP57207395A 1982-11-25 1982-11-25 Photovoltaic element Pending JPS5996777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207395A JPS5996777A (en) 1982-11-25 1982-11-25 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207395A JPS5996777A (en) 1982-11-25 1982-11-25 Photovoltaic element

Publications (1)

Publication Number Publication Date
JPS5996777A true JPS5996777A (en) 1984-06-04

Family

ID=16539025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207395A Pending JPS5996777A (en) 1982-11-25 1982-11-25 Photovoltaic element

Country Status (1)

Country Link
JP (1) JPS5996777A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220380A (en) * 1985-07-19 1987-01-28 Shizuoka Univ Photoelectric conversion device using amorphous silicon
JPS63152177A (en) * 1986-12-17 1988-06-24 Fuji Electric Co Ltd Manufacture of solar cell
JPS6477181A (en) * 1987-06-19 1989-03-23 Toa Nenryo Kogyo Kk Multilayer-structured solar battery
JPH01290267A (en) * 1988-05-18 1989-11-22 Fuji Electric Co Ltd Manufacture of photoelectric conversion element
US5021100A (en) * 1989-03-10 1991-06-04 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell
US9559235B2 (en) 2010-12-17 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220380A (en) * 1985-07-19 1987-01-28 Shizuoka Univ Photoelectric conversion device using amorphous silicon
JPS63152177A (en) * 1986-12-17 1988-06-24 Fuji Electric Co Ltd Manufacture of solar cell
JPS6477181A (en) * 1987-06-19 1989-03-23 Toa Nenryo Kogyo Kk Multilayer-structured solar battery
JPH01290267A (en) * 1988-05-18 1989-11-22 Fuji Electric Co Ltd Manufacture of photoelectric conversion element
US5021100A (en) * 1989-03-10 1991-06-04 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell
US9559235B2 (en) 2010-12-17 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device

Similar Documents

Publication Publication Date Title
TWI693722B (en) Integrated solar collectors using epitaxial lift off and cold weld bonded semiconductor solar cells
KR100974226B1 (en) Backside surface passivation and reflection layer for Si solar cell by high-k dielectrics
JP2012243797A (en) Solar cell manufacturing method
US10256362B2 (en) Flexible silicon infrared emitter
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
JPS5996777A (en) Photovoltaic element
WO2018192199A1 (en) Multi-junction laminated laser photovoltaic cell and manufacturing method thereof
Cattoni et al. Multiresonant light trapping in ultra-thin GaAs and CIGS solar cells
JP3206350B2 (en) Solar cell
JP2010538455A (en) High efficiency hybrid solar cell
US4544799A (en) Window structure for passivating solar cells based on gallium arsenide
JPS63234566A (en) Solar cell
JPH0523554U (en) Power generator using sunlight
JP4886116B2 (en) Field effect solar cell
CN101931015A (en) Solar cell with transparent electrode and manufacturing method thereof
JP2788778B2 (en) Photovoltaic element and method for manufacturing the same
JPS594869B2 (en) Semiconductor photodetector
JPH09321327A (en) Photosensor
JP2006073833A (en) Solar battery cell and method of manufacturing the same
Rud’ et al. Photovoltaic effect in ap-type CuInSe 2/green leaf heterojunction
JP2002368239A (en) Photoelectric converter for thermo-optic generation
JPH05235385A (en) Silicon solar cell
JPH04109681A (en) Vertical pn junction solar battery
JPH0323678A (en) Light-receiving generation element
Mostefaoui et al. Optical study of a solar cell