JPS63244688A - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JPS63244688A
JPS63244688A JP62078485A JP7848587A JPS63244688A JP S63244688 A JPS63244688 A JP S63244688A JP 62078485 A JP62078485 A JP 62078485A JP 7848587 A JP7848587 A JP 7848587A JP S63244688 A JPS63244688 A JP S63244688A
Authority
JP
Japan
Prior art keywords
light
layer
visible light
infrared
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62078485A
Other languages
Japanese (ja)
Other versions
JP2664371B2 (en
Inventor
Katsunobu Sayama
勝信 佐山
Hisao Haku
白玖 久雄
Noboru Nakamura
昇 中村
Shinya Tsuda
津田 信哉
Shoichi Nakano
中野 昭一
Yukinori Kuwano
桑野 幸徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62078485A priority Critical patent/JP2664371B2/en
Publication of JPS63244688A publication Critical patent/JPS63244688A/en
Application granted granted Critical
Publication of JP2664371B2 publication Critical patent/JP2664371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To increase the output current of an element by forming an infrared/ visible light conversion layer which converts infrared light into visible light and outputs it to effectively utilize the light of a long wavelength of 800nm or longer for photoelectric conversion. CONSTITUTION:A photovoltaic element having a light transmissible photodetecting electrode, a semiconductor layer and a rear surface electrode has an infrared light/visible light conversion layer 17 which converts infrared/ light into visible light and outputs it. When light is incident through a substrate 11 and a photodetecting electrode 12 to semiconductor layers 13-15, the visible light components of wavelength range of 400-800nm of the incident light are absorbed to the layers 13-15, the infrared light components of long wavelength of 800nm or longer are transmitted through the layers 13-15 and a conductive film 15 to be incident to the layer 17 to be converted to the visible light, the visible light output from the layer 17 is absorbed by the layer 13-15 to effectively contribute to the generation of electron-hole pairs to be utilized for photoelectric conversion, thereby increasing the output current of the element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、透光性受光゛面電極、半導体層、裏面電極
を有する光起電力素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photovoltaic device having a light-transmitting light-receiving surface electrode, a semiconductor layer, and a back electrode.

〔従来の技術〕[Conventional technology]

一般に、pn接合の光起電力効果を利用した光起電力素
子はたとえば第6図または第7図に示すように構成され
ている。
Generally, a photovoltaic element utilizing the photovoltaic effect of a pn junction is constructed as shown in FIG. 6 or 7, for example.

第6図はpin構造の光起電力素子を示し、同図におい
て、(1)はガラス基板、(2)は基板(1)上に形成
されたインジウム酸化錫からなる透光性受光面電極、(
3)は受光面電極(2)上に形成されたp型半導体層、
(4)はp型半導体層(3)上に形成されたn型半導体
層、(5)はn型半導体層(4)上に形成されたn型半
導体層、(6)はn型半導体層(5)上に形成された裏
面電極であり、アルミニウム等の金属が蒸着されて形成
されている。
FIG. 6 shows a photovoltaic element with a pin structure, in which (1) is a glass substrate, (2) is a light-transmitting light-receiving surface electrode made of indium tin oxide formed on the substrate (1), (
3) is a p-type semiconductor layer formed on the light-receiving surface electrode (2);
(4) is an n-type semiconductor layer formed on the p-type semiconductor layer (3), (5) is an n-type semiconductor layer formed on the n-type semiconductor layer (4), and (6) is an n-type semiconductor layer. (5) A back electrode formed on the top, which is formed by vapor-depositing metal such as aluminum.

つぎに、第7図はpinの2層構造の光起電力素子を示
し、同図において第6図と同一記号は同一のものを示し
、(7) 、 (8) 、 (9)はn型半導体層(5
)上に順次に形成されたp型半導体層、n型半導体層お
よびn型半導体層、αQはn型半導体層(9)上に形成
されたアルミニウム等からなる裏面電極である。
Next, Fig. 7 shows a photovoltaic element with a two-layer structure of pins, in which the same symbols as in Fig. 6 indicate the same elements, and (7), (8), and (9) are n-type. Semiconductor layer (5
), a p-type semiconductor layer, an n-type semiconductor layer, and an n-type semiconductor layer are sequentially formed on the n-type semiconductor layer (9), and αQ is a back electrode made of aluminum or the like formed on the n-type semiconductor layer (9).

このとき、前記した第6図に示す光起電力素子の収集効
率スペクトルは第8図に示すようになり、第7図に示す
素子の場合も同様になり、はぼ550〜600 nmの
波長の入射光に対して収集効率が最大となり、可視光の
波長範囲において高い感度を示す。
At this time, the collection efficiency spectrum of the photovoltaic device shown in FIG. 6 described above becomes as shown in FIG. 8, and the same is true for the device shown in FIG. 7. It has maximum collection efficiency for incident light and exhibits high sensitivity in the visible wavelength range.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、soo nm以上の赤外領域の長波長の光が半
導体層(3)〜(5) 、 (7)〜(9)中で熱エネ
ルギに変化し、あるいは800 nm以上の長波長の光
が半導体層(3)〜(5) 、 (7)〜(9)を透過
したのち、裏面電極(6)、α0で反射され、再び半導
体層(9)〜(7) 、 (5)〜(3)を逆方向に透
過して表面側へ散逸するため、800 nm以上の長波
長の光を有効に光電変換に利用することができず、第8
図に示すように、soo nm以上の長波長の光に対す
る感度がほとんどなく、収集効率が極めて低くなり、素
子の出力電流の増大を図ることができないという問題点
がある。
However, light with a long wavelength in the infrared region of soo nm or more is converted into thermal energy in the semiconductor layers (3) to (5), (7) to (9), or light with a long wavelength of 800 nm or more is converted into thermal energy. After passing through the semiconductor layers (3) to (5) and (7) to (9), it is reflected by the back electrode (6) and α0, and the semiconductor layers (9) to (7) and (5) to (3) are reflected again. ) is transmitted in the opposite direction and dissipated toward the surface, making it impossible to effectively utilize light with a long wavelength of 800 nm or more for photoelectric conversion,
As shown in the figure, there is a problem that there is almost no sensitivity to light with long wavelengths of soo nm or more, the collection efficiency is extremely low, and it is impossible to increase the output current of the device.

ところで、16 th  IEEE  Photovo
ltaic  8pecia −1ists Conf
erence −1982、p、1421〜1422 
 において、アモルファスシリコン系の半導体層を有す
る光起電力素子の8QOnm前後の波長の光に対する感
度が、前記した第8図のように、急に低下することが報
告されている。
By the way, 16th IEEE Photovo
ltaic 8pecia-1ists Conf
erence-1982, p, 1421-1422
It has been reported that the sensitivity of a photovoltaic element having an amorphous silicon semiconductor layer to light having a wavelength of around 8QOnm suddenly decreases as shown in FIG. 8 described above.

そこで、この発明では、goo nm以上の長波長の光
を光電変換に有効に利用して素子の出力電流の増大を図
ることを技術的課題とする。
Therefore, the technical object of the present invention is to increase the output current of an element by effectively utilizing light with a long wavelength of 0.0 nm or more for photoelectric conversion.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の点に留意してなされたものであり、
透光性受光面電極、半導体層、裏面電極を有する光起電
力素子において、赤外光を可視光に変換して出力する赤
外可視変換層を設けたことを特徴とする光起電力素子で
ある。
This invention was made with the above points in mind,
A photovoltaic element having a light-transmitting light-receiving surface electrode, a semiconductor layer, and a back electrode, characterized in that it is provided with an infrared-visible conversion layer that converts infrared light into visible light and outputs it. be.

〔作 用〕[For production]

したがって、この発明によると、赤外光を可視光に変換
して出力する赤外可視変換層が設けられ、soo nm
以上の赤外領域の長波長の光が前記変換層により可視光
に変換され、変換層から出力される可視光が半導体層に
より吸収され、電子−正孔対の発生に有効に寄与して光
電変換に利用され、光起電力素子の出力電流の増大が図
れることになる。
Therefore, according to the present invention, an infrared-visible conversion layer is provided that converts infrared light into visible light and outputs it.
The above-mentioned long wavelength light in the infrared region is converted into visible light by the conversion layer, and the visible light output from the conversion layer is absorbed by the semiconductor layer, effectively contributing to the generation of electron-hole pairs and photoelectrically generated. Utilized for conversion, it is possible to increase the output current of the photovoltaic element.

〔実施例〕〔Example〕

つぎに、この発明を、その実施例を示した第1図ないし
第5図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 to 5 showing embodiments thereof.

(実施例1) まず、実施例1を示した第1図および第2図について説
明する。
(Example 1) First, FIG. 1 and FIG. 2 showing Example 1 will be explained.

第1図において、συはガラス基板、(イ)は基板Qη
上に形成されたインジウム酸化錫からなる透光性受光面
電極、備はグロー放電法により受光面電極@上に形成さ
れたポロン(B)ドープのアモルファスシリコンカーバ
イド(a−8iC: H: B )からなる厚さ100
〜800人のp型半導体層、α◆はグロー放電法により
p型半導体*Q3上に形成されたノンドープのアモルフ
ァスシリコン(a−8i:H)からなる厚さ5000〜
5ooo人のi型半導体層、(ト)は厚さ100〜80
0人のn型半導体層であり、リン(P)ドープのアモル
ファスシリコン(a−8i :H:P)カラナ’) 、
り0−放電法によりi型牛導体層α(上に形成されてい
る。
In Figure 1, συ is the glass substrate, (a) is the substrate Qη
A light-transmitting light-receiving surface electrode made of indium tin oxide is formed on the light-transmitting light-receiving surface electrode, and poron (B)-doped amorphous silicon carbide (a-8iC: H: B) is formed on the light-receiving surface electrode by a glow discharge method. thickness 100
~800 p-type semiconductor layer, α◆ is made of non-doped amorphous silicon (a-8i:H) formed on p-type semiconductor *Q3 by glow discharge method and has a thickness of 5000~
5ooo i-type semiconductor layer, (g) thickness 100~80
0 n-type semiconductor layer, phosphorus (P) doped amorphous silicon (a-8i:H:P) Karana'),
The i-type conductor layer α (formed on top) was formed by the 0-discharge method.

α0はn型半導体層QQ上に形成されインジウム酸化錫
からなる透光性導電膜、αηは導電膜aQ上に形成され
た赤外可視変換層であり、8フツ化ランタン(LaF3
)をイッテルビウム(yb)、エルビウム(Er)によ
り付活した赤外可視変換螢光体(LaFB : Yb 
:Er)がエポキシ系透明樹脂に混合され、この混合材
料が導電膜α0上に塗布されて形成されている。
α0 is a transparent conductive film made of indium tin oxide formed on the n-type semiconductor layer QQ, and αη is an infrared-visible conversion layer formed on the conductive film aQ.
) activated with ytterbium (yb) and erbium (Er) (LaFB: Yb)
:Er) is mixed with an epoxy-based transparent resin, and this mixed material is coated on the conductive film α0.

このとき、前記螢光体の量は2〜allldに設定され
ており、導電膜αりが一部露出する所定パターンに変換
層αηが形成されている。
At this time, the amount of the phosphor is set to 2 to alld, and the conversion layer αη is formed in a predetermined pattern in which a portion of the conductive film α is exposed.

(ト)は変換層αη上および露出した導電膜α・上にア
ルミニウムが蒸着されて形成された裏面電極である。
(g) is a back electrode formed by vapor-depositing aluminum on the conversion layer αη and the exposed conductive film α.

なお、グロー放電法による各半導体層α榎〜Q51の形
成条件はたとえば次表のように設定されている。
Note that the conditions for forming each of the semiconductor layers α-Q51 by the glow discharge method are set as shown in the following table, for example.

表 そして、基板(ロ)、受光面電極(6)を介して各半導
体層(至)〜aI19に光が入射すると、入射光のうち
400〜soonmの波長範囲の可視光成分は半導体層
a3〜(至)により吸収され、800 nm以上の長波
長の赤外光成分は半導体層(2)〜(至)および導電膜
α0を透過して変換IQηに入射し、変換層αηにより
可視光に変換されて裏面室W(至)トム鼻出力され、裏
面電極(至)により、変換層αηからの可視光が反射さ
れ、変換層0η、導電膜αQを介して半導体層Q5〜(
至)に入射し、半導体層(至)〜Q3により変換層αη
からの可視光が吸収される。
When light enters each semiconductor layer (to) to aI19 via the substrate (b) and the light-receiving surface electrode (6), the visible light component in the wavelength range of 400 to soon m is absorbed by the semiconductor layers a3 to aI19. The infrared light component with a long wavelength of 800 nm or more is absorbed by (to) and passes through the semiconductor layers (2) to (to) and the conductive film α0, enters the conversion IQη, and is converted into visible light by the conversion layer αη. Visible light from the conversion layer αη is reflected by the back electrode (to) and transmitted to the semiconductor layers Q5 to (
) and converts the conversion layer αη by the semiconductor layer (to) ~Q3.
visible light is absorbed.

従って、第1図の光起電力素子の収集効率スペクトルは
第2図中の実線に示すようになり、同図中に破線で示し
た前記第8図の従来の光起電力素子の収集効率スペクト
ルと比較してわかるように、800〜1100 nmの
長波長の光に対しても感度を有することになり、これは
800〜1100 nmの波長の赤外光が変換層αηに
より可視光に変換されて半導体層α目〜(2)により吸
収され、有効に光電変換に利用されるためであり、光起
電力素子の出力電流の増大を図ることが可能となり、素
子特性の向上を図ることができる。
Therefore, the collection efficiency spectrum of the photovoltaic device shown in FIG. 1 is shown by the solid line in FIG. 2, and the collection efficiency spectrum of the conventional photovoltaic device shown in FIG. 8 is shown by the broken line in the same figure. As you can see, it is sensitive to light with a long wavelength of 800 to 1100 nm, and this is because infrared light with a wavelength of 800 to 1100 nm is converted into visible light by the conversion layer αη. This is because it is absorbed by the semiconductor layer α-th ~ (2) and effectively used for photoelectric conversion, making it possible to increase the output current of the photovoltaic device and improve the device characteristics. .

(実施例2) つぎに、実施例2を示す第3図について説明する。(Example 2) Next, FIG. 3 showing Example 2 will be explained.

第3図において、第1図と同一記号は同一〇ものもしく
は相当するものを示し、第1図と異なる点はn型半導体
層(至)と透光性導電膜αQとの間に、p型、i型、n
型半導体層(2)〜α$それぞれと同じ材質のp型、i
型、n型半導体層α9.(イ)、@を設けた点であり、
第8図の構成により、前記実施例Iと同等の効果が得ら
れる。
In FIG. 3, the same symbols as in FIG. 1 indicate the same or equivalent items, and the difference from FIG. 1 is that there is a p type, i type, n
p type and i made of the same material as the type semiconductor layer (2) to α$, respectively.
type, n-type semiconductor layer α9. (b) The point is that @ is added.
With the configuration shown in FIG. 8, the same effect as in the embodiment I can be obtained.

(実施例8) さらに、実施例8を示した第4図について説明する。(Example 8) Furthermore, FIG. 4 showing Example 8 will be explained.

第4図において、第3図と同一記号は同一のものもしく
は相当するものを示し、第3図と異なる点は、n型半導
体層a$とp型半導体層αりとの間に、変換層αηと同
じ材質の赤外可視変換層にを包被したインジウム酸化錫
からなる透光性導電膜のを設け、n型半導体層(社)上
にアルミニウムからなる裏面電極−を設けた点であり、
−前記実施例1と同等の効果が得られる。
In FIG. 4, the same symbols as in FIG. 3 indicate the same or equivalent things, and the difference from FIG. 3 is that there is a conversion layer between the n-type semiconductor layer a and the p-type semiconductor layer α. A transparent conductive film made of indium tin oxide covered with an infrared-visible conversion layer made of the same material as αη is provided, and a back electrode made of aluminum is provided on the n-type semiconductor layer. ,
- Effects equivalent to those of Example 1 can be obtained.

(実施例4) また、実施例4を示した第5図について説明する。(Example 4) Further, FIG. 5 showing the fourth embodiment will be explained.

第5図において、第4図と同一記号は同一のものもしく
は相当するものを示し、第4図と異なる点は、n型半導
体層(至)とp型牛導体冒Q呻との間に、インジウム酸
化錫からなる透光性導電膜G、変換層(ロ)と同じ材質
の赤外可視変換*C!lil、インジウム酸化錫からな
る透光性導電膜−を設けた点であり、−前記実施例1と
同等の効果が得られる。
In FIG. 5, the same symbols as in FIG. 4 indicate the same or equivalent things, and the difference from FIG. 4 is that between the n-type semiconductor layer and the p-type conductor, Transparent conductive film G made of indium tin oxide, infrared-visible conversion made of the same material as the conversion layer (b) *C! This is because a light-transmitting conductive film made of indium tin oxide is provided, and the same effect as in Example 1 can be obtained.

なお、赤外可視変換層材料として、前記したようなYb
 、 Erにより付活した8フツ化ランタンのほか、Y
b、Erにより付活した8フツ化イツトリウム(YF3
 、: Yb : Er )などの螢光体や、Ba2N
aNb60tsなどの非線形光学結晶材料等を用いても
、この発明を同様に実施することができる。
In addition, as the infrared-visible conversion layer material, Yb as described above may be used.
, In addition to lanthanum octafluoride activated by Er, Y
b, Yttrium octafluoride (YF3) activated by Er
, :Yb:Er), Ba2N
The present invention can be similarly implemented using a nonlinear optical crystal material such as aNb60ts.

また、各半導体層の材質は、前記したアモルフ77、シ
リコン系に限るものではない。
Further, the material of each semiconductor layer is not limited to the above-mentioned Amorph 77 or silicon-based material.

さらに、半導体層はpin構造に限らないのは勿論であ
る。
Furthermore, it goes without saying that the semiconductor layer is not limited to the pin structure.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の光起電力素子によると、赤外
可視変換層を設けたため、soo nm以上の赤外領域
の長波長の光を可視光に変換して光電変換に有効に利用
することができ、光起電力素子の出力電流の増大を図る
ことができ、素子特性の向上を図ることが可能となり、
その効果は極めて大きい。
As described above, according to the photovoltaic device of the present invention, since the infrared-visible conversion layer is provided, light with a long wavelength in the infrared region of so nm or more is converted into visible light and effectively used for photoelectric conversion. This makes it possible to increase the output current of the photovoltaic device and improve the device characteristics.
The effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図はこの発明の光起電力素子゛の実施
例を示し、第1図は実施例1の構成図、第2図は実施例
1の収集効率スペクトルを示す図、第8図ないし第5図
はそれぞれ実施例2.実施例8、実施例4の構成図、第
6図および第7図はそれぞれ従来例の構成図、第8図は
従来例における収集効率スペクトルを示す図である。 (2)・・・透光性受光面電極、(至)〜αQ、α呻〜
(社)・・・半導体層、αη、(支)、@・・・赤外可
視変換層、(至)、+241・・・裏面電極。
1 to 5 show examples of the photovoltaic device of the present invention, FIG. 1 is a block diagram of Example 1, FIG. 2 is a diagram showing the collection efficiency spectrum of Example 1, and FIG. Figures 5 through 5 show Example 2, respectively. Embodiment 8 and Embodiment 4 are shown in block diagrams, FIGS. 6 and 7 are block diagrams of conventional examples, respectively, and FIG. 8 is a diagram showing a collection efficiency spectrum in the conventional example. (2) ... Transparent light-receiving surface electrode, (to) ~ αQ, α groan ~
(Company)... Semiconductor layer, αη, (support), @... Infrared-visible conversion layer, (to), +241... Back electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)透光性受光面電極、半導体層、裏面電極を有する
光起電力素子において、 赤外光を可視光に変換して出力する赤外可視変換層を設
けたことを特徴とする光起電力素子。
(1) A photovoltaic element having a light-transmitting light-receiving surface electrode, a semiconductor layer, and a back electrode, which is characterized by being provided with an infrared-visible conversion layer that converts infrared light into visible light and outputs it. power element.
JP62078485A 1987-03-30 1987-03-30 Photovoltaic element Expired - Fee Related JP2664371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078485A JP2664371B2 (en) 1987-03-30 1987-03-30 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078485A JP2664371B2 (en) 1987-03-30 1987-03-30 Photovoltaic element

Publications (2)

Publication Number Publication Date
JPS63244688A true JPS63244688A (en) 1988-10-12
JP2664371B2 JP2664371B2 (en) 1997-10-15

Family

ID=13663286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078485A Expired - Fee Related JP2664371B2 (en) 1987-03-30 1987-03-30 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP2664371B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505448A (en) * 1996-10-23 2001-04-24 エベルハルト−カルルス−ウニバーシテート チュービンゲン ウニバーシテートクリニクム Retinal transplant
WO2006006372A1 (en) * 2004-07-07 2006-01-19 Tohoku University Solar cell panel
WO2009148131A1 (en) * 2008-06-06 2009-12-10 住友ベークライト株式会社 Wavelength converting composition and photovoltaic device comprising layer composed of wavelength converting composition
KR101030322B1 (en) * 2008-05-28 2011-04-20 (주)세현 Method of manufacturing solar cell
KR101034473B1 (en) * 2008-12-31 2011-05-17 (주)세현 Solar cell
CN102479832A (en) * 2010-11-24 2012-05-30 吉富新能源科技(上海)有限公司 Solar cell with high photoelectric conversion efficiency (PCE)
CN102479833A (en) * 2010-11-24 2012-05-30 吉富新能源科技(上海)有限公司 Solar cell with high photoelectric conversion efficiency and adjustable penetrating light
JP2015026684A (en) * 2013-07-25 2015-02-05 京セラ株式会社 Solar cell, solar cell module, and method for installing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447380U (en) * 1977-09-07 1979-04-02
JPS6179546U (en) * 1984-10-30 1986-05-27
JPS63200576A (en) * 1987-02-17 1988-08-18 Hitachi Ltd Solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447380U (en) * 1977-09-07 1979-04-02
JPS6179546U (en) * 1984-10-30 1986-05-27
JPS63200576A (en) * 1987-02-17 1988-08-18 Hitachi Ltd Solar cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001505448A (en) * 1996-10-23 2001-04-24 エベルハルト−カルルス−ウニバーシテート チュービンゲン ウニバーシテートクリニクム Retinal transplant
WO2006006372A1 (en) * 2004-07-07 2006-01-19 Tohoku University Solar cell panel
JP2006024716A (en) * 2004-07-07 2006-01-26 Tohoku Univ Solar cell panel
KR101030322B1 (en) * 2008-05-28 2011-04-20 (주)세현 Method of manufacturing solar cell
WO2009148131A1 (en) * 2008-06-06 2009-12-10 住友ベークライト株式会社 Wavelength converting composition and photovoltaic device comprising layer composed of wavelength converting composition
KR101034473B1 (en) * 2008-12-31 2011-05-17 (주)세현 Solar cell
CN102479832A (en) * 2010-11-24 2012-05-30 吉富新能源科技(上海)有限公司 Solar cell with high photoelectric conversion efficiency (PCE)
CN102479833A (en) * 2010-11-24 2012-05-30 吉富新能源科技(上海)有限公司 Solar cell with high photoelectric conversion efficiency and adjustable penetrating light
JP2015026684A (en) * 2013-07-25 2015-02-05 京セラ株式会社 Solar cell, solar cell module, and method for installing the same

Also Published As

Publication number Publication date
JP2664371B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP5409007B2 (en) High efficiency solar cell and preparation method thereof
KR100974226B1 (en) Backside surface passivation and reflection layer for Si solar cell by high-k dielectrics
US20110017263A1 (en) Method and device for fabricating a solar cell using an interface pattern for a packaged design
JPS6030163A (en) Thin film solar cell module
TW201705508A (en) High power solar cell module
JPS63244688A (en) Photovoltaic element
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
JPS6377167A (en) Laminated photovoltaic device
KR20100066525A (en) High efficiency hybrid solar cell
US20090014067A1 (en) Photovoltaic assembly
JPS63120476A (en) Photovolatic device
JP2661286B2 (en) Photoelectric conversion device
JPS63161680A (en) Semiconductor photodetector
JPS6132582A (en) Light transmission type semiconductor photodetector
CN216054743U (en) Photoelectric device based on two-dimensional ZrNBr/ZrNCl in-plane heterojunction
JP2013201347A (en) Optical sensor
JPS6177375A (en) Color sensor
JPH1117211A (en) Semiconductor planar photodiode and device therewith
JPH06224459A (en) Photodetector
JPH01303763A (en) Photovoltaic device
JPS6343381A (en) Photovoltaic cell
JPH02218177A (en) Polycrystalline thin film solar cell
JP2884171B2 (en) Amorphous solar cell
JPH05343661A (en) Color optical sensor
JPH0323678A (en) Light-receiving generation element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees