JPS63200576A - Solar cell - Google Patents
Solar cellInfo
- Publication number
- JPS63200576A JPS63200576A JP62033689A JP3368987A JPS63200576A JP S63200576 A JPS63200576 A JP S63200576A JP 62033689 A JP62033689 A JP 62033689A JP 3368987 A JP3368987 A JP 3368987A JP S63200576 A JPS63200576 A JP S63200576A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- photoelectric conversion
- wavelength
- light
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 54
- 230000001681 protective effect Effects 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 claims 9
- 239000012790 adhesive layer Substances 0.000 claims 1
- 239000000853 adhesive Substances 0.000 abstract description 8
- 230000001070 adhesive effect Effects 0.000 abstract description 8
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 230000003449 preventive effect Effects 0.000 abstract 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、太陽電池に係り、特に太陽光の広いスペクト
ル範囲の光を効率よく電気に変換するのに好適な、波長
変換を利用した太陽電池に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to solar cells, and in particular to solar cells that utilize wavelength conversion and are suitable for efficiently converting sunlight in a wide spectral range into electricity. Regarding batteries.
波長変換を利用した従来の太la電池(%開昭57−9
5675参照)は、第2図のように、波長変換体でおる
螢光体入シのプラスチック板8の端面に太陽電池素子9
を配置し、グラスチック板8で太陽光等の外部光を波長
変換して太陽電池素子9に集光入射させて電力に変換す
る構成となっている。Conventional LA battery using wavelength conversion
5675), as shown in FIG.
are arranged, the wavelength of external light such as sunlight is converted by the glass plate 8, and the condensed light is incident on the solar cell element 9 to be converted into electric power.
上記従来技術は、単位電気出力当シに必要な太陽電池素
子の面積を小さくできるが、螢光体入りのグラスチック
板を含む太#亀池全体の変換効率は大きくなかった。す
なわち、螢光体の吸収及び発光特性を考慮すると、外部
光が太陽光の場合には螢光体入シのプラスチック板の端
面に集光できる太陽光エネルギーの割合は、入射太南光
エネルギーの高々10〜20チである。そのため、太陽
電池素子の効率を30q6としても、入射太陽光エネル
ギーの3〜6qbを電気に変換できるのみである。その
ため、上記従来技術では、プラスチック板単位面積当り
の電力変換効率が低く、単位電気出力当υに必要な螢光
体入シのプラスチック板を含む太陽電池全体の面積が大
きくなるという問題があった。Although the above-mentioned conventional technology can reduce the area of the solar cell element required for unit electric output, the conversion efficiency of the entire thick pond including the phosphor-containing glass plate is not high. In other words, considering the absorption and emission characteristics of the phosphor, when the external light is sunlight, the proportion of sunlight energy that can be focused on the end face of the plastic plate containing the phosphor is at most the amount of incident solar energy. It is 10 to 20 inches. Therefore, even if the efficiency of the solar cell element is 30q6, only 3 to 6qb of incident solar energy can be converted into electricity. Therefore, in the above conventional technology, the power conversion efficiency per unit area of the plastic plate is low, and the area of the entire solar cell including the phosphor-filled plastic plate required for unit electric output is large. .
本発明の目的は、単位面積当シの効率の高い太陽電池を
提供することにある。An object of the present invention is to provide a solar cell with high efficiency per unit area.
本発明の太陽電池は、光電変換層の光入射側に、光電変
換層での光電変換効率の低い波長範囲の光を吸収し光電
変換効率の高い波長範囲の光を発光する波長変換体(螢
光体)の層を、光電変換層と平行に設けたことを%徴と
するものである。The solar cell of the present invention has a wavelength converter (fluorescent material) on the light incidence side of the photoelectric conversion layer that absorbs light in a wavelength range where the photoelectric conversion efficiency is low and emits light in a wavelength range where the photoelectric conversion efficiency is high. The % mark is that the layer of photoelectric material) is provided in parallel with the photoelectric conversion layer.
〔作用〕
第3図は太陽光スペクトルと光電変換層の光電変換効率
の波長依存性とを示したものである。同図に示すように
光電変換効率は太陽光スペクトルの一部波長範囲に限っ
て高いたけである。[Operation] Figure 3 shows the sunlight spectrum and the wavelength dependence of the photoelectric conversion efficiency of the photoelectric conversion layer. As shown in the figure, the photoelectric conversion efficiency is only high in a certain wavelength range of the sunlight spectrum.
しかるに本発明では光電変換効率の低い波長範囲に吸収
波長を持ち光電変換効率の高い波長範囲に発光波長をも
つ波長変換体の層が光電変換層の光入射側に設けられて
いる。これによシ、光電変換に寄与できなかった波長範
囲の光も光電変換に有効に寄与できるようになるので、
入射太陽光に対して単位面積当シの効率が高くなる。However, in the present invention, a layer of a wavelength converter having an absorption wavelength in a wavelength range where photoelectric conversion efficiency is low and an emission wavelength in a wavelength range where photoelectric conversion efficiency is high is provided on the light incident side of the photoelectric conversion layer. As a result, light in the wavelength range that could not contribute to photoelectric conversion can now effectively contribute to photoelectric conversion.
Efficiency per unit area increases with respect to incident sunlight.
以下、本発明の一実施例を第1図によシ説明する。第1
図は、本実施例の太陽電池の構造を示す断面図である。An embodiment of the present invention will be explained below with reference to FIG. 1st
The figure is a cross-sectional view showing the structure of the solar cell of this example.
第1図において、反射防止膜1、透明保護カバー(ガラ
ス)2、波長変換体のN3、透明接着剤4、透明電極5
、光電変換層6、裏面電極7が順に層状に検層されてい
る。本実施例では、波長変換体の層3として、ZnSを
用い、これを透明保護カバー2に蒸着しである。また、
光電変換層6として多結晶型StのPN接合素子を用い
た。このPN接合素子は波長0.5〜1.0μmの光を
電力に変換する能力をもつ。In FIG. 1, an antireflection film 1, a transparent protective cover (glass) 2, a wavelength converter N3, a transparent adhesive 4, a transparent electrode 5
, the photoelectric conversion layer 6, and the back electrode 7 are sequentially logged in layers. In this embodiment, ZnS is used as the layer 3 of the wavelength converter and is deposited on the transparent protective cover 2. Also,
As the photoelectric conversion layer 6, a polycrystalline St PN junction element was used. This PN junction element has the ability to convert light with a wavelength of 0.5 to 1.0 μm into electric power.
反射防止膜1に入射した太陽晃−は反射防止膜1、透明
保護カバー2を透過して波長変換体の層3に入射する。The sunlight incident on the antireflection film 1 passes through the antireflection film 1 and the transparent protective cover 2 and enters the layer 3 of the wavelength converter.
この入射した太陽光の波長は0.3〜5μmにわたって
いるが、このうち0.3〜0.5μmの波長を持つ光は
波長変換体の層3で吸収され、0.5〜06μmの波長
に変換されて発光する。The wavelength of this incident sunlight ranges from 0.3 to 5 μm, and among this, the light with a wavelength of 0.3 to 0.5 μm is absorbed by the layer 3 of the wavelength converter and becomes a wavelength of 0.5 to 0.6 μm. It is converted and emits light.
波長変換体の層3で吸収されない0.5μm以上の波長
をもつ光は、そのまま波長変換体の層3及び透明接着剤
4、透明電極5を透過して光電変換層6に入射して、電
力に変換される。透明接着剤4は波長変換体のfVi
3と透FiAt極5との間の隙間を埋めることによって
界面での反射を減少させる。Light with a wavelength of 0.5 μm or more that is not absorbed by the wavelength converter layer 3 passes through the wavelength converter layer 3, the transparent adhesive 4, and the transparent electrode 5, enters the photoelectric conversion layer 6, and generates electric power. is converted to The transparent adhesive 4 is a wavelength converter fVi
3 and the transparent FiAt pole 5 to reduce reflections at the interface.
波長変換体の層3で発光した波長0.5〜0.6μmの
光は、発光点から全方向に放射されるが、光電変換層6
側に発光された光はそのまま光電変換層6に入射して電
力に変換される。また透明保護カバー2の側に発光され
た光は、反射防止膜1と透明保賎カバー2の界面及び反
射防止膜1と外部との界面等でその一部が反射され、光
電変換層6に入射して電力に変換される。The light with a wavelength of 0.5 to 0.6 μm emitted from the layer 3 of the wavelength converter is radiated in all directions from the light emitting point, but the light emitted from the layer 3 of the wavelength converter
The light emitted to the side directly enters the photoelectric conversion layer 6 and is converted into electric power. In addition, a part of the light emitted toward the transparent protective cover 2 is reflected at the interface between the antireflection film 1 and the transparent protective cover 2, the interface between the antireflection film 1 and the outside, etc., and is reflected by the photoelectric conversion layer 6. incident and converted into electric power.
変換された電力は透明電極5と裏面電極7とよシ外部に
取り出される。The converted power is extracted to the outside through the transparent electrode 5 and the back electrode 7.
本実施例では従来光電変換に利用されていなかった短波
長(0,3〜0.5μm)側の光(太陽光エネルギーの
約7%)を、光電変換に利用可能な長波長(0,5〜0
.6μm)側の光に変換して光電変換層6に入射させ、
かつもともと光電変換に利用可能な波長範囲(0,5〜
1,0μtn)の光(太陽光エネルギーの約40%)は
そのまま光電変換層6に入射させるので、光電変換に利
用可能な波長範囲の光が途中の損失を前置しても従来の
約1.1倍以上になる。そのため、本実施例の太陽電池
の効率は従来の太陽電池よシ約10%以上向上する。In this example, light at the short wavelength (0.3 to 0.5 μm) side (approximately 7% of solar energy), which has not been used for photoelectric conversion, is converted to light at a long wavelength (0.5 μm) that can be used for photoelectric conversion. ~0
.. 6 μm) side and input it to the photoelectric conversion layer 6,
And the wavelength range originally usable for photoelectric conversion (0.5~
1.0μtn) (approximately 40% of solar energy) is directly incident on the photoelectric conversion layer 6, so even if the light in the wavelength range that can be used for photoelectric conversion is predetermined with loss during the process, the light (approximately 40% of solar energy) is .1 times or more. Therefore, the efficiency of the solar cell of this example is improved by about 10% or more compared to the conventional solar cell.
以上説明したように本実施例では、従来光電変換に利用
されていた波長範囲の光と利用されていなかった波長範
囲の一部の光との両方を同時に光電変換に利用できるた
め、入射太陽光に対する効率が向上するという効果があ
る。As explained above, in this embodiment, both light in the wavelength range conventionally used for photoelectric conversion and light in a part of the wavelength range that has not been used can be used for photoelectric conversion at the same time. This has the effect of improving efficiency.
第4図は本発明の他の実施例を示す太陽電池パネルの断
面図である。同図において、透明電極5゜光電変換層6
(材質は前記実施例の光電変換層6と同じ)、裏面電極
7よシ成る太陽電池素子が複数枚配置され、これらの太
陽電池素子は、ZnSよシなる波長変換体の微粉床入シ
の透明接着剤10によシ透明保護カバー2と光学的に密
着されている。また、これらの太陽電池素の裏面は絶縁
カバー11によシ絶縁されている。FIG. 4 is a sectional view of a solar cell panel showing another embodiment of the present invention. In the figure, transparent electrode 5° photoelectric conversion layer 6
(The material is the same as that of the photoelectric conversion layer 6 of the above embodiment), and a plurality of solar cell elements each consisting of a back electrode 7 are arranged, and these solar cell elements are made of a bed of fine powder of a wavelength converter such as ZnS. It is optically adhered to the transparent protective cover 2 by a transparent adhesive 10. Further, the back surfaces of these solar cell elements are insulated by an insulating cover 11.
本実施例でも太陽電池効率が向上する作用効果は前記の
実施例と同様である。しかも、本実施例では波長変換体
の微粉末を透明接着剤に分散混入して一体化しているた
め、太陽電池パネルの組立工程は、従来とほとんど変わ
ることがない。そのため、製造コストが高くなることは
ない。In this example, the effect of improving solar cell efficiency is the same as in the previous example. Moreover, in this embodiment, since the fine powder of the wavelength converter is dispersed and mixed into the transparent adhesive and integrated, the assembly process of the solar cell panel is almost unchanged from the conventional one. Therefore, manufacturing costs do not increase.
波長変換体の微粉末を透明保護カバー中に分散混入して
も同様の効果が得られる。A similar effect can be obtained by dispersing and mixing fine powder of the wavelength converter into the transparent protective cover.
第5図は本発明の他の実施例を示す太陽電池の断面図で
ある。本実施例の基本的構造は第1図に示した実施例と
同じであシ、異なる部分についてのみ説明する。すなわ
ち、第5図に示した本実施例では、第1図の波長変換体
の層3を、短い波長の光を吸収して長い波長の光を発光
するタイプすなわちストークス型の波長変換体(ZnS
等)の層31と、上記と逆の波長変換をするアンチス)
−クス型の波長変換体(YbEr 、 YbTm等)
の層32との2層構造としている。ストークス型の波長
変換体の層31は光電変換に利用できなかった波長0.
5μm以下の短波長の光を光電変換に利用可能な長波長
の光に変換する。アンチストークス型の波長変換体は従
来波長が長すぎて光電変換に利用できなかった波長1゜
0μm以上の光を光電変換に利用可能な波長1.0μm
以下の波長に変換する。そのため、本実施例では、太陽
光の従来利用できなかった短波長側の光と長波長側の光
の両方を光電変換に利用できるようになり、さらに効率
を向上させることができるという効果がある。FIG. 5 is a sectional view of a solar cell showing another embodiment of the present invention. The basic structure of this embodiment is the same as that of the embodiment shown in FIG. 1, and only the different parts will be explained. That is, in this embodiment shown in FIG. 5, the layer 3 of the wavelength converter shown in FIG.
etc.) layer 31, and an antis layer 31 that performs the reverse wavelength conversion to the above)
-X type wavelength converter (YbEr, YbTm, etc.)
It has a two-layer structure with a layer 32. The layer 31 of the Stokes-type wavelength converter converts wavelengths of 0.00 to 0.00000, which could not be used for photoelectric conversion.
Converts short wavelength light of 5 μm or less into long wavelength light that can be used for photoelectric conversion. The anti-Stokes type wavelength converter converts light with a wavelength of 1°0 μm or more, which was previously too long to be used for photoelectric conversion, to a wavelength of 1.0 μm that can be used for photoelectric conversion.
Convert to the following wavelengths. Therefore, in this embodiment, both short wavelength light and long wavelength light of sunlight, which could not be used conventionally, can be used for photoelectric conversion, which has the effect of further improving efficiency. .
本発明の実施において短波長の光を吸収し長波長の光を
発光する波長変換体としては、ZnS : Ag(30
0〜400 nmの光を吸収し400〜500nmの光
を発光する)や、ZnS : Cu (300〜450
nmの光を吸収し450〜600 nmの光を発光す
る)を好適に用いられるものとして挙げることができる
。In carrying out the present invention, a wavelength converter that absorbs short wavelength light and emits long wavelength light is ZnS:Ag(30
(absorbs light of 0 to 400 nm and emits light of 400 to 500 nm), ZnS:Cu (300 to 450 nm)
(which absorbs light of 450 to 600 nm and emits light of 450 to 600 nm) can be cited as suitable examples.
波長変換体の層を真空蒸着法や気相反応法によって透明
保護カバー(ガラス)の裏面等に形成する場合には、そ
の層の厚さは、波長変換体の吸収率に応じ実験等により
最適厚さを設定するが、通常、数μm〜数十μmが適当
である。波長変換体の層を透明接着剤中に螢光体の微粉
末を混入して形成する場合には、最適な濃度が実験等に
より定められるが、粒径1μm〜3μmの微粉末を数I
f/an”の濃度で混入するのが適当である。When forming a layer of wavelength converter on the back surface of a transparent protective cover (glass) by vacuum evaporation or gas phase reaction method, the thickness of the layer is determined by experiments depending on the absorption rate of the wavelength converter. Although the thickness is set, normally several micrometers to several tens of micrometers is appropriate. When forming a layer of wavelength converter by mixing fine phosphor powder into a transparent adhesive, the optimum concentration can be determined through experiments, etc.
It is appropriate to mix it at a concentration of f/an''.
光電変換層の材質、厚さとしては、単結晶シリコン太陽
電池・・・厚さ50μm〜300μm、ガリウムーヒ素
太陽電池・・・厚さ50μm〜200μm、又はアモル
ファスシリコン太陽電池・・・厚さ数μmが適当である
。Regarding the material and thickness of the photoelectric conversion layer, single-crystal silicon solar cells: 50 μm to 300 μm thick, gallium-arsenide solar cells: 50 μm to 200 μm thick, or amorphous silicon solar cells: several μm thick. is appropriate.
透明電極は単結晶シリコンやガリウムーヒ素太陽電池で
は必ずしも必要でなく、グリッド電極でもよい。アモル
ファスシリコン太陽電池では透明電極は必要である。透
明電極の材質はS nO2又はITO(インジウム錫酸
化物)を用い得る。A transparent electrode is not necessarily required in single-crystal silicon or gallium-arsenide solar cells, and may be a grid electrode. Transparent electrodes are necessary in amorphous silicon solar cells. The material of the transparent electrode may be SnO2 or ITO (indium tin oxide).
本発明によれば、太陽光のうち従来利用していた波長範
囲の光の他に、従来利用できなかった波長範囲の光を利
用可能な波長範囲に波長変換して利用できるので、太陽
電池の効率を10%以上向上させることができる。According to the present invention, in addition to sunlight in the conventionally used wavelength range, light in the wavelength range that was previously unusable can be converted into a usable wavelength range and used. Efficiency can be improved by 10% or more.
第1図は本発明の一実施例の太陽電池の断面図、第2図
は従来の太陽電池の外観図、第3図は太陽光スペクトル
と光電変換層の光電変換効率の波長依存性とを示す図、
第4図は本発明の他の実施例の太陽電池の断面図、第5
図は本発明のさらに他の実施例の太陽電池の断面図であ
る。
1・・・反射防止膜 2・・・透明保護カバー3.
31.32・・・波長変換体の層
4・・・透明接着剤 5・・・透明電極6・・・光
電変換層 7・・・裏面電極第1図
第2図
第3図
波長(PL)FIG. 1 is a cross-sectional view of a solar cell according to an embodiment of the present invention, FIG. 2 is an external view of a conventional solar cell, and FIG. 3 is a diagram showing the sunlight spectrum and the wavelength dependence of the photoelectric conversion efficiency of the photoelectric conversion layer. The figure shown,
FIG. 4 is a sectional view of a solar cell according to another embodiment of the present invention, and FIG.
The figure is a sectional view of a solar cell according to still another embodiment of the present invention. 1...Anti-reflection film 2...Transparent protective cover 3.
31.32... Layer of wavelength converter 4... Transparent adhesive 5... Transparent electrode 6... Photoelectric conversion layer 7... Back electrode Figure 1 Figure 2 Figure 3 Wavelength (PL)
Claims (1)
効率の低い波長範囲の光を吸収して光電変換効率の高い
波長範囲の光を発光する波長変換体の層を、光電変換層
と平行に設けたことを特徴とする太陽電池。 2、波長変換体の層は光電変換層と透明保護カバーとの
間に挾まれている特許請求の範囲第1項記載の太陽電池
。 3、波長変換体の層は透明保護カバー中に波長変換体の
微粉末を分散混入したものからなる特許請求の範囲第1
項記載の太陽電池。 4、波長変換体の層は、光電変換層と透明保護カバーと
の間の透明接着剤層中に波長変換体の微粉末を分散混入
したものからなる特許請求の範囲第1項記載の太陽電池
。[Claims] 1. A wavelength converter on the light incidence side of the photoelectric conversion layer that absorbs light in a wavelength range where the photoelectric conversion efficiency is low in the photoelectric conversion layer and emits light in a wavelength range where the photoelectric conversion efficiency is high. A solar cell characterized in that a layer is provided in parallel with a photoelectric conversion layer. 2. The solar cell according to claim 1, wherein the wavelength converter layer is sandwiched between the photoelectric conversion layer and the transparent protective cover. 3. The layer of the wavelength converter consists of a transparent protective cover in which fine powder of the wavelength converter is dispersed and mixed. Claim 1
Solar cells described in section. 4. The solar cell according to claim 1, wherein the wavelength converter layer is formed by dispersing fine wavelength converter powder in a transparent adhesive layer between the photoelectric conversion layer and the transparent protective cover. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62033689A JPH084147B2 (en) | 1987-02-17 | 1987-02-17 | Solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62033689A JPH084147B2 (en) | 1987-02-17 | 1987-02-17 | Solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63200576A true JPS63200576A (en) | 1988-08-18 |
JPH084147B2 JPH084147B2 (en) | 1996-01-17 |
Family
ID=12393393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62033689A Expired - Fee Related JPH084147B2 (en) | 1987-02-17 | 1987-02-17 | Solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH084147B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244688A (en) * | 1987-03-30 | 1988-10-12 | Sanyo Electric Co Ltd | Photovoltaic element |
WO1995017015A1 (en) * | 1993-12-14 | 1995-06-22 | Citizen Watch Co., Ltd. | Solar battery device |
EP0727823A1 (en) * | 1993-11-05 | 1996-08-21 | Citizen Watch Co. Ltd. | Solar battery device and its manufacture |
DE19954954A1 (en) * | 1999-11-16 | 2001-05-23 | Hne Elektronik Gmbh & Co Satel | Photovoltaic transducer for obtaining energy from sunlight, uses fluorescent layer to match spectral range of sunlight to sensitivity of photocells |
WO2006006372A1 (en) * | 2004-07-07 | 2006-01-19 | Tohoku University | Solar cell panel |
JP2007027271A (en) * | 2005-07-13 | 2007-02-01 | Univ Of Electro-Communications | Solar power generation module |
JP2008130801A (en) * | 2006-11-21 | 2008-06-05 | Masataka Murahara | Solar photovoltaic/thermal power generation system |
WO2008096711A1 (en) * | 2007-02-06 | 2008-08-14 | Hitachi Chemical Co., Ltd. | Solar cell module and wavelength conversion type light collecting film for solar cell module |
WO2009046060A2 (en) * | 2007-10-01 | 2009-04-09 | Davis, Joseph And Negley | Apparatus and methods to produce electrical energy by enhanced down-conversion of photons |
JP2010141297A (en) * | 2008-11-14 | 2010-06-24 | Nippon Leiz Co Ltd | Light guide, photoelectric converter, and flat surface photoelectric conversion device |
JP2011165754A (en) * | 2010-02-05 | 2011-08-25 | Denso Corp | Solar cell module |
WO2011155614A1 (en) | 2010-06-11 | 2011-12-15 | 旭硝子株式会社 | Translucent laminate and solar cell module using same |
WO2012014847A1 (en) * | 2010-07-26 | 2012-02-02 | Tsujiuchi Yutaka | Method for shielding ultraviolet radiation and intensifying visible light, and ultraviolet-radiation-shielding, visible-light-intensifying material capable of achieving said method |
JP2012069865A (en) * | 2010-09-27 | 2012-04-05 | Toppan Printing Co Ltd | Solar cell sealant and solar cell module using the same |
JP2012109414A (en) * | 2010-11-17 | 2012-06-07 | Toppan Printing Co Ltd | Solar cell module |
WO2012090673A1 (en) * | 2010-12-28 | 2012-07-05 | 株式会社日立製作所 | Wavelength converting sealing material sheet and solar cell module |
WO2013118747A1 (en) * | 2012-02-06 | 2013-08-15 | 日東電工株式会社 | Adhesive sheet, protection unit and solar cell module |
JP2013161982A (en) * | 2012-02-06 | 2013-08-19 | Nitto Denko Corp | Adhesive sheet and solar cell module |
JP2014022471A (en) * | 2012-07-13 | 2014-02-03 | Denso Corp | Solar cell module and solar cell module assembly |
JP2014123662A (en) * | 2012-12-21 | 2014-07-03 | Kyocera Corp | Solar cell and solar cell module |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG10201405424YA (en) | 2009-09-29 | 2014-10-30 | Hitachi Chemical Co Ltd | Fluorescent material for converting wavelengths, resin composition for converting wavelengths containing the fluorescent material, solar cell module produced using the fluorescent material or the resin composition, process for producing resin composition for converting wavelengths, and process for producing solar cell module |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5333592A (en) * | 1976-09-09 | 1978-03-29 | Seiko Epson Corp | Solar battery |
JPS5582471A (en) * | 1978-12-13 | 1980-06-21 | Ibm | Light converter |
JPS5678564U (en) * | 1979-11-20 | 1981-06-25 | ||
JPS5832476A (en) * | 1981-08-20 | 1983-02-25 | Sanyo Electric Co Ltd | Photovoltaic device |
-
1987
- 1987-02-17 JP JP62033689A patent/JPH084147B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5333592A (en) * | 1976-09-09 | 1978-03-29 | Seiko Epson Corp | Solar battery |
JPS5582471A (en) * | 1978-12-13 | 1980-06-21 | Ibm | Light converter |
JPS5678564U (en) * | 1979-11-20 | 1981-06-25 | ||
JPS5832476A (en) * | 1981-08-20 | 1983-02-25 | Sanyo Electric Co Ltd | Photovoltaic device |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244688A (en) * | 1987-03-30 | 1988-10-12 | Sanyo Electric Co Ltd | Photovoltaic element |
EP0727823A1 (en) * | 1993-11-05 | 1996-08-21 | Citizen Watch Co. Ltd. | Solar battery device and its manufacture |
EP0727823A4 (en) * | 1993-11-05 | 1998-04-29 | Citizen Watch Co Ltd | Solar battery device and its manufacture |
WO1995017015A1 (en) * | 1993-12-14 | 1995-06-22 | Citizen Watch Co., Ltd. | Solar battery device |
US5714012A (en) * | 1993-12-14 | 1998-02-03 | Citizen Watch Co, Ltd. | Solar battery device |
DE19954954A1 (en) * | 1999-11-16 | 2001-05-23 | Hne Elektronik Gmbh & Co Satel | Photovoltaic transducer for obtaining energy from sunlight, uses fluorescent layer to match spectral range of sunlight to sensitivity of photocells |
WO2006006372A1 (en) * | 2004-07-07 | 2006-01-19 | Tohoku University | Solar cell panel |
JP2006024716A (en) * | 2004-07-07 | 2006-01-26 | Tohoku Univ | Solar cell panel |
JP2007027271A (en) * | 2005-07-13 | 2007-02-01 | Univ Of Electro-Communications | Solar power generation module |
JP2008130801A (en) * | 2006-11-21 | 2008-06-05 | Masataka Murahara | Solar photovoltaic/thermal power generation system |
WO2008096711A1 (en) * | 2007-02-06 | 2008-08-14 | Hitachi Chemical Co., Ltd. | Solar cell module and wavelength conversion type light collecting film for solar cell module |
JPWO2008096711A1 (en) * | 2007-02-06 | 2010-05-20 | 日立化成工業株式会社 | Solar cell module and wavelength conversion type condensing film for solar cell module |
WO2009046060A2 (en) * | 2007-10-01 | 2009-04-09 | Davis, Joseph And Negley | Apparatus and methods to produce electrical energy by enhanced down-conversion of photons |
WO2009046060A3 (en) * | 2007-10-01 | 2009-05-28 | Davis Joseph And Negley | Apparatus and methods to produce electrical energy by enhanced down-conversion of photons |
JP2010141297A (en) * | 2008-11-14 | 2010-06-24 | Nippon Leiz Co Ltd | Light guide, photoelectric converter, and flat surface photoelectric conversion device |
JP2011165754A (en) * | 2010-02-05 | 2011-08-25 | Denso Corp | Solar cell module |
WO2011155614A1 (en) | 2010-06-11 | 2011-12-15 | 旭硝子株式会社 | Translucent laminate and solar cell module using same |
CN102939663A (en) * | 2010-06-11 | 2013-02-20 | 旭硝子株式会社 | Translucent laminate and solar cell module using same |
JPWO2011155614A1 (en) * | 2010-06-11 | 2013-08-15 | 旭硝子株式会社 | Translucent laminate and solar cell module using the same |
JP2012025870A (en) * | 2010-07-26 | 2012-02-09 | Akita Univ | Method for shielding ultraviolet radiation and intensifying visible light, and ultraviolet-radiation-shielding, visible-light-intensifying material capable of achieving the method |
WO2012014847A1 (en) * | 2010-07-26 | 2012-02-02 | Tsujiuchi Yutaka | Method for shielding ultraviolet radiation and intensifying visible light, and ultraviolet-radiation-shielding, visible-light-intensifying material capable of achieving said method |
US9140836B2 (en) | 2010-07-26 | 2015-09-22 | Yutaka Tsujiuchi | Method of shielding ultraviolet light and increasing visible light, and ultraviolet-light-shielding and visible-light-increasing material which enables implementation of the method |
JP2012069865A (en) * | 2010-09-27 | 2012-04-05 | Toppan Printing Co Ltd | Solar cell sealant and solar cell module using the same |
JP2012109414A (en) * | 2010-11-17 | 2012-06-07 | Toppan Printing Co Ltd | Solar cell module |
JP2012142346A (en) * | 2010-12-28 | 2012-07-26 | Hitachi Ltd | Wavelength conversion type sealing material sheet and solar battery module |
WO2012090673A1 (en) * | 2010-12-28 | 2012-07-05 | 株式会社日立製作所 | Wavelength converting sealing material sheet and solar cell module |
WO2013118747A1 (en) * | 2012-02-06 | 2013-08-15 | 日東電工株式会社 | Adhesive sheet, protection unit and solar cell module |
JP2013161982A (en) * | 2012-02-06 | 2013-08-19 | Nitto Denko Corp | Adhesive sheet and solar cell module |
JP2013161981A (en) * | 2012-02-06 | 2013-08-19 | Nitto Denko Corp | Adhesive sheet, protection unit, and solar cell module |
CN104094415A (en) * | 2012-02-06 | 2014-10-08 | 日东电工株式会社 | Adhesive sheet, protection unit and solar cell module |
JP2014022471A (en) * | 2012-07-13 | 2014-02-03 | Denso Corp | Solar cell module and solar cell module assembly |
JP2014123662A (en) * | 2012-12-21 | 2014-07-03 | Kyocera Corp | Solar cell and solar cell module |
Also Published As
Publication number | Publication date |
---|---|
JPH084147B2 (en) | 1996-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63200576A (en) | Solar cell | |
US9584065B2 (en) | Solar cell structure | |
US4127425A (en) | Luminescent solar collector | |
JPWO2007040065A1 (en) | Solar cell and solar cell module | |
TW201025637A (en) | Solar cell | |
JPH09162435A (en) | Filter for solar battery | |
JP6140563B2 (en) | Solar cell, solar cell module and installation method thereof | |
TW201705508A (en) | High power solar cell module | |
JP2010225977A (en) | Solar battery module | |
TW201110384A (en) | High spot light solar cell module | |
TW200926422A (en) | Nature-light energy cell and its transparent light-transferring layer | |
JPH0644638B2 (en) | Stacked photovoltaic device with different unit cells | |
TW201725744A (en) | High power solar cell module | |
JP2013074167A (en) | Solar cell and solar cell module | |
JP2003218367A (en) | Solar battery unit | |
JP2003086823A (en) | Thin film solar battery | |
JP3133494B2 (en) | Photovoltaic element | |
JP2003078151A (en) | Thin film solar battery | |
JPS6034080A (en) | Optical amplifying photovoltaic element | |
TWM523192U (en) | High power solar cell module | |
JP6192562B2 (en) | Solar cell element and solar cell module | |
JP6328891B2 (en) | Solar cell and solar cell module | |
JP2014216381A (en) | Solar cell and solar cell module | |
CN108231939A (en) | A kind of fluorescent solar light collecting device based on spectrum conversion | |
JPS59152675A (en) | Amorphous silicon photovoltaic element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |