DE19954954A1 - Photovoltaic transducer for obtaining energy from sunlight, uses fluorescent layer to match spectral range of sunlight to sensitivity of photocells - Google Patents

Photovoltaic transducer for obtaining energy from sunlight, uses fluorescent layer to match spectral range of sunlight to sensitivity of photocells

Info

Publication number
DE19954954A1
DE19954954A1 DE19954954A DE19954954A DE19954954A1 DE 19954954 A1 DE19954954 A1 DE 19954954A1 DE 19954954 A DE19954954 A DE 19954954A DE 19954954 A DE19954954 A DE 19954954A DE 19954954 A1 DE19954954 A1 DE 19954954A1
Authority
DE
Germany
Prior art keywords
fluorescent
photocells
converter device
radiation
sunlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19954954A
Other languages
German (de)
Inventor
Ubbo Ricklefs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hne Elektronik & Co Satel GmbH
Original Assignee
Hne Elektronik & Co Satel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hne Elektronik & Co Satel GmbH filed Critical Hne Elektronik & Co Satel GmbH
Priority to DE19954954A priority Critical patent/DE19954954A1/en
Publication of DE19954954A1 publication Critical patent/DE19954954A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The transducer includes a photocell arrangement (1) and a fluorescent layer (2). The flat side of the fluorescent layer faces the light-incidence side of the photocell arrangement. The fluorescent material is selected so that the solar radiation is converted into radiation in a spectral range for which the photocells are operating at maximum efficiency. The fluorescent material may contain sub-materials with differing absorption-wavelength ranges.

Description

Die Erfindung bezieht sich auf eine photovoltaische Wandlereinrichtung zur Energiegewinnung aus Sonnenstrahlung mit einer Photozellenanordnung und einer vorgelagerten fluoreszierenden Schicht.The invention relates to a photovoltaic converter device for Generating energy from solar radiation with a photocell arrangement and an upstream fluorescent layer.

Das Spektrum der Sonnenstrahlung erstreckt sich über einen weiten Spektral­ bereich. Entsprechend unterschiedlich ist die Energie der Photonen. Heute übliche Photozellen werden aus Silizium hergestellt. Dementsprechend haben sie einen Bandabstand von ca. 1,1 eV, der einer Wellenlänge von etwa 900 nm ent­ spricht. Photonen mit einer höheren Energie können zwar absorbiert werden, geben dann aber nur in etwa den Energiebetrag an die Elektron-Loch-Paare ab, der dem Bandabstand entspricht. Der übrige Energiebetrag der Photonen wird in Form von Wärme an den Kristall abgegeben. Mit der Erwärmung sinkt der Wir­ kungsgrad der Zellen ab. Deshalb ist es üblich, die Leistungsdaten eines Photovoltaik-Modules bei 25°C anzugeben, obwohl diese Randbedingung bei einem typischen Einsatz kaum realistisch ist. Vorschläge zu einer Kühlung der Zellen findet man in vielen Patenten. In vorteilhaften Anordnungen wird die Kühlung zur Erwärmung von Wärmespeichern genutzt (DE 198 37 189 C1; DE 41 08 503 C2).The spectrum of solar radiation extends over a wide spectrum Area. The energy of the photons is correspondingly different. today Common photocells are made from silicon. Accordingly, they have a band gap of approximately 1.1 eV, which corresponds to a wavelength of approximately 900 nm speaks. Photons with a higher energy can be absorbed then only give approximately the amount of energy to the electron-hole pairs, which corresponds to the band gap. The remaining amount of energy of the photons is in Form of heat given off to the crystal. With warming, the we sinks  degree of cell deposition. Therefore, it is common to see the performance data of a Specify photovoltaic modules at 25 ° C, although this boundary condition at a typical application is hardly realistic. Proposals for cooling the Cells can be found in many patents. In advantageous arrangements, the Cooling used to heat heat stores (DE 198 37 189 C1; DE 41 08 503 C2).

Viele Forschungsbemühungen zielten in den letzten Jahren darauf ab, Materia­ lien für die Photozellen zu finden, die besser an das Spektrum des Sonnenlichtes angepasst waren. In diesem Bereich hat es viele Fortschritte gegeben. Mit diesen Techniken kannte der Wirkungsgrad erheblich gesteigert werden. Bislang sind diese Zellen aber wegen der hohen Herstellkosten nur für Spezialanwen­ dungen einsetzbar.A lot of research efforts in the past few years have been aimed at Materia lien for the photocells to find that better match the spectrum of sunlight were adjusted. There has been a lot of progress in this area. With The efficiency of these techniques was considerably increased. So far However, due to the high manufacturing costs, these cells are only for special users applications.

Weiterhin sind Verfahren bekannt, das Spektrum der Sonnenstrahlung spektral aufzuspalten und für jede der Teilfarben eine speziell angepasste Photozelle zu verwenden. Diese Verfahren haben viele Vorteile. Nachteilig ist aber auch hier, dass entsprechend angepasste Photozellen bislang nur labormäßig zur Verfü­ gung stehen. In den Druckschriften WO 87/01512, US 4,350,837, US 4,021,267, DE 44 09 698 A1 wird vorgeschlagen, zur spektralen Separierung Prismen einzusetzen. Der Einsatz der Prismen erfordert einen kollimierten Strahlengang. Durch den Tages- und Jahresgang der Sonne muss eine solche Anordnung nachgeführt werden, wodurch zusätzliche Kosten entstehen.Methods are also known, the spectrum of solar radiation is spectral split and for each of the partial colors a specially adapted photocell use. These processes have many advantages. Another disadvantage is that correspondingly adapted photocells have so far only been available in the laboratory stand. In the publications WO 87/01512, US 4,350,837, US 4,021,267, DE 44 09 698 A1 proposes prisms for spectral separation to use. The use of the prisms requires a collimated beam path. Such an arrangement must pass through the course of the day and year of the sun be tracked, which creates additional costs.

Weiterhin wurde versucht, über fluoreszierende Platten zu einer Anpassung des Spektralbereiches der Strahlung an die Empfindlichkeit der Photozellen und zu einer Konzentration auf den Rand der Platten zu gelangen (DE 30 10 595 A1, DE 29 26 191 A1, DE 84 31 643 U1).Furthermore, attempts were made to adapt the fluorescent plates Spectral range of the radiation to the sensitivity of the photocells and  to concentrate on the edge of the plates (DE 30 10 595 A1, DE 29 26 191 A1, DE 84 31 643 U1).

Der Erfindung liegt die Aufgabe zugrunde, bei einer photovoltaischen Wandler­ einrichtung der eingangs angegeben Art eine Anpassung des Sonnenlichtes an die Empfindlichkeit der Photozellen vorzunehmen, um so die Erwärmung der Zellen auch unter hohen Bestrahlungsstärken zu verringern.The invention has for its object in a photovoltaic converter device of the type specified at the beginning an adaptation of the sunlight make the sensitivity of the photocells so as to heat the Reduce cells even under high levels of radiation.

Erfindungsgemäß wird diese Aufgabe mit den Merkmalen des Anspruches 1 ge­ löst. Es wird ein fluoreszierendes Material verwendet, mit dem die kurzwellige Strahlung des Sonnenlichtes in einen Spektralbereich konvertiert wird, in dem die Photozellen einen höheren Wirkungsgrad und damit einen höheren Strom und weniger Wärme erzeugen, und die Photozellen werden großflächig mit in einem günstigen Spektralbereich liegenden, direkt durchgelassenen und kon­ vertierten Strahlungsanteilen bestrahlt.According to the invention, this object is achieved with the features of claim 1 solves. A fluorescent material is used with which the short-wave Radiation from sunlight is converted into a spectral range in which the photocells have a higher efficiency and thus a higher current and generate less heat, and the photocells become large with in a favorable spectral range, directly transmitted and con vertical radiation components irradiated.

Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen an­ gegeben.Advantageous embodiments of the invention are set out in the dependent claims given.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Be­ zugnahme auf die Fig. 1a bis 3 erläutert.The invention is explained below using exemplary embodiments with reference to FIGS . 1a to 3.

Fig. 1a zeigt eine Anordnung, Fig. 1b einen vergrößerten Teilausschnitt X, bei der die Photozelle 1 mit einem fluoreszierenden Pulver 2 beschichtet ist. Pulver dieser Art werden z. B. zur Beschichtung von Leuchtstofflampen eingesetzt, um die UV-Strahlung in sichtbare bzw. für die photovoltaische Wandlung wirksame Strahlung 4 zu konvertieren. Durch eine geschickte Wahl der fluoreszierenden Materialien lässt sich der Emissions-Wellenlängenbereich so wählen, dass die Photozelle in diesem Bereich besonders empfindlich ist. Der Absorptions-Wel­ lenlängenbereich wird so gewählt, dass möglichst auch die hochenergetische UV-Strahlung konvertiert werden kann. Es lassen sich auch mehrere fluoreszie­ rende Materialien mischen, um so eine optimale Anpassung zu erreichen. Nach­ teilig ist bei diesem Verfahren, dass das Pulver zusätzlich als diffuser Streuer 5 der einfallenden Strahlung wirkt, und die konvertierte Strahlung 4 nicht gerich­ tet emittiert wird. Insbesondere bei niedrigen Bestrahlungsstärken und diffuser Bestrahlung mit geringem UV-Anteil kann diese Anordnung nicht mehr vorteil­ haft eingesetzt werden. In Gegenden mit einem hohen Anteil der direkten So­ larstrahlung und in Konzentrator-Anordnungen kommt dieser kostengünstigen Beschichtung eine besondere Bedeutung zu. Fig. 1a shows an arrangement, Fig. 1b shows an enlarged partial section X in which the photocell 1 is coated with a fluorescent powder 2. Powders of this type are used e.g. B. used for coating fluorescent lamps to convert the UV radiation into visible or effective for the photovoltaic conversion radiation 4 . Through a clever choice of fluorescent materials, the emission wavelength range can be selected so that the photocell is particularly sensitive in this area. The absorption wavelength range is selected so that the high-energy UV radiation can be converted if possible. Several fluorescent materials can also be mixed in order to achieve optimal adaptation. The disadvantage of this method is that the powder additionally acts as a diffuse scatterer 5 of the incident radiation, and the converted radiation 4 is not emitted in a directed manner. This arrangement can no longer be used advantageously, particularly at low irradiance levels and diffuse radiation with a low UV component. In areas with a high proportion of direct solar radiation and in concentrator arrangements, this cost-effective coating is of particular importance.

In Fig. 2 ist eine Anordnung gezeigt, bei der die Photozelle 1 mit einem Kunststoff oder Glas 6 abgedeckt ist, in dem fluoreszierendes Material enthalten ist. Anders als in DE 10 10 595 A1 beschrieben, dient das Material hier nicht als Konzentrator, sondern zur Anpassung der Wellenlängen der Solarstrahlung an die spektrale Empfindlichkeit der Photozellen. Vorteilhaft ist die Ausführung mit optisch glatter Oberfläche, so dass die einfallende Strahlung nicht gestreut wird. Die Strahlung mit längerer Wellenlänge 8 wird transmittiert, während die kurzwellige Strahlung 4 konvertiert wird und nicht zur Erwärmung der Zellen führt. Damit lässt sich die Erwärmung der Zellen deutlich reduzieren. Vorteilhaft lässt sich das Fluoreszensmaterial in die ohnehin notwendige Abdeckung der Zellen integrieren.In FIG. 2, an arrangement is shown in which the photocell 1 is covered with a plastic or glass 6, is included in the fluorescent material. Unlike described in DE 10 10 595 A1, the material here does not serve as a concentrator, but rather for adapting the wavelengths of the solar radiation to the spectral sensitivity of the photocells. The version with an optically smooth surface is advantageous so that the incident radiation is not scattered. The radiation with a longer wavelength 8 is transmitted, while the short-wave radiation 4 is converted and does not lead to the heating of the cells. This can significantly reduce the heating of the cells. The fluorescent material can advantageously be integrated into the covering of the cells, which is necessary anyway.

Fig. 2a zeigt einen Aufbau, der dem von Fig. 2 ähnlich ist. Die hier gezeigte Prismenanordnung 10 auf der Oberfläche der Photozellen 1 ist dann vorteilhaft einsetzbar, wenn z. B. in einem Konzentrator diese Fläche vor Verschmutzung geschützt ist. Die Prismenanordnung hat mehrere Vorteile. Bei der Anordnung nach Fig. 2 wirkt die fluoreszierende Platte wie ein Lichtleiter. Dementsprechend erscheinen die Ränder der Platte hell. Einen Teil dieses Lichtes kann man durch Spiegelung an den Prismenflächen auf die Photozellen lenken. Bei einer ver­ setzten Anordnung der Prismen untereinander und einer Ausrichtung der Längs­ achse der Prismen senkrecht zur Ost-West-Achse 9 des Kollektors wird in den Tageszeiten, in denen die Sonne unter sehr flachem Winkel auf die Photozellen einstrahlt, der Einfallswinkel der Strahlung auf die Photozellen verbessert. Durch den hohen Brechungsindex der Photozelle würde die Strahlung sonst bei diesen flachen Einfallswinkeln reflektiert. Ein Linsenfeld hätte eine ähnliche Wirkung. Fig. 2a shows a structure which is similar to that of Fig. 2. The prism arrangement 10 shown here on the surface of the photocells 1 can be used advantageously if, for. B. in a concentrator this surface is protected from contamination. The prism arrangement has several advantages. In the arrangement according to FIG. 2, the fluorescent plate acts like a light guide. Accordingly, the edges of the plate appear bright. Part of this light can be directed onto the photocells by reflecting on the prism surfaces. With a staggered arrangement of the prisms with each other and an alignment of the longitudinal axis of the prisms perpendicular to the east-west axis 9 of the collector, the angle of incidence of the radiation on the Photocells improved. The high refractive index of the photocell would otherwise reflect the radiation at these flat angles of incidence. A lens field would have a similar effect.

Werden Fluoreszensmaterialien verwendet, die in einem engen Spektralbereich die Strahlung emittieren, so kann es vorteilhaft sein, eine zusätzliche Ober­ flächenverspiegelung zu verwenden, die nur in diesem Spektralbereich reflek­ tierend wirkt, um so den Anteil der Photonen zu erhöhen, die die Photozellen treffen.Fluorescent materials are used that are in a narrow spectral range emit the radiation, it may be advantageous to add an upper to use surface mirroring that only reflect in this spectral range acts to increase the proportion of photons that the photocells to meet.

Bei hoch konzentrierenden Anordnungen reicht die Verwendung fluoreszierender Materialien nicht aus, eine Erwärmung der Zellen zu vermeiden. In der in Fig. 3 gezeigten Anordnung wird das fluoreszierende Material der Kühlflüssigkeit 9 bei­ gemischt. Die Photozellen 1 werden von der fluoreszierenden Kühlflüssigkeit umströmt. Optisch ähnelt diese Anordnung der von Fig. 2. Auch hier lässt sich die Oberfläche des Gehäuses wieder entsprechend verspiegeln.In the case of highly concentrated arrangements, the use of fluorescent materials is not sufficient to prevent the cells from heating up. In the arrangement shown in FIG. 3, the fluorescent material of the cooling liquid 9 is mixed at. The fluorescent cooling liquid flows around the photocells 1 . This arrangement is optically similar to that of FIG. 2. Here, too, the surface of the housing can be mirrored accordingly.

Claims (8)

1. Photovoltaische Wandlereinrichtung zur Energiegewinnung aus Sonnen­ strahlung mit einer Photozellenanordnung (1) und einer vorgelagerten fluoreszierenden Schicht (2, 6, 3), dadurch gekennzeichnet, dass die fluoreszierende Schicht (2, 6, 3) mit ihrer flachen Seite der Strahlungseinfallseite der Photozellenanordnung (1) zugekehrt ist und dass das fluoreszierende Material der fluoreszierenden Schicht (2, 6, 3) so gewählt ist, dass die Sonnenstrahlung im Wesentlichen in einen Spek­ tralbereich konvertiert wird, in dem die Photozellen ihren höchsten Wir­ kungsgrad haben.1. Photovoltaic converter device for generating energy from solar radiation with a photocell arrangement ( 1 ) and an upstream fluorescent layer ( 2 , 6 , 3 ), characterized in that the fluorescent layer ( 2 , 6 , 3 ) with its flat side of the radiation incident side of the photocell arrangement ( 1 ) is turned and that the fluorescent material of the fluorescent layer ( 2 , 6 , 3 ) is selected so that the solar radiation is essentially converted into a spectral range in which the photocells have their highest efficiency. 2. Wandlereinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das fluoreszierende Material mehrere fluoreszierende Teil-Materialien mit unterschiedlichen Absorptions-Wellenlängenbereichen enthält.2. converter device according to claim 1, characterized, that the fluorescent material is multiple fluorescent part materials with different absorption wavelength ranges. 3. Wandlereinrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Photozellenanordnung (1) mit einem fluoreszierenden Pulver (2) beschichtet ist. 3. Converter device according to claim 1 and 2, characterized in that the photocell arrangement ( 1 ) is coated with a fluorescent powder ( 2 ). 4. Wandlereinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die fluoreszierende Schicht mit einer fluoreszierendes Material enthaltenden Abdeckplatte (6) aus Kunststoff oder Glas gebildet ist.4. Converter device according to claim 1 or 2, characterized in that the fluorescent layer is formed with a fluorescent material-containing cover plate ( 6 ) made of plastic or glass. 5. Wandlereinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die strahlungseinfallseitige Oberfläche optisch glatt ist.5. converter device according to claim 4, characterized, that the radiation-incident surface is optically smooth. 6. Wandlereinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das fluoreszierende Material einer die Photozellen umströmenden Kühlflüssigkeit beigemischt ist.6. converter device according to claim 1, characterized, that the fluorescent material flows around the photocells Coolant is added. 7. Wandlereinrichtung nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, dass die Oberfläche der Abdeckplatte (6) mit einer Oberflächenverspie­ gelung versehen ist, die nur in dem Spektralbereich wirksam ist, in dem die Fluoreszenzmaterialien die Strahlung absorbieren.7. A converter device according to claim 4, 5 or 6, characterized in that the surface of the cover plate ( 6 ) is provided with a surface coating which is effective only in the spectral range in which the fluorescent materials absorb the radiation. 8. Wandlereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der Oberfläche der Photozellen eine Prismenanordnung (10) vorgesehen ist.8. Converter device according to one of the preceding claims, characterized in that a prism arrangement ( 10 ) is provided on the surface of the photocells.
DE19954954A 1999-11-16 1999-11-16 Photovoltaic transducer for obtaining energy from sunlight, uses fluorescent layer to match spectral range of sunlight to sensitivity of photocells Withdrawn DE19954954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19954954A DE19954954A1 (en) 1999-11-16 1999-11-16 Photovoltaic transducer for obtaining energy from sunlight, uses fluorescent layer to match spectral range of sunlight to sensitivity of photocells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19954954A DE19954954A1 (en) 1999-11-16 1999-11-16 Photovoltaic transducer for obtaining energy from sunlight, uses fluorescent layer to match spectral range of sunlight to sensitivity of photocells

Publications (1)

Publication Number Publication Date
DE19954954A1 true DE19954954A1 (en) 2001-05-23

Family

ID=7929128

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19954954A Withdrawn DE19954954A1 (en) 1999-11-16 1999-11-16 Photovoltaic transducer for obtaining energy from sunlight, uses fluorescent layer to match spectral range of sunlight to sensitivity of photocells

Country Status (1)

Country Link
DE (1) DE19954954A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079457A1 (en) * 2002-03-19 2003-09-25 Unisearch Limited Luminescence conversion and application to photovoltaic energy conversion
EP1602104A1 (en) * 2003-03-13 2005-12-07 Samsung Electronics Co., Ltd. Write once disc, method of managing data area of write once disc, and apparatus and method for reproducing data therefor
EP1814114A1 (en) * 2003-03-13 2007-08-01 Samsung Electronics Co., Ltd. Write once disc, method of managing a data area of a write once disc, and apparatus and method for reproducing data therefrom
US7313066B2 (en) 2003-03-13 2007-12-25 Samsung Electronics Co., Ltd. Write once disc allowing management of data area, method of managing the data area, and method for reproducing data from write once disc
EP2139048A1 (en) * 2008-06-23 2009-12-30 Photon BV Photovoltaic device with improved spectral response
WO2010001703A1 (en) * 2008-06-30 2010-01-07 日立化成工業株式会社 Wavelength conversion film, solar battery module using the same, method for producing the wavelength conversion film, and method for manufacturing the solar battery module
EP2224163A1 (en) * 2009-02-27 2010-09-01 Reddy Solutions Lighting arrangement for light conversion and spreading
WO2010104890A3 (en) * 2009-03-09 2010-11-04 The University Of North Carolina At Charlotte Efficiency enhancement of solar cells using light management
US8080730B2 (en) 2008-03-10 2011-12-20 SolarExcel B.V. Photovoltaic device
US8283560B2 (en) 2007-11-05 2012-10-09 SolarExcel B.V. Photovoltaic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2501907A1 (en) * 1975-01-18 1976-07-22 Werner H Prof Dr Ing Bloss Solar energy utilising assembly - has solar cell(s) with associated lens and lumines cent layer emitting light of specified wavelength
US4135537A (en) * 1978-03-20 1979-01-23 Atlantic Richfield Company Light collector
GB1562994A (en) * 1977-08-02 1980-03-19 Standard Telephones Cables Ltd Photovoltaic device
DE2714477C2 (en) * 1976-03-31 1985-04-25 Philippe Edouard Jean Leon Alexis Puteaux Gravisse Wavelength converter
JPS63200576A (en) * 1987-02-17 1988-08-18 Hitachi Ltd Solar cell
US4891075A (en) * 1986-01-30 1990-01-02 Golight, Inc. Photovoltaic cell including wavelength shifter comprising lanthanide chelate fluorophores based on dihydropyridine condensation products
JPH0252470A (en) * 1988-08-17 1990-02-22 Agency Of Ind Science & Technol Sunlight power generation device
DE4241185A1 (en) * 1991-12-04 1993-06-09 Hahn-Meitner-Institut Berlin Gmbh, 1000 Berlin, De Semiconductor photovoltaic element, e.g. solar cell, with profiled face - has contact systems fitted on side facing light at different levels of profiled surface
DE4217428A1 (en) * 1991-12-09 1993-06-17 Deutsche Aerospace High performance silicon crystalline solar cell structure - has more highly doped layer integrated in lightly doped layer in area below metallic contact

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2501907A1 (en) * 1975-01-18 1976-07-22 Werner H Prof Dr Ing Bloss Solar energy utilising assembly - has solar cell(s) with associated lens and lumines cent layer emitting light of specified wavelength
DE2714477C2 (en) * 1976-03-31 1985-04-25 Philippe Edouard Jean Leon Alexis Puteaux Gravisse Wavelength converter
GB1562994A (en) * 1977-08-02 1980-03-19 Standard Telephones Cables Ltd Photovoltaic device
US4135537A (en) * 1978-03-20 1979-01-23 Atlantic Richfield Company Light collector
US4891075A (en) * 1986-01-30 1990-01-02 Golight, Inc. Photovoltaic cell including wavelength shifter comprising lanthanide chelate fluorophores based on dihydropyridine condensation products
JPS63200576A (en) * 1987-02-17 1988-08-18 Hitachi Ltd Solar cell
JPH0252470A (en) * 1988-08-17 1990-02-22 Agency Of Ind Science & Technol Sunlight power generation device
DE4241185A1 (en) * 1991-12-04 1993-06-09 Hahn-Meitner-Institut Berlin Gmbh, 1000 Berlin, De Semiconductor photovoltaic element, e.g. solar cell, with profiled face - has contact systems fitted on side facing light at different levels of profiled surface
DE4217428A1 (en) * 1991-12-09 1993-06-17 Deutsche Aerospace High performance silicon crystalline solar cell structure - has more highly doped layer integrated in lightly doped layer in area below metallic contact

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079457A1 (en) * 2002-03-19 2003-09-25 Unisearch Limited Luminescence conversion and application to photovoltaic energy conversion
US7787338B2 (en) 2003-03-13 2010-08-31 Samsung Electronics Co., Ltd. Write once disc allowing management of data area, method of managing the data area, and apparatus and method for reproducing data from write once disc
US7773473B2 (en) 2003-03-13 2010-08-10 Samsung Electronics Co., Ltd. Write once disc allowing management of data area, method of managing the data area, and apparatus and method for reproducing data from write once disc
EP1814114A1 (en) * 2003-03-13 2007-08-01 Samsung Electronics Co., Ltd. Write once disc, method of managing a data area of a write once disc, and apparatus and method for reproducing data therefrom
US7313066B2 (en) 2003-03-13 2007-12-25 Samsung Electronics Co., Ltd. Write once disc allowing management of data area, method of managing the data area, and method for reproducing data from write once disc
US7961573B2 (en) 2003-03-13 2011-06-14 Samsung Electronics Co., Ltd. Write once disc allowing management of data area, method of managing the data area, and apparatus and method for reproducing data from write once disc
US7366068B2 (en) 2003-03-13 2008-04-29 Samsung Electronics Co., Ltd. Method for recording data to a write once disc
EP1602104A4 (en) * 2003-03-13 2007-05-02 Samsung Electronics Co Ltd Write once disc, method of managing data area of write once disc, and apparatus and method for reproducing data therefor
US7391690B2 (en) 2003-03-13 2008-06-24 Samsung Electronics Co., Ltd. Apparatus to record data on a write once disc
US7362675B2 (en) 2003-03-13 2008-04-22 Samsung Electronics Co., Ltd. Apparatus for recording data to and/or reproducing data from a write once disc
EP1602104A1 (en) * 2003-03-13 2005-12-07 Samsung Electronics Co., Ltd. Write once disc, method of managing data area of write once disc, and apparatus and method for reproducing data therefor
US7813242B2 (en) 2003-03-13 2010-10-12 Samsung Electronics Co., Ltd. Write once disc allowing management of data area, method of managing the data area, and apparatus and method for reproducing data from write once disc
US7969843B2 (en) * 2003-03-13 2011-06-28 Samsung Electronics Co., Ltd. Write once disc allowing management of data area, method of managing the data area, and apparatus and method for reproducing data from write once disc
US8283560B2 (en) 2007-11-05 2012-10-09 SolarExcel B.V. Photovoltaic device
US8080730B2 (en) 2008-03-10 2011-12-20 SolarExcel B.V. Photovoltaic device
EP2139048A1 (en) * 2008-06-23 2009-12-30 Photon BV Photovoltaic device with improved spectral response
WO2009156312A1 (en) * 2008-06-23 2009-12-30 Photon B.V. Photovoltaic device with improved spectral response
WO2010001703A1 (en) * 2008-06-30 2010-01-07 日立化成工業株式会社 Wavelength conversion film, solar battery module using the same, method for producing the wavelength conversion film, and method for manufacturing the solar battery module
EP2224163A1 (en) * 2009-02-27 2010-09-01 Reddy Solutions Lighting arrangement for light conversion and spreading
WO2010104890A3 (en) * 2009-03-09 2010-11-04 The University Of North Carolina At Charlotte Efficiency enhancement of solar cells using light management
US9871158B2 (en) 2009-03-09 2018-01-16 The University Of North Carolina At Charlotte Efficiency enhancement of solar cells using light management
US10522703B2 (en) 2009-03-09 2019-12-31 The University Of North Carolina At Charlotte Efficiency enhancement of solar cells using light management

Similar Documents

Publication Publication Date Title
DE2629641C3 (en) Device for converting light energy into thermal energy
DE102009008170B4 (en) Method and system for light collection and light energy conversion device
DE2620115A1 (en) Solar cell converting light into electric power - has light concentrator with fluorescent centres in transparent layer with specified refractive index
DE10296508T5 (en) Photovoltaic array module design for solar electric power generation systems
DE102011055092A1 (en) Layer for use with solar cell modules and module with such a layer
EP2191515A2 (en) Solar cell construction
EP2294628A2 (en) Device and method for concentrating incident light
DE102010004439A1 (en) solar cell module
DE102010004008A1 (en) Solar cell module and its surface layer
DE19954954A1 (en) Photovoltaic transducer for obtaining energy from sunlight, uses fluorescent layer to match spectral range of sunlight to sensitivity of photocells
DE102007058971A1 (en) Photovoltaic device and its use
EP2534701B1 (en) Photovoltaic device and use thereof
EP2162684A2 (en) Photovoltaic device with holographic structure for deflecting incident solar radiation, and method for producing it
DE2917143A1 (en) COMPOSITE LUMINESCENT SOLAR COLLECTOR AND CONCENTRATOR
DE102008014618B4 (en) Device for concentrating and converting solar energy
DE102015216994A1 (en) Photovoltaic glass with independent light traps
DE3130226A1 (en) Solar-energy installation with photo-electric cells
DE2910142A1 (en) Solar energy converter - has electret catcher surface with Fresnel lenses over solar cell
DE102010001220A1 (en) Luminescent concentrator module with renewable active layer
DE20220390U1 (en) Collector system for sunlight to illuminate photovoltaic absorber has fixed two-dimensional mirror with frame on which light absorber strip moves
DE102008001640A1 (en) Photovoltaic concentrator for concentrating sunlight for use in e.g. photovoltaic panel, has mirror component allowing incident light to be deflected onto absorbing element that is statically mounted with respect to mirror component
WO2011110329A2 (en) Photovoltaic element with optically functional conversion layer for improving the conversion of the incident light and method for producing said photovoltaic element
DE102006000682A1 (en) Solar collector for collecting sunlight, has carrier body that is made of light-conductive plastic material and is designed such that sunlight penetrates into plastic material and reflects light into plastic material
WO2007095892A2 (en) Focusing solar collectors having thin-film cells
DE19956878A1 (en) Photovoltaic converter device for using solar energy has a side of light ray incidence covered with an optical focussing structure designed to divert light rays falling on it onto a module surface.

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8139 Disposal/non-payment of the annual fee