JPH09162435A - Filter for solar battery - Google Patents

Filter for solar battery

Info

Publication number
JPH09162435A
JPH09162435A JP7318845A JP31884595A JPH09162435A JP H09162435 A JPH09162435 A JP H09162435A JP 7318845 A JP7318845 A JP 7318845A JP 31884595 A JP31884595 A JP 31884595A JP H09162435 A JPH09162435 A JP H09162435A
Authority
JP
Japan
Prior art keywords
solar cell
filter
rays
transparent
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7318845A
Other languages
Japanese (ja)
Inventor
Masanaga Yamagou
眞永 山郷
Takashi Ikeda
尚 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP7318845A priority Critical patent/JPH09162435A/en
Publication of JPH09162435A publication Critical patent/JPH09162435A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Optical Filters (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the temperature rise of a solar battery by equipping this filter with infrared-ray screen layers made of transmitting wavelength selecting agents which intercept the infrared rays in specified wavelength region, on one side or both sides of a transparent base material layer. SOLUTION: Infrared ray screen layers 2 made of the transmitting wavelength selecting agents constituted of zinc oxides or the like which intercepts the infrared ray L1 (1200<L1<300nm, or 1200<=L1<=3000nm) in the wavelength region of at least 1200-300nm are made on one side or both sides of a transparent base material layer 1. The temperature rise of the solar battery by heat beam can be suppressed by forming infrared ray screen layers 2 (filters), which transmit the beam of wavelength of 400-1200nm required for power generation and intercept the heat beam of wavelength of 1200-300nm unnecessary for power generation out of the solar ray, on the incidence side of the solar battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽光線を受光し
て発電(電気エネルギーに変換)する太陽電池の光線入
射側に設けられ、発電効率の低下原因のひとつである太
陽光線のうちの熱光線をカットすることにより発電効率
を向上させるための太陽電池用フィルターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided on the light incident side of a solar cell that receives sunlight to generate electricity (converts it into electric energy), and is one of the causes of the reduction in power generation efficiency. The present invention relates to a filter for a solar cell that improves the power generation efficiency by cutting light rays.

【0002】[0002]

【従来の技術】一般に太陽電池は、図6に示すように、
透明なガラス板、合成樹脂板、又は不透明なステンレス
板など金属板(図示せず)を支持基板11として、該基
板11上の光線入射側に設けた表面電極12(透明電
極)と、それと対向する裏面電極13(金属電極)との
間に、+電荷の正孔をもつp型半導体層Pと、結合力の
弱い余分の価電子(−電荷)をもつn型半導体層Nとの
接合(pn接合型半導体)による半導体受光部PN(光
電変換層)を備える。
2. Description of the Related Art In general, a solar cell, as shown in FIG.
A transparent glass plate, a synthetic resin plate, or a metal plate (not shown) such as an opaque stainless plate is used as the support substrate 11, and the surface electrode 12 (transparent electrode) provided on the light incident side of the substrate 11 is opposed to the surface electrode 12. The junction between the p-type semiconductor layer P having positive charge holes and the n-type semiconductor layer N having weak valence electrons (-charges) between the rear surface electrode 13 (metal electrode) and A semiconductor light receiving portion PN (photoelectric conversion layer) made of a pn junction type semiconductor is provided.

【0003】太陽電池による発電は、上記半導体受光部
PNに太陽光線による自然光や、蛍光灯や白熱電球など
の人工的な照明光が入射した時に起こる光電効果(光起
電効果)を利用したものである。
The power generation by the solar cell utilizes the photoelectric effect (photovoltaic effect) that occurs when natural light from sunlight or artificial illumination light such as a fluorescent lamp or an incandescent lamp is incident on the semiconductor light receiving portion PN. Is.

【0004】この半導体受光部PNのpn接合面に、該
接合面に対して垂直方向若しくは平行方向に、適当な波
長の光線L(可視光を含む)が入射すると、n型半導体
層Nにある結合力の弱い余分の価電子が自由電子となっ
て、正孔をもつp型半導体層Pの方向に移動して、半導
体受光部PNには、p型半導体層P側の電極(表面電極
12)を陰極−、n型半導体層N側の電極(裏面電極1
3)を陽極+とする光起電力(電位差)が発生して発電
し、電流iが負荷を流れるようになっている。
When a light ray L (including visible light) having an appropriate wavelength is incident on the pn junction surface of the semiconductor light receiving portion PN in a direction perpendicular or parallel to the junction surface, the light is present in the n-type semiconductor layer N. The extra valence electrons having weak bonding force become free electrons and move toward the p-type semiconductor layer P having holes, and the semiconductor light receiving portion PN has an electrode on the p-type semiconductor layer P side (the surface electrode 12). ) Is the cathode, and the electrode on the n-type semiconductor layer N side (rear surface electrode 1
Photovoltaic (potential difference) with 3) as the anode + is generated to generate power, and the current i flows through the load.

【0005】現状における太陽電池の光起電力への変換
効率は太陽電池の種類にも寄るが、以下の表1のようで
ある。
The current conversion efficiency of solar cells into photovoltaic power depends on the type of solar cell, but is as shown in Table 1 below.

【0006】[0006]

【表1】 [Table 1]

【0007】Si系(単結晶型、多結晶型、アモルファ
ス型などのシリコン系)の半導体受光部は、比較的に安
価であり、特にアモルファス型シリコン系(a−Si
系)は特に安価であるが、変換効率は20%以下であ
る。他方、GaAs系(ガリウム・ヒ素系)は、集光さ
せることにより29%の変換効率が得られている。
The Si-based (single crystal type, polycrystal type, amorphous type, etc.) semiconductor light receiving portion is relatively inexpensive, and particularly, the amorphous silicon type (a-Si type) is used.
The system) is particularly inexpensive, but the conversion efficiency is 20% or less. On the other hand, GaAs-based (gallium / arsenic-based) has a conversion efficiency of 29% obtained by condensing light.

【0008】太陽電池の高効率化のためには、できるか
ぎり多くの太陽エネルギーを受け入れることができるよ
うにすれば良いわけであり、例えば、電池本体の光入
射側の表面に反射防止層を設けて光をできるかぎり取り
込むようにする、電池本体の裏面側に反射層を設けて
入射した光を逃がさずにすること、などの工夫を施し
て、太陽エネルギーをできるだけ多く半導体受光部に集
めることができる。
In order to increase the efficiency of the solar cell, it is sufficient to accept as much solar energy as possible. For example, an antireflection layer is provided on the surface of the cell body on the light incident side. In order to collect as much solar energy as possible into the semiconductor light receiving part, we have taken measures such as taking in as much light as possible and providing a reflective layer on the back side of the battery body so that incident light does not escape. it can.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、太陽電
池の半導体受光部には、太陽光線からの赤外光線も吸収
されるため、太陽電池の温度が上昇して、変換効率を低
下させることになる。
However, since the semiconductor light receiving portion of the solar cell also absorbs infrared rays from the sun's rays, the temperature of the solar cell rises and the conversion efficiency is lowered. .

【0010】ここで温度に対する標準的な太陽電池のそ
れぞれ短絡電流値Isc(単位;A)と、開放電圧値Voc
(単位;V)と、相対出力値Wrc(単位;W)の関係を
図7に示す。
Here, the short-circuit current value Isc (unit: A) and the open-circuit voltage value Voc of the standard solar cell with respect to temperature, respectively.
FIG. 7 shows the relationship between (unit: V) and relative output value Wrc (unit: W).

【0011】短絡電流値Iscは、温度とともに僅かずつ
増加するが、開放電圧値Vocは、減少するため、相対出
力値Wrc(Wrc=Isc×Voc)は低下する。
The short-circuit current value Isc gradually increases with temperature, but the open circuit voltage value Voc decreases, so that the relative output value Wrc (Wrc = Isc × Voc) decreases.

【0012】そして、図7によれは、太陽光線の下で使
用される太陽電池の表面温度が28℃の場合の相対出力
値が例えば1Wである太陽電池は、その表面温度が20
℃上昇して48℃となった場合に0.9Wとなって10
%の出力低下が見られ、集光用、及び宇宙用なとの太陽
電池においては、赤外線による温度上昇を防ぐことが課
題となる。
According to FIG. 7, a solar cell used under sunlight has a relative output value of 1 W when the surface temperature is 28 ° C.
When the temperature rises to 48 ° C, it becomes 0.9W and 10
%, A decrease in output is seen, and in solar cells for concentrating and for space use, preventing temperature rise due to infrared rays becomes a problem.

【0013】また、集光用の太陽電池は、集光器、太陽
追尾装置、支持台などを用いて太陽エネルギーの集光率
を向上させることによって、電気エネルギーへの変換効
率を向上させることが可能であるが、集光率の増加に伴
う温度上昇があると、変換効率の低下を招くことにな
る。
Further, the concentrating solar cell can improve the efficiency of conversion into electric energy by improving the concentrating rate of solar energy by using a concentrator, a sun tracking device, a support, and the like. It is possible, but if the temperature rises with the increase of the light collection rate, the conversion efficiency will decrease.

【0014】集光率が比較的低いところでは、変換効率
は集光率とともに上昇するが、集光率がさらに増加する
と、こんどは温度上昇の影響で開放電圧Vocが低下し、
相対出力値Wrcが減少して、変換効率を低下させること
になり、赤外線による温度上昇を防ぐことが課題とな
る。
When the light collection rate is relatively low, the conversion efficiency increases with the light collection rate. However, when the light collection rate further increases, the open circuit voltage Voc decreases due to the temperature rise.
The relative output value Wrc decreases and the conversion efficiency decreases, and the problem is to prevent the temperature rise due to infrared rays.

【0015】本発明の課題は、特に発電効率の低下原因
のひとつである太陽光線のうちの熱光線をカットするこ
とによって発電効率(変換効率)を向上させることにあ
る。
An object of the present invention is to improve the power generation efficiency (conversion efficiency) by cutting the heat rays of the sun rays, which is one of the causes of the decrease in power generation efficiency.

【0016】[0016]

【課題を解決するための手段】本発明の第1の発明は、
透明基材層1の片側若しくは両側に、少なくとも120
0〜3000nmの波長領域の赤外線L1 (1200<
L1 <3000nm若しくは1200≦L1 ≦3000
nm)を遮蔽する透過波長選択剤により形成された赤外
線遮蔽層2を備えることを特徴とする太陽電池用フィル
ターである。
Means for Solving the Problems A first invention of the present invention is:
On one side or both sides of the transparent substrate layer 1, at least 120
Infrared ray L1 in the wavelength range of 0 to 3000 nm (1200 <
L1 <3000 nm or 1200≤L1 ≤3000
The solar cell filter is characterized by including an infrared shielding layer 2 formed of a transmission wavelength selective agent that shields (nm).

【0017】次に本発明の第2の発明は、透明基材層1
の片側若しくは両側に、少なくとも1200〜3000
nmの波長領域の赤外線L1 (1200<L1 <300
0nm若しくは1200≦L1 ≦3000nm)を遮蔽
する透過波長選択剤により形成された赤外線遮蔽層2
と、少なくとも400nmより小さい波長領域の紫外線
L2 (L2 <400nm若しくはL2 ≦400nm)を
遮蔽する透過波長選択剤により形成された紫外線遮蔽層
3とをそれぞれ備えることを特徴とする太陽電池用フィ
ルターである。
The second invention of the present invention is the transparent substrate layer 1
On one or both sides of at least 1200-3000
Infrared rays in the wavelength region of nm L1 (1200 <L1 <300
Infrared ray shielding layer 2 formed of a transmission wavelength selective agent for shielding 0 nm or 1200 ≦ L1 ≦ 3000 nm)
And a UV-shielding layer 3 formed of a transmission wavelength-selecting agent that shields UV L2 (L2 <400 nm or L2 ≤ 400 nm) in a wavelength region of at least 400 nm, respectively. .

【0018】次に本発明の第3の発明は、透明基材層1
中に少なくとも1200〜3000nmの波長領域の赤
外線L1 (1200<L1 <3000nm若しくは12
00≦L1 ≦3000nm)を遮蔽する透過波長選択剤
が練り込まれていることを特徴とする太陽電池用フィル
ターである。
Next, a third invention of the present invention is a transparent substrate layer 1
Infrared ray L1 (1200 <L1 <3000 nm or 12 in the wavelength range of at least 1200 to 3000 nm)
It is a filter for a solar cell in which a transmission wavelength selective agent for shielding (00≤L1≤3000 nm) is kneaded.

【0019】次に本発明の第4の発明は、透明基材層1
中に少なくとも1200〜3000nmの波長領域の赤
外線L1 (1200<L1 <3000nm若しくは12
00≦L1 ≦3000nm)と、少なくとも400nm
より小さい波長領域の紫外線L2 (L2 <400nm若
しくはL2 ≦400nm)とを遮蔽する透過波長選択剤
が練り込まれていることを特徴とする太陽電池用フィル
ターである。
Next, a fourth invention of the present invention is to provide a transparent substrate layer 1
Infrared ray L1 (1200 <L1 <3000 nm or 12 in the wavelength range of at least 1200 to 3000 nm)
00≤L1≤3000 nm) and at least 400 nm
It is a filter for a solar cell in which a transmission wavelength selection agent for shielding ultraviolet rays L2 (L2 <400 nm or L2 ≤ 400 nm) in a smaller wavelength region is kneaded.

【0020】また本発明は、上記第1の発明乃至第4の
発明において、前記フィルターの透明基材層1、赤外線
遮蔽層2、紫外線遮蔽層3のうち最表面となる層上に反
射防止層4が設けられている太陽電池用フィルターであ
る。
The present invention is also the above-mentioned first to fourth inventions, wherein an antireflection layer is provided on the outermost layer of the transparent base material layer 1, the infrared shielding layer 2 and the ultraviolet shielding layer 3 of the filter. 4 is a solar cell filter provided.

【0021】また本発明は、上記第1の発明乃至第4の
発明において、赤外線L1 を遮蔽する前記透過波長選択
剤が、酸化錫又は酸化亜鉛又は酸化マグネシウムなどの
金属酸化物又は金、銀、又はこれらのうちのいずれか2
種以上による混合物など無機物を主成分とする太陽電池
用フィルターである。
In the first to fourth inventions of the present invention, the transmission wavelength selective agent for shielding infrared rays L1 is a metal oxide such as tin oxide or zinc oxide or magnesium oxide, or gold, silver, Or any of these 2
It is a filter for a solar cell which has an inorganic material as a main component such as a mixture of at least one kind.

【0022】また本発明は、上記第2の発明又は第4の
発明において、紫外線L2 を遮蔽する前記透過波長選択
剤が、酸化亜鉛又は酸化セリウム又は酸化チタン、又は
これらのうちのいずれか2種以上による混合物など無機
物を主成分とする太陽電池用フィルターである。
The present invention is also the above-mentioned second or fourth invention, wherein the transmission wavelength selective agent for shielding the ultraviolet ray L2 is zinc oxide, cerium oxide or titanium oxide, or any two of them. It is a filter for solar cells whose main component is an inorganic substance such as the mixture as described above.

【0023】また本発明は、上記第1の発明乃至第4の
発明において、前記透過波長選択剤が、粒径500Å以
下の超微粉末の無機物を主成分とする太陽電池用フィル
ターである。
Further, the present invention is the solar cell filter according to any one of the first to fourth inventions, wherein the transmission wavelength selecting agent is mainly composed of an ultrafine powder of an inorganic substance having a particle size of 500 Å or less.

【0024】また本発明は、上記第1の発明乃至第4の
発明において、透明な支持基板上に入射光線を電気エネ
ルギーに変換する半導体受光部を備えた太陽電池の前記
支持基板の表面若しくは裏面に設けられ、入射光線のう
ちの熱線をカットして太陽電池の昇温を抑制する太陽電
池用フィルターである。
The present invention is also the above-mentioned first to fourth inventions, wherein the front surface or the back surface of the supporting substrate of the solar cell having a semiconductor light receiving portion for converting incident light rays into electric energy on the transparent supporting substrate. Is a filter for a solar cell, which is provided in the solar cell and cuts the heat rays of the incident light rays to suppress the temperature rise of the solar cell.

【0025】また本発明は、上記第1の発明乃至第4の
発明において、透明な支持基板上に入射光線を電気エネ
ルギーに変換する半導体受光部を備えた太陽電池の表面
電極(透明電極)の表面に設けられ、入射光線のうちの
熱線をカットして太陽電池の昇温を抑制する太陽電池用
フィルターである。
The present invention is also directed to the surface electrode (transparent electrode) of a solar cell according to any one of the first to fourth inventions, which has a semiconductor light receiving portion for converting incident light rays into electric energy on a transparent supporting substrate. A filter for a solar cell, which is provided on the surface and suppresses a heat ray of an incident light ray to suppress a temperature rise of the solar cell.

【0026】また本発明は、上記第1の発明乃至第4の
発明において、不透明な支持基板上に入射光線を電気エ
ネルギーに変換する半導体受光部を備えた太陽電池の表
面電極(透明電極)の表面に設けられ、入射光線のうち
の熱線をカットして太陽電池の昇温を抑制する太陽電池
用フィルターである。
The present invention is also directed to the surface electrode (transparent electrode) of a solar cell according to any one of the first to fourth inventions, which has a semiconductor light receiving portion for converting incident light rays into electric energy on an opaque supporting substrate. A filter for a solar cell, which is provided on the surface and suppresses a heat ray of an incident light ray to suppress a temperature rise of the solar cell.

【0027】また本発明は、上記第1の発明乃至第4の
発明において、不透明な支持基板上に入射光線を電気エ
ネルギーに変換する半導体受光部を備えた太陽電池の透
明な保護板の表面若しくは裏面に設けられ、入射光線の
うちの熱線をカットして太陽電池の昇温を抑制する太陽
電池用フィルターである。
Further, according to the present invention, in the above-mentioned first to fourth inventions, the surface of a transparent protective plate of a solar cell provided with a semiconductor light receiving portion for converting incident light rays into electric energy on an opaque supporting substrate, or A filter for a solar cell, which is provided on the back surface and suppresses the heat rays of incident light rays to suppress the temperature rise of the solar cell.

【0028】[0028]

【発明の実施の形態】本発明の太陽電池用フィルター
を、実施の形態にしたがって以下に詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The solar cell filter of the present invention will be described in detail below according to the embodiments.

【0029】太陽電池による発電に必要とする光線は、
一般的に図1に示す光線の波長と太陽電池による光出力
の関係を示すグラフに見られるように、約400〜12
00nmの波長の光である。
The light rays required for power generation by the solar cell are
Generally, as shown in the graph of the relationship between the wavelength of the light beam and the light output of the solar cell shown in FIG.
It is light with a wavelength of 00 nm.

【0030】また、太陽光線において熱線といわれる光
線は、近赤外線(波長;700〜3000nm)であ
る。
Light rays called heat rays in the sunlight are near infrared rays (wavelength: 700 to 3000 nm).

【0031】本発明の太陽電池用フィルターは、太陽光
線のうち、発電に必要な400〜1200nmの波長の
光線を透過して、発電に不必要な1200nm〜300
0nmの波長の熱光線を遮蔽(カット)するようにした
ものであり、このフィルターを太陽電池の光線入射側に
設けることによって、熱光線による太陽電池の温度の上
昇を抑えるようにしたものである。
The filter for a solar cell of the present invention transmits the rays of the wavelength of 400 to 1200 nm, which are necessary for power generation, out of the sunlight, and 1200 nm to 300 which is unnecessary for power generation.
It is designed to block (cut) heat rays having a wavelength of 0 nm. By providing this filter on the light incident side of the solar cell, the temperature rise of the solar cell due to the heat rays is suppressed. .

【0032】本発明の太陽電池用フィルターは、400
〜1200nm(必ずしも1200nm及びその近辺の
波長は含まなくてもよい)の波長の光を透過し、120
0nm以上の波長を遮蔽するものであり、太陽電池のp
n接合型半導体による半導体受光部に設けるものであ
る。なお、太陽電池の半導体受光部を構成するそれぞれ
p型半導体及びn型半導体には、結晶型(単結晶、又は
多結晶)、又はアモルファス型(非結晶型)のそれぞれ
Si(シリコン)系半導体が用いられる。
The solar cell filter of the present invention comprises 400
A light having a wavelength of ˜1200 nm (not necessarily including 1200 nm and wavelengths in the vicinity thereof) is transmitted, and 120
It shields wavelengths of 0 nm and above, and p
It is provided in a semiconductor light receiving portion made of an n-junction semiconductor. The p-type semiconductor and the n-type semiconductor constituting the semiconductor light receiving portion of the solar cell are crystalline (single crystal or polycrystal) or amorphous (noncrystalline) Si (silicon) based semiconductors, respectively. Used.

【0033】本発明の太陽電池用フィルターは、透明な
合成樹脂フィルム(シート)を基材として、該基材を構
成する合成樹脂材料(70〜90重量部)中に1200
nm以上(必ずしも1200nm及びその近辺の波長は
含まれなくてもよい)の波長の赤外光線を遮蔽する透過
波長選択剤(10〜30重量部)を練り込んだもの、又
は透明な合成樹脂フィルム(シート)による基材の表面
又は表裏両面に、合成樹脂と溶媒とによる合成樹脂液
(70〜90重量部、そのうち溶媒分は20〜30重量
部)中に同透過波長選択剤(10〜30重量部)を混合
した塗料を塗布、又は同透過波長選択剤を練り込んだフ
ィルム(合成樹脂材料70〜90重量部、同透過波長選
択剤(10〜30重量部))をラミネートして、赤外線
遮蔽層2を形成したものであり、これによって400〜
1200nmの波長の光を透過し、1200nm以上
(必ずしも1200nm及びその近辺の波長は含まれな
くてもよい)の波長を遮蔽するようにしたものである。
The solar cell filter of the present invention has a transparent synthetic resin film (sheet) as a base material, and 1200 in a synthetic resin material (70 to 90 parts by weight) constituting the base material.
or a transparent synthetic resin film in which a transmission wavelength selection agent (10 to 30 parts by weight) that blocks infrared rays having a wavelength of not less than nm (not necessarily including wavelengths of 1200 nm and its vicinity) is kneaded The transmission wavelength selective agent (10 to 30 parts) in the synthetic resin liquid (70 to 90 parts by weight, of which the solvent content is 20 to 30 parts by weight) of the synthetic resin and the solvent is formed on the front surface or both front and back surfaces of the (sheet). (Part by weight) is applied, or a film (70 to 90 parts by weight of synthetic resin material and 10 to 30 parts by weight of the same transmission wavelength selection material) in which the same transmission wavelength selection agent is kneaded is laminated to form an infrared ray. The shielding layer 2 is formed, and thereby 400 to
It transmits light having a wavelength of 1200 nm and blocks wavelengths of 1200 nm or more (not necessarily including 1200 nm and wavelengths in the vicinity thereof).

【0034】前記1200nm以上の波長の赤外線を遮
蔽する透過波長選択剤は、酸化錫、又は酸化亜鉛又は酸
化マグネシウムなどの金属酸化物、又は金、銀など金
属、又はこれらのうちのいずれか2種以上による混合物
など無機物を主成分とする。また、前記透過波長選択剤
は、粒径500Å以下の超微粉末の無機物を主成分とす
ることが適当である。
The transmission wavelength selective agent for shielding infrared rays having a wavelength of 1200 nm or more is tin oxide, a metal oxide such as zinc oxide or magnesium oxide, a metal such as gold or silver, or any two of them. The main component is an inorganic material such as the above mixture. Further, it is appropriate that the transmission wavelength selection agent contains an ultrafine powder of an inorganic substance having a particle diameter of 500 Å or less as a main component.

【0035】また、前記無機物としては、カーボンブラ
ック、酸化アンチモン、酸化インジウム、あるいはその
他に、周期律表4A、5A、6Aに属する金属酸化物で
あってもよい。
The inorganic substance may be carbon black, antimony oxide, indium oxide, or other metal oxides belonging to Periodic Tables 4A, 5A and 6A.

【0036】また、本発明の太陽電池用フィルターは、
透明な合成樹脂フィルム(シート)を基材として、前述
のように、発電に必要な400〜1200nmの波長の
光線を透過して、発電に不必要な1200nm以上の波
長の赤外熱光線を遮蔽するとともに、該基材中に、40
0nm以下(必ずしも400nm及びその近辺の波長は
含まれなくてもよい)の波長の紫外光線を遮蔽(カッ
ト)するための透過波長選択剤を練り込んだもの、又は
前記基材の表面又は表裏両面に、同透過波長選択剤を塗
布したもの、又は同透過波長選択剤を練り込んだフィル
ムをラミネートしたものであり、これによって、400
〜1200nmの波長の光を透過し、400nm以下の
波長(必ずしも400nm及びその近辺の波長は含まれ
なくてもよい)の波長を遮蔽するようにしたものであ
る。
The solar cell filter of the present invention comprises:
Using a transparent synthetic resin film (sheet) as a base material, as described above, it transmits the light rays having a wavelength of 400 to 1200 nm necessary for power generation and shields infrared heat rays having a wavelength of 1200 nm or more, which is unnecessary for power generation. And in the base material, 40
Kneaded with a transmission wavelength selection agent for shielding (cutting) ultraviolet rays having a wavelength of 0 nm or less (wavelengths of 400 nm and wavelengths in the vicinity thereof are not necessarily included), or both front and back surfaces of the base material Is coated with the same transmission wavelength selecting agent or is laminated with a film in which the same transmission wavelength selecting agent is kneaded.
Light having a wavelength of up to 1200 nm is transmitted, and wavelengths having a wavelength of 400 nm or less (wavelengths of 400 nm and its vicinity are not necessarily included) are blocked.

【0037】上記紫外線を遮蔽する透過波長選択剤とし
ては、酸化亜鉛又は酸化セリウム又は酸化チタンの金属
酸化物など無機物を主成分として用いることができ、透
過波長選択剤としての粒径は、500Å以下の超微粉末
を主成分とすることが適当である。
As the transmission wavelength selecting agent for shielding the ultraviolet rays, an inorganic substance such as a metal oxide of zinc oxide, cerium oxide or titanium oxide can be used as a main component, and the particle diameter as the transmission wavelength selecting agent is 500 Å or less. It is suitable to use the ultrafine powder of No. 3 as a main component.

【0038】本発明の太陽電池用フィルターを、以下、
図2(a)〜(c)に示す実施の形態に従って詳細に説
明する。
The solar cell filter of the present invention is described below.
A detailed description will be given according to the embodiment shown in FIGS.

【0039】図2(a)は、本発明フィルターFの積層
構造を示す側断面であり、ポリエチレンテレフタレート
など合成樹脂による透明な基材層1の表面に、1200
nm以上の波長の赤外熱光線を遮蔽する透過波長選択剤
を塗料として塗布、若しくは透過波長選択剤を練り込ん
だフィルムをラミネート、又はその透過波長選択剤をス
パッタリング蒸着して、赤外線遮蔽層2を設けたもので
ある。
FIG. 2A is a side cross-sectional view showing the laminated structure of the filter F of the present invention, in which 1200 is formed on the surface of the transparent base material layer 1 made of a synthetic resin such as polyethylene terephthalate.
Infrared shielding layer 2 by coating a transmission wavelength selective agent that shields infrared heat rays having a wavelength of nm or more as a coating, or laminating a film in which a transmission wavelength selective agent is kneaded, or sputtering vapor deposition of the transmission wavelength selective agent. Is provided.

【0040】また、図2(b)に示すように、前記基材
層1の裏面には、400nm以下の波長の紫外光線を遮
蔽する透過波長選択剤を塗料として塗布、若しくは透過
波長選択剤を練り込んだフィルムをラミネート、又はそ
の透過波長選択剤をスパッタリング蒸着して、紫外線遮
蔽層3を設けたものである。なお、前記紫外線遮蔽層3
は必要に応じて設けることができる。
As shown in FIG. 2 (b), the back surface of the base material layer 1 is coated with a transmission wavelength selection agent that shields ultraviolet rays having a wavelength of 400 nm or less, or a transmission wavelength selection agent is applied. The ultraviolet-shielding layer 3 is provided by laminating the kneaded film or vapor-depositing the transmission wavelength selection agent thereof. The ultraviolet shielding layer 3
Can be provided as needed.

【0041】また、図2(c)に示すように、前記基材
層1に形成された赤外線遮蔽層2面に、400nm以下
の波長の紫外光線を遮蔽する透過波長選択剤を塗料とし
て塗布、若しくは透過波長選択剤を練り込んだフィルム
をラミネート、又はその透過波長選択剤をスパッタリン
グ蒸着して、紫外線遮蔽層3を設けたものである。な
お、前記紫外線遮蔽層3は必要に応じて設けることがで
きる。
Further, as shown in FIG. 2 (c), a transmission wavelength selective agent for shielding ultraviolet rays having a wavelength of 400 nm or less is applied as a paint on the surface of the infrared shielding layer 2 formed on the base material layer 1. Alternatively, a film in which a transmission wavelength selection agent is kneaded is laminated, or the transmission wavelength selection agent is deposited by sputtering to provide the ultraviolet shielding layer 3. The ultraviolet shielding layer 3 can be provided if necessary.

【0042】また、本発明の太陽電池用フィルターF
は、前述した図2(a)〜(c)に示すフィルターF、
又は以降の実施例において説明する図2(d)〜(f)
に示すフィルターFのいずれかのフィルターFの表面
に、直に、若しくはフィルターFの表面に透明な薄膜層
を形成してその薄膜層の表面に、入射光線の表面反射を
抑制するためにθ=45°以上の角度の鋸歯状凹凸(深
度2〜6μm)を、プレスエンボス方式又はエッチング
方式にて形成して反射防止層4を設けるようにしてもよ
い。また前記反射防止層4としては、高屈折率物質と低
屈折率物質とを交互に多層に蒸着(スパッタリング)し
た透明な多層膜によるものであってもよい。
The solar cell filter F of the present invention is also used.
Is the filter F shown in FIGS.
Alternatively, FIGS. 2D to 2F described in the following examples.
In order to suppress the surface reflection of the incident light on the surface of any one of the filters F shown in FIG. The antireflection layer 4 may be provided by forming saw-toothed concavities and convexities (depth 2 to 6 μm) having an angle of 45 ° or more by a press embossing method or an etching method. The antireflection layer 4 may be formed of a transparent multilayer film in which a high refractive index substance and a low refractive index substance are alternately deposited (sputtered) in multiple layers.

【0043】本発明の太陽電池用フィルターにおける透
明基材層1、赤外線遮蔽層2、紫外線遮蔽層3、反射防
止層4のそれぞれ厚さは特に限定されないが、適正な層
強度が得られる範囲内で、できる限り薄膜に設定して、
光線の収率を損なわないように配慮することが望まし
く、例えば、透明基材層1は20〜100μm程度、赤
外線遮蔽層2は3〜10μm程度、紫外線遮蔽層3は1
〜10μm程度、反射防止層4は5〜10μm程度が適
当である。
The thickness of each of the transparent base material layer 1, the infrared ray shielding layer 2, the ultraviolet ray shielding layer 3 and the antireflection layer 4 in the solar cell filter of the present invention is not particularly limited, but within a range in which proper layer strength can be obtained. Then, set as thin as possible,
It is desirable to consider so as not to impair the yield of light rays. For example, the transparent base material layer 1 has a thickness of about 20 to 100 μm, the infrared shielding layer 2 has a thickness of about 3 to 10 μm, and the ultraviolet shielding layer 3 has a thickness of 1.
About 10 to 10 μm, and about 5 to 10 μm is suitable for the antireflection layer 4.

【0044】[0044]

【実施例】本発明の太陽電池用フィルターFの具体的実
施例を以下に詳細に説明する。
EXAMPLES Specific examples of the solar cell filter F of the present invention will be described in detail below.

【0045】<実施例1>図2(a)に示すように、厚
さ25μmのポリエチレンテレフタレートフィルム(東
レ(株)製、高透明タイプ)を基材層1として、その片
面にアクリル系樹脂と有機系溶媒によるバインダー樹脂
(100重量部)中に、赤外光線を遮蔽する透過波長選
択剤として粒径50〜100Åの酸化錫の微粉末を主成
分とする無機物質2a(25重量部)を添加した塗料を
塗布して乾燥させて膜厚3μmの赤外線遮蔽層2を形成
して、本発明の太陽電池用フィルターFを作成した。
<Example 1> As shown in FIG. 2 (a), a polyethylene terephthalate film having a thickness of 25 μm (manufactured by Toray Industries, Inc., a highly transparent type) was used as a base material layer 1, and an acrylic resin was provided on one surface thereof. An inorganic substance 2a (25 parts by weight) containing fine particles of tin oxide having a particle size of 50 to 100Å as a main component is used as a transmission wavelength selection agent for shielding infrared rays in a binder resin (100 parts by weight) made of an organic solvent. The added coating material was applied and dried to form an infrared shielding layer 2 having a film thickness of 3 μm, to prepare a solar cell filter F of the present invention.

【0046】<実施例2>図2(b)に示すように、厚
さ25μmのポリエチレンテレフタレートフィルム(東
レ(株)製、高透明タイプ)を基材層1として、その一
面にアクリル系樹脂と有機系溶媒によるバインダー樹脂
(100重量部)中に、赤外光線を遮蔽する透過波長選
択剤として粒径50〜100Åの酸化錫の微粉末を主成
分とする無機物質2a(25重量部)を添加した塗料を
塗布して乾燥させて膜厚3μmの赤外線遮蔽層2を形成
し、他面にポリエチレン系樹脂と有機系溶媒によるバイ
ンダー樹脂中(100重量部)に紫外光線を遮蔽する透
過波長選択剤として粒径100〜250Åの酸化亜鉛の
微粉末を主成分とする無機物質3a(25重量部)を添
加した塗料を塗布して膜厚2μmの紫外線遮蔽層3を形
成して、本発明の太陽電池用フィルターFを作成した。
Example 2 As shown in FIG. 2 (b), a polyethylene terephthalate film having a thickness of 25 μm (manufactured by Toray Industries, Inc., a highly transparent type) was used as a base material layer 1, and an acrylic resin was provided on one surface thereof. An inorganic substance 2a (25 parts by weight) containing fine particles of tin oxide having a particle size of 50 to 100Å as a main component is used as a transmission wavelength selection agent for shielding infrared rays in a binder resin (100 parts by weight) made of an organic solvent. Transmitted wavelength selection that shields ultraviolet rays in a binder resin (100 parts by weight) made of polyethylene resin and organic solvent on the other surface by applying the added coating material and drying it to form an infrared shielding layer 2 with a film thickness of 3 μm As an agent, a coating material containing an inorganic substance 3a (25 parts by weight) containing fine particles of zinc oxide having a particle size of 100 to 250 Å as a main component is applied to form an ultraviolet shielding layer 3 having a film thickness of 2 μm. Thick You create a filter F for the battery.

【0047】<実施例3>図2(c)に示すように、厚
さ25μmのポリエチレンテレフタレートフィルム(東
レ(株)製、高透明タイプ)を基材層1として、その片
面にそれぞれ膜厚3μmの赤外線遮蔽層2と、膜厚2μ
mの紫外線遮蔽層3とを積層形成した以外は、上記実施
例2と同様にして本発明の太陽電池用フィルターFを作
成した。
Example 3 As shown in FIG. 2 (c), a polyethylene terephthalate film having a thickness of 25 μm (manufactured by Toray Industries, Inc., a highly transparent type) was used as the base material layer 1 and the film thickness was 3 μm on each side. Infrared shielding layer 2 and film thickness 2μ
A solar cell filter F of the present invention was prepared in the same manner as in Example 2 except that the m ultraviolet blocking layer 3 was laminated.

【0048】<実施例4>図2(d)に示すように、ポ
リエチレンテレフタレート樹脂(100重量部)中に、
赤外光線を遮蔽する透過波長選択剤として粒径50〜1
00Åの酸化錫の微粉末を主成分とする無機物質2a
(25重量部)を添加して混練し、溶融押し出し形成し
た厚さ25μmのフィルムを基材層1として、その片面
にポリエチレン系樹脂と有機系溶媒によるバインダー樹
脂(100重量部)中に、紫外光線を遮蔽する透過波長
選択剤として粒径100〜250Åの酸化亜鉛の微粉末
を主成分とする無機物質3a(25重量部)を添加した
塗料を塗布して膜厚2μmの紫外線遮蔽層3を形成し
て、本発明の太陽電池用フィルターFを作成した。
Example 4 As shown in FIG. 2 (d), polyethylene terephthalate resin (100 parts by weight) was added to
Particle size 50 to 1 as a transmission wavelength selection agent that blocks infrared rays
Inorganic substance 2a whose main component is fine powder of tin oxide of 00Å
(25 parts by weight) was added, kneaded, and melt-extruded to form a film having a thickness of 25 μm as a base material layer 1, and a polyethylene resin and a binder resin made of an organic solvent (100 parts by weight) were used to form an ultraviolet ray on one surface of the film. A coating containing the inorganic substance 3a (25 parts by weight) containing fine particles of zinc oxide having a particle size of 100 to 250Å as a main component is applied as a transmission wavelength selecting agent for shielding light rays to form an ultraviolet shielding layer 3 having a film thickness of 2 μm. Then, the filter F for a solar cell of the present invention was formed.

【0049】<実施例5>図2(e)に示すように、ポ
リエチレンテレフタレート樹脂(100重量部)中に、
紫外光線を遮蔽する透過波長選択剤として粒径100〜
250Åの酸化亜鉛の微粉末を主成分とする無機物質3
a(25重量部)を添加して混練し、溶融押し出し形成
した厚さ25μmのフィルムを基材層1として、その片
面にポリエチレン系樹脂と有機系溶媒によるバインダー
樹脂(100重量部)中に、赤外光線を遮蔽する透過波
長選択剤として粒径50〜100Åの酸化錫の微粉末を
主成分とする無機物質2a(25重量部)を添加した塗
料を塗布して膜厚3μmの赤外線遮蔽層2を形成して、
本発明の太陽電池用フィルターFを作成した。
Example 5 As shown in FIG. 2 (e), a polyethylene terephthalate resin (100 parts by weight) was used.
As a transmission wavelength selective agent that blocks ultraviolet rays, a particle size of 100-
Inorganic substance whose main component is 250Å zinc oxide fine powder 3
a (25 parts by weight) is added and kneaded, and a film having a thickness of 25 μm formed by melt extrusion is used as the substrate layer 1, and on one surface thereof, in a binder resin (100 parts by weight) of a polyethylene resin and an organic solvent, An infrared shielding layer having a film thickness of 3 μm is obtained by applying a coating material containing an inorganic substance 2a (25 parts by weight) containing fine particles of tin oxide having a particle diameter of 50 to 100Å as a main component as a transmission wavelength selection agent for shielding infrared rays. Form 2,
A solar cell filter F of the present invention was prepared.

【0050】<実施例6>図2(f)に示すように、ポ
リエチレンテレフタレート樹脂(100重量部)中に、
赤外光線を遮蔽する透過波長選択剤として粒径50〜1
00Åの酸化錫の微粉末を主成分とする無機物質2a
(25重量部)を混合した樹脂と、ポリエチレンテレフ
タレート樹脂(100重量部)中に、紫外光線を遮蔽す
る透過波長選択剤として粒径100〜250Åの酸化亜
鉛の微粉末を主成分とする無機物質3a(25重量部)
を混合した樹脂とを、互いに混練して、溶融押し出しに
より厚さ25μmのフィルム(基材層1)を形成して、
本発明の太陽電池用フィルターFを作成した。
Example 6 As shown in FIG. 2 (f), polyethylene terephthalate resin (100 parts by weight) was added to
Particle size 50 to 1 as a transmission wavelength selection agent that blocks infrared rays
Inorganic substance 2a whose main component is fine powder of tin oxide of 00Å
(25 parts by weight) resin mixed with polyethylene terephthalate resin (100 parts by weight) as an inorganic material mainly containing fine powder of zinc oxide having a particle size of 100 to 250Å as a transmission wavelength selection agent for blocking ultraviolet rays. 3a (25 parts by weight)
And a resin mixed with each other are kneaded together to form a film (base material layer 1) having a thickness of 25 μm by melt extrusion.
A solar cell filter F of the present invention was prepared.

【0051】<実施例7>上記実施例1(図2(a)参
照)、又は実施例2(図2(b)参照)、又は実施例3
(図2(c)参照)において、赤外線遮蔽層2と紫外線
遮蔽層3のうちのいずれか一方の層又は両方の層を、真
空蒸着、スパッタリング蒸着などの蒸着方式により形成
し、その蒸着方式により赤外線遮蔽層2を形成する際の
赤外光線を遮蔽する透過波長選択剤として銀、チタン、
銅のいずれかの無機物質を使用し、その蒸着方式により
紫外線遮蔽層3を形成する際の紫外線を遮蔽する透過波
長選択剤として酸化亜鉛による無機物質を使用した以外
は、実施例1乃至実施例3と同様にして、本発明の太陽
電池用フィルターFを作成した。
<Seventh Embodiment> The first embodiment (see FIG. 2A), the second embodiment (see FIG. 2B), or the third embodiment.
In FIG. 2C, one or both layers of the infrared shielding layer 2 and the ultraviolet shielding layer 3 are formed by a vapor deposition method such as vacuum vapor deposition or sputtering vapor deposition, and the vapor deposition method is used. Silver, titanium, as a transmission wavelength selection agent that shields infrared rays when forming the infrared shielding layer 2.
Examples 1 to 1 except that any inorganic substance of copper was used and the inorganic substance made of zinc oxide was used as a transmission wavelength selection agent that shields ultraviolet rays when forming the ultraviolet shielding layer 3 by the vapor deposition method. In the same manner as in 3, the solar cell filter F of the present invention was prepared.

【0052】<実施例8>上記実施例4(図2(d)参
照)における紫外線遮蔽層3を、真空蒸着、スパッタリ
ング蒸着などの蒸着方式により形成し、その蒸着方式に
より紫外線遮蔽層3を形成する際の紫外線を遮蔽する透
過波長選択剤として酸化亜鉛による無機物質を使用した
以外は、上記実施例4と同様にして、本発明の太陽電池
用フィルターFを作成した。
<Embodiment 8> The ultraviolet shielding layer 3 in the above Embodiment 4 (see FIG. 2 (d)) is formed by a vapor deposition method such as vacuum vapor deposition or sputtering vapor deposition, and the ultraviolet shielding layer 3 is formed by the vapor deposition method. A solar cell filter F of the present invention was produced in the same manner as in Example 4 except that an inorganic substance made of zinc oxide was used as a transmission wavelength selection agent that shields ultraviolet rays.

【0053】<実施例9>上記実施例5(図2(e)参
照)における赤外線遮蔽層2を、真空蒸着、スパッタリ
ング蒸着などの蒸着方式により形成し、その蒸着方式に
より赤外線遮蔽層2を形成する際の赤外線を遮蔽する透
過波長選択剤として銀、チタン、銅のいずれかの無機物
質を使用した以外は、上記実施例5と同様にして、本発
明の太陽電池用フィルターFを作成した。
<Embodiment 9> The infrared shielding layer 2 in the above Embodiment 5 (see FIG. 2 (e)) is formed by a vapor deposition method such as vacuum vapor deposition or sputtering vapor deposition, and the infrared shielding layer 2 is formed by the vapor deposition method. A solar cell filter F of the present invention was prepared in the same manner as in Example 5 except that an inorganic substance selected from the group consisting of silver, titanium and copper was used as a transmission wavelength selection agent for shielding infrared rays.

【0054】<実施例10>上記実施例1乃至実施例9
により作成したフィルターFの片面に、その面に直にエ
ンボス金型を用いて鋸歯状凹凸をプレスエンボス形成す
ることにより、又は前記フィルターFの片面に蒸着(ス
パッタリング)により膜厚4μm程度の透明なシリコン
薄膜を形成し、その蒸着面に鋸歯状凹凸を形成(例えば
透明なシリコン薄膜面をエッチングして、深度2〜4μ
m程度の鋸歯状凹凸を形成)することにより、入射光線
の反射(表面反射)を防止するための反射防止層4を設
けて、本発明の太陽電池用フィルターFを作成した。
(図3(a)〜(c)参照)
<Embodiment 10> Above Embodiments 1 to 9
The filter F produced by the above method is directly embossed with a saw-toothed concavo-convex pattern on one surface of the filter F by press embossing, or is vapor-deposited (sputtering) on one surface of the filter F to form a transparent film having a thickness of about 4 μm A silicon thin film is formed, and sawtooth-shaped irregularities are formed on the vapor deposition surface (for example, the transparent silicon thin film surface is etched to a depth of 2 to 4 μm).
By forming a saw-toothed concavo-convex pattern of about m), an antireflection layer 4 for preventing reflection (surface reflection) of incident light rays is provided, and a solar cell filter F of the present invention is produced.
(See FIGS. 3A to 3C)

【0055】<実施例11>上記実施例1乃至実施例9
により作成したフィルターFを、図4に示すように透明
な支持基板11(ガラス板)上に表面電極12(透明電
極)を介してpn接合型半導体受光部N、P(単結晶若
しくは多結晶型のSi系、又はアモルファス型のSi系
(a−Si))を備えた太陽電池の光線入射側にある前
記支持基板11(ガラス板)の表面(光線入射側)に重
ね合わせ、電池周辺を適宜固定部材や必要に応じて接着
剤(例えば透明な一液型エポキシ系接着剤若しくは二液
硬化型エポキシ系接着剤)などを介して固定し、フィル
ターFを装着した太陽電池を作成した。
<Embodiment 11> Embodiments 1 to 9 described above.
As shown in FIG. 4, the filter F prepared by the above method is applied to a transparent support substrate 11 (glass plate) through a surface electrode 12 (transparent electrode) through pn junction type semiconductor light receiving portions N and P (single crystal or polycrystal type). Of the Si type or the amorphous Si type (a-Si)) is overlapped on the surface (light incident side) of the supporting substrate 11 (glass plate) on the light incident side of the solar cell, and the periphery of the battery is appropriately formed. A solar cell equipped with the filter F was prepared by fixing with a fixing member or an adhesive (for example, a transparent one-component epoxy adhesive or a two-component curing epoxy adhesive) as necessary.

【0056】<実施例12>上記実施例1乃至実施例9
により作成したフイルターを、不透明な支持基板(ステ
ンレス板)上に裏面電極13(金属電極)を介してpn
接合型半導体受光部(単結晶若しくは多結晶型のSi
系、又はアモルファス型のSi系(a−Si))を備え
た太陽電池の光線入射側に積層形成された表面電極12
(透明電極)の表面(光線入射側)に重ね合わせ、電池
周辺部を適宜固定部材や必要に応じて透明な接着剤など
を介して固定し、フィルターFを装着した太陽電池を作
成した。
<Twelfth Embodiment> The first to ninth embodiments described above.
The filter prepared by the above is pn-mounted on an opaque support substrate (stainless steel plate) through the back electrode 13 (metal electrode).
Junction type semiconductor light receiving part (single crystal or polycrystal type Si
Surface electrode 12 formed on the light-incident side of a solar cell having a system or an amorphous Si system (a-Si))
The solar cell was mounted on the surface (light-incident side) of the (transparent electrode), and the peripheral portion of the cell was appropriately fixed with a fixing member or a transparent adhesive if necessary, to prepare a solar cell equipped with the filter F.

【0057】<実施例13>上記実施例10により作成
したフィルターFを、図4に示すように、その反射防止
層4を光線入射側の最表面にして、透明な支持基板11
(ガラス板)上に表面電極(透明電極)を介してpn接
合型半導体受光部(単結晶型のSi系)を備えた太陽電
池の光線入射側にある前記支持基板11の表面(光線入
射側)に重ね合わせ、電池周辺部を適宜固定部材や必要
に応じて接着剤などを介して固定し、フィルターFを装
着した太陽電池を作成した。
<Embodiment 13> As shown in FIG. 4, the filter F prepared in the above Embodiment 10 has the antireflection layer 4 as the outermost surface on the light incident side, and the transparent support substrate 11 is formed.
The surface (light incident side) of the support substrate 11 on the light incident side of a solar cell having a pn junction type semiconductor light receiving portion (single crystal Si system) on a (glass plate) via a surface electrode (transparent electrode). ), The peripheral portion of the battery was appropriately fixed through a fixing member or an adhesive as necessary, and a solar cell equipped with the filter F was prepared.

【0058】<実施例14>上記実施例10により作成
したフイルターを、その反射防止層4を光線入射側の最
表面にして、不透明な支持基板(ステンレス板)上に裏
面電極を介してpn接合型半導体受光部(単結晶型のS
i系)を備えた太陽電池の光線入射側に被覆形成された
表面電極(透明電極)の表面(光線入射側)に重ね合わ
せ、電池周辺部を適宜固定部材や必要に応じて接着剤な
どを介して固定し、フィルターFを装着した太陽電池を
作成した。
<Example 14> The filter prepared in Example 10 was pn-bonded on the opaque support substrate (stainless steel plate) via the back electrode with the antireflection layer 4 as the outermost surface on the light incident side. Type semiconductor light receiving part (single crystal S
(i-type) solar cell equipped with a surface electrode (transparent electrode) surface (light incident side) formed by coating on the light incident side, and the peripheral portion of the cell is appropriately fixed with a fixing member or an adhesive as necessary. A solar cell fixed with the filter F attached was prepared.

【0059】<実施例15>上記実施例11乃至実施例
14における太陽電池の裏面電極13側に、図5に示す
ように、電気絶縁層15(合成樹脂製の薄膜層)を介し
てアルミニウムなど金属材料による光反射層14を設け
た太陽電池を使用した以外は、上記実施例11乃至実施
例14と同様にして、フィルターFを装着した太陽電池
を作成した。
<Embodiment 15> As shown in FIG. 5, aluminum or the like is provided on the back electrode 13 side of the solar cells in Embodiments 11 to 14 with an electric insulation layer 15 (thin film layer made of synthetic resin) interposed therebetween. Solar cells equipped with the filter F were prepared in the same manner as in Examples 11 to 14 except that the solar cells provided with the light reflecting layer 14 made of a metal material were used.

【0060】<比較試験用サンプル1>上記実施例2
(図2(b)参照)により作成したフィルターFの赤外
線遮蔽層2の表面に、上記実施例10により深度2〜4
μm程度の鋸歯状凹凸を形成して反射防止層4を設けた
本発明の太陽電池用フィルターF(図3(b)参照)
を、光反射層14を設けた太陽電池(図5参照)の透明
な支持基板11の表面に重ね合わせ、その重ね合わせ周
辺を接着剤により固定することにより、フィルター付き
太陽電池サンプル1を作成した。
<Comparative Test Sample 1> Example 2 above
(See FIG. 2 (b)) On the surface of the infrared ray shielding layer 2 of the filter F formed by the method of Example 10, the depth of 2 to 4 is obtained.
The solar cell filter F of the present invention in which the antireflection layer 4 is provided by forming sawtooth-shaped irregularities of about μm (see FIG. 3B).
Was stacked on the surface of the transparent support substrate 11 of the solar cell (see FIG. 5) provided with the light reflection layer 14, and the periphery of the stack was fixed with an adhesive to prepare a solar cell sample 1 with a filter. .

【0061】<比較試験用サンプル2>上記実施例2
(図2(b)参照)により作成されるフィルターFの赤
外線遮蔽層2をスパッタリング方式により形成した以外
は、上記太陽電池サンプル1に使用したフィルターFと
同様にして作成した本発明の太陽電池用フィルターF
(図3(b)参照)を、上記サンプル1と同様にして、
光反射層14を設けた太陽電池(図5参照)の透明な支
持基板11の表面に重ね合わせ、その重ね合わせ周辺を
接着剤により固定することにより、フィルター付き太陽
電池サンプル2を作成した。
<Comparative Test Sample 2> Example 2 above
For the solar cell of the present invention prepared in the same manner as the filter F used in the above-mentioned solar cell sample 1 except that the infrared shielding layer 2 of the filter F prepared by (see FIG. 2B) is formed by the sputtering method. Filter F
(See FIG. 3 (b))
A solar cell sample 2 with a filter was prepared by stacking the surface of the transparent supporting substrate 11 of the solar cell (see FIG. 5) provided with the light reflecting layer 14 and fixing the periphery of the stack with an adhesive.

【0062】<比較試験用サンプル3>光反射層14を
設けた太陽電池(図5参照)の透明な支持基板11の表
面に本発明の太陽電池用フィルターFを重ね合わせない
状態の前記太陽電池を太陽電池サンプル3とした。
<Comparative Test Sample 3> The solar cell in which the solar cell filter F of the present invention is not superposed on the surface of the transparent supporting substrate 11 of the solar cell (see FIG. 5) provided with the light reflecting layer 14. Was used as a solar cell sample 3.

【0063】<比較試験>本発明のフィルターを使用し
て作成した上記太陽電池サンプル1とサンプル2及びフ
ィルターを使用しない太陽電池サンプル3とをそれぞれ
戸外に放置して、太陽光線による電池本体の昇温状態
(電池本体温度の経時変化)と、その時の電力変換効率
を測定した結果を、下記表2に示す。
<Comparative Test> The above-mentioned solar cell sample 1 and the sample 2 and the solar cell sample 3 not using the filter prepared by using the filter of the present invention were left outdoors to raise the cell body by sunlight. Table 2 below shows the results of measuring the temperature state (change in battery body temperature over time) and the power conversion efficiency at that time.

【0064】[0064]

【表2】 [Table 2]

【0065】<比較結果>表2に示すように本発明の太
陽電池用フィルターを使用した太陽電池サンプル1、2
は、放置開始経過時間0分の温度26℃が、20分経過
後において50℃近辺まで上昇したが、120分経過後
にて55℃程度で安定した。
<Comparison Results> As shown in Table 2, solar cell samples 1 and 2 using the solar cell filter of the present invention.
The temperature of 26 ° C., which was 0 minutes after the start of standing, increased to around 50 ° C. after 20 minutes, but stabilized at about 55 ° C. after 120 minutes.

【0066】他方、フィルターを使用しない太陽電池サ
ンプル3は、放置開始経過時間0分の温度26℃が、2
0分経過後において60℃近辺まで上昇し、120分経
過後にて70℃程度まで上昇した。
On the other hand, in the solar cell sample 3 which does not use the filter, the temperature of 26 ° C. is 2 minutes when the temperature at the start of standing is 0 minutes.
After 0 minutes, the temperature rose to around 60 ° C, and after 120 minutes, the temperature rose to around 70 ° C.

【0067】したがって、本発明の太陽電池用フィルタ
ーは、昇温速度を抑制する効果、及び昇温温度を下げる
効果がある。
Therefore, the solar cell filter of the present invention has the effect of suppressing the temperature rising rate and the effect of lowering the temperature rising.

【0068】また、表2に示すように、本発明の太陽電
池用フィルターを使用した太陽電池サンプル1、2は、
サンプル3と比較して、電力変換効率を1%以上向上さ
せる効果がある。
Further, as shown in Table 2, the solar cell samples 1 and 2 using the solar cell filter of the present invention,
Compared with Sample 3, there is an effect of improving power conversion efficiency by 1% or more.

【0069】[0069]

【発明の効果】本発明の太陽電池用フィルターは、赤外
線遮蔽層を備えているので、太陽電池の光線入射側に設
置することによって太陽電池の発電効率低下原因のひと
つである熱光線をカットすることができ、これによって
発電効率(変換効率)を向上させる効果がある。
Since the solar cell filter of the present invention is provided with an infrared ray shielding layer, it is installed on the light incident side of the solar cell to block heat rays, which is one of the causes of the reduction in the power generation efficiency of the solar cell. It is possible to improve the power generation efficiency (conversion efficiency).

【0070】また、紫外線遮蔽層を併設することによっ
て、紫外光線による太陽電池本体の表面電極(透明電
極)や半導体部分などの電池薄膜構造部の黄変や黒ずみ
などを防止でき、発電用光線の利得の低下や太陽電池本
体の劣化速度を抑制することができる
Further, by providing an ultraviolet ray shielding layer, it is possible to prevent yellowing or darkening of the battery electrode thin film structure portion such as the surface electrode (transparent electrode) of the solar cell main body or the semiconductor portion due to the ultraviolet ray, and to prevent the generation of light rays for power generation. It is possible to suppress the decrease in gain and the deterioration rate of the solar cell body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な太陽電池の受光する波長と発電出力と
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the wavelength of light received by a general solar cell and the power generation output.

【図2】(a)〜(f)は本発明の太陽電池用フィルタ
ーの各種積層構造を説明する側断面図である。
2 (a) to (f) are side sectional views for explaining various laminated structures of the filter for a solar cell of the present invention.

【図3】(a)〜(c)は表面に反射防止層を設けた本
発明の太陽電池用フィルターを説明する側断面図であ
る。
3 (a) to 3 (c) are side cross-sectional views illustrating a solar cell filter of the present invention having an antireflection layer provided on the surface thereof.

【図4】本発明の太陽電池用フィルターを太陽電池に取
り付けた状態を説明する部分側断面図である。
FIG. 4 is a partial side cross-sectional view illustrating a state in which the solar cell filter of the present invention is attached to a solar cell.

【図5】本発明の太陽電池用フィルターを反射層を備え
た太陽電池に取り付けた状態を説明する部分側断面図で
ある。
FIG. 5 is a partial side cross-sectional view illustrating a state in which the solar cell filter of the present invention is attached to a solar cell having a reflective layer.

【図6】一般的な太陽電池を説明する部分側断面図であ
る。
FIG. 6 is a partial side sectional view illustrating a general solar cell.

【図7】一般的な太陽電池における温度に対する標準的
な短絡電流値Isc(単位;A)と、開放電圧値Voc(単
位;V)と、相対出力値Wrc(単位;W)の関係を示す
グラフである。
FIG. 7 shows a relationship between a standard short-circuit current value Isc (unit: A), an open circuit voltage value Voc (unit: V), and a relative output value Wrc (unit: W) with respect to temperature in a general solar cell. It is a graph.

【符号の説明】[Explanation of symbols]

P…p型半導体 N…n型半導体 PN…半導体受光部
(pn接合型半導体) L…入射光線 1…基材層 2…赤外線遮蔽層 3…紫外線遮蔽層 4
…反射防止層 11…透明な支持基板 12…表面電極 13…裏面電
極 14…反射層 15…絶縁層
P ... p-type semiconductor N ... n-type semiconductor PN ... semiconductor light receiving part (pn junction type semiconductor) L ... incident light ray 1 ... base material layer 2 ... infrared shielding layer 3 ... ultraviolet shielding layer 4
... Antireflection layer 11 ... Transparent support substrate 12 ... Front surface electrode 13 ... Back surface electrode 14 ... Reflection layer 15 ... Insulation layer

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】透明基材層1の片側若しくは両側に、少な
くとも1200〜3000nmの波長領域の赤外線L1
(1200<L1 <3000nm若しくは1200≦L
1 ≦3000nm)を遮蔽する透過波長選択剤により形
成された赤外線遮蔽層2を備えることを特徴とする太陽
電池用フィルター。
1. An infrared ray L1 having a wavelength region of at least 1200 to 3000 nm on one side or both sides of the transparent substrate layer 1.
(1200 <L1 <3000 nm or 1200 ≦ L
A solar cell filter comprising an infrared shielding layer 2 formed of a transmission wavelength selective agent that shields 1 ≦ 3000 nm).
【請求項2】透明基材層1の片側若しくは両側に、少な
くとも1200〜3000nmの波長領域の赤外線L1
(1200<L1 <3000nm若しくは1200≦L
1 ≦3000nm)を遮蔽する透過波長選択剤により形
成された赤外線遮蔽層2と、少なくとも400nmより
小さい波長領域の紫外線L2 (L2 <400nm若しく
はL2 ≦400nm)を遮蔽する透過波長選択剤により
形成された紫外線遮蔽層3とをそれぞれ備えることを特
徴とする太陽電池用フィルター。
2. An infrared ray L1 having a wavelength region of at least 1200 to 3000 nm on one or both sides of the transparent substrate layer 1.
(1200 <L1 <3000 nm or 1200 ≦ L
Infrared ray shielding layer 2 formed of a transmission wavelength selection agent that shields 1 ≤ 3000 nm) and a transmission wavelength selection agent that shields ultraviolet rays L2 (L2 <400 nm or L2 ≤ 400 nm) in a wavelength region of at least 400 nm. A filter for a solar cell, which is provided with each of the ultraviolet shielding layers 3.
【請求項3】透明基材層1中に少なくとも1200〜3
000nmの波長領域の赤外線L1(1200<L1 <
3000nm若しくは1200≦L1 ≦3000nm)
を遮蔽する透過波長選択剤が練り込まれていることを特
徴とする太陽電池用フィルター。
3. At least 1200 to 3 in the transparent substrate layer 1.
Infrared ray L1 in the wavelength region of 000 nm (1200 <L1 <
3000nm or 1200≤L1≤3000nm)
A filter for a solar cell, characterized in that a transmission wavelength selection agent for shielding the light is kneaded.
【請求項4】透明基材層1中に少なくとも1200〜3
000nmの波長領域の赤外線L1(1200<L1 <
3000nm若しくは1200≦L1 ≦3000nm)
と、少なくとも400nmより小さい波長領域の紫外線
L2 (L2 <400nm若しくはL2 ≦400nm)と
を遮蔽する透過波長選択剤が練り込まれていることを特
徴とする太陽電池用フィルター。
4. At least 1200 to 3 in the transparent substrate layer 1.
Infrared ray L1 in the wavelength region of 000 nm (1200 <L1 <
3000nm or 1200≤L1≤3000nm)
And a transmission wavelength selection agent that blocks at least ultraviolet rays L2 (L2 <400 nm or L2 ≤ 400 nm) in a wavelength region smaller than 400 nm are kneaded.
【請求項5】前記フィルターの透明基材層1、赤外線遮
蔽層2、紫外線遮蔽層3のうち最表面となる層上に反射
防止層4が設けられている請求項1乃至請求項4記載の
太陽電池用フィルター。
5. The antireflection layer 4 is provided on the outermost layer of the transparent base material layer 1, the infrared shielding layer 2 and the ultraviolet shielding layer 3 of the filter. Filter for solar cells.
【請求項6】赤外線L1 を遮蔽する前記透過波長選択剤
が、酸化錫又は酸化亜鉛又は酸化マグネシウムなどの金
属酸化物又は金、銀、又はこれらのうちのいずれか2種
以上による混合物など無機物を主成分とする請求項1乃
至請求項4記載の太陽電池用フィルター。
6. The transmission wavelength selective agent for shielding infrared rays L1 is made of a metal oxide such as tin oxide, zinc oxide or magnesium oxide, or an inorganic substance such as gold, silver or a mixture of any two or more thereof. The solar cell filter according to claim 1, which comprises a main component.
【請求項7】紫外線L2 を遮蔽する前記透過波長選択剤
が、酸化亜鉛又は酸化セリウム又は酸化チタン、又はこ
れらのうちのいずれか2種以上による混合物など無機物
を主成分とする請求項2又は請求項4記載の太陽電池用
フィルター。
7. The inorganic compound as a main component, wherein the transmission wavelength selective agent for blocking ultraviolet rays L2 is zinc oxide, cerium oxide, titanium oxide, or a mixture of any two or more thereof. Item 4. A solar cell filter according to item 4.
【請求項8】前記透過波長選択剤が、粒径500Å以下
の超微粉末の無機物を主成分とする請求項6又は請求項
7記載の太陽電池用フィルター。
8. The filter for a solar cell according to claim 6 or 7, wherein the transmission wavelength selection agent is mainly composed of an ultrafine powdered inorganic material having a particle size of 500Å or less.
【請求項9】透明な支持基板上に入射光線を電気エネル
ギーに変換する半導体受光部を備えた太陽電池の前記支
持基板の表面若しくは裏面に設けられ、入射光線のうち
の熱線をカットして太陽電池の昇温を抑制する請求項1
乃至請求項8記載の太陽電池用フィルター。
9. A solar cell provided with a semiconductor light receiving section for converting incident light rays into electric energy on a transparent supporting substrate, which is provided on the front surface or the back surface of the supporting substrate and cuts the heat rays of the incident light rays so that the sun Claim 1 which suppresses temperature rise of a battery
A filter for a solar cell according to claim 8.
【請求項10】透明な支持基板上に入射光線を電気エネ
ルギーに変換する半導体受光部を備えた太陽電池の表面
電極(透明電極)の表面に設けられ、入射光線のうちの
熱線をカットして太陽電池の昇温を抑制する請求項1乃
至請求項8記載の太陽電池用フィルター。
10. A transparent support substrate is provided on the surface of a surface electrode (transparent electrode) of a solar cell provided with a semiconductor light receiving section for converting incident light rays into electric energy, and cuts heat rays of the incident light rays. The solar cell filter according to claim 1, wherein the temperature rise of the solar cell is suppressed.
【請求項11】不透明な支持基板上に入射光線を電気エ
ネルギーに変換する半導体受光部を備えた太陽電池の表
面電極(透明電極)の表面に設けられ、入射光線のうち
の熱線をカットして太陽電池の昇温を抑制する請求項1
乃至請求項8記載の太陽電池用フィルター。
11. A surface electrode (transparent electrode) of a solar cell provided with a semiconductor light receiving section for converting incident light rays into electric energy on an opaque supporting substrate, and cuts heat rays of the incident light rays. Claim 1 which suppresses temperature rise of a solar cell
A filter for a solar cell according to claim 8.
【請求項12】不透明な支持基板上に入射光線を電気エ
ネルギーに変換する半導体受光部を備えた太陽電池の透
明な保護板の表面若しくは裏面に設けられ、入射光線の
うちの熱線をカットして太陽電池の昇温を抑制する請求
項1乃至請求項8記載の太陽電池用フィルター。
12. A transparent protective plate of a solar cell having a semiconductor light receiving section for converting incident light rays into electric energy on an opaque support substrate, and is provided on the front surface or the back surface of the transparent protection plate to cut heat rays of the incident light rays. The solar cell filter according to claim 1, wherein the temperature rise of the solar cell is suppressed.
JP7318845A 1995-12-07 1995-12-07 Filter for solar battery Pending JPH09162435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7318845A JPH09162435A (en) 1995-12-07 1995-12-07 Filter for solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7318845A JPH09162435A (en) 1995-12-07 1995-12-07 Filter for solar battery

Publications (1)

Publication Number Publication Date
JPH09162435A true JPH09162435A (en) 1997-06-20

Family

ID=18103603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7318845A Pending JPH09162435A (en) 1995-12-07 1995-12-07 Filter for solar battery

Country Status (1)

Country Link
JP (1) JPH09162435A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849808A2 (en) * 1996-12-20 1998-06-24 Nippon Shokubai Co., Ltd. Photoelectric conversion element
DE19747613A1 (en) * 1997-10-29 1999-05-12 Hne Elektronik Gmbh & Co Satel Photovoltaic module with solar radiation energy concentrator
EP1069623A1 (en) * 1999-07-15 2001-01-17 Kaneka Corporation Amorphous silicon-based thin film photovoltaic device
JP2001036102A (en) * 1999-07-15 2001-02-09 Sanyo Electric Co Ltd Solar cell module
WO2004047153A2 (en) * 2002-11-20 2004-06-03 Berkshire Laboratories, Inc. High efficiency solar cells
JP2009260274A (en) * 2008-03-21 2009-11-05 Mitsubishi Rayon Co Ltd Transparent member for solar cell, and solar cell
JP2010219495A (en) * 2009-02-18 2010-09-30 Nagaoka Univ Of Technology Transparent member for solar cell, and solar cell
DE10134901B4 (en) * 2000-07-21 2010-11-11 Sharp K.K. Transmissive thin-film solar cell module with a transparent substrate, a translucent section and a translucent sealing layer
EP2261996A1 (en) * 2009-06-10 2010-12-15 Mikko Kalervo Väänänen Method and means for a high power solar cell
JP2011023602A (en) * 2009-07-16 2011-02-03 Ohbayashi Corp Solar battery module, and construction method
JP2011023600A (en) * 2009-07-16 2011-02-03 Ohbayashi Corp Solar battery unit, and construction method
JP2011023601A (en) * 2009-07-16 2011-02-03 Ohbayashi Corp Solar battery unit, and construction method
JP2011077179A (en) * 2009-09-29 2011-04-14 Dainippon Printing Co Ltd Conversion efficiency-enhancing member for solar cell module, and solar cell module
JP2012182160A (en) * 2011-02-28 2012-09-20 Ulvac Japan Ltd Antireflection body, solar battery, method for manufacturing antireflection body, and method for manufacturing solar battery
KR101275840B1 (en) * 2009-04-20 2013-06-18 한국전자통신연구원 Transparent Solar Cell
WO2013172448A1 (en) * 2012-05-18 2013-11-21 三菱レイヨン株式会社 Film, method for producing same, plate-like product, image display device, and solar cell
JP2018018894A (en) * 2016-07-26 2018-02-01 京セラ株式会社 Solar cell and solar cell module
JP6417068B1 (en) * 2018-06-18 2018-10-31 コナース コーポレーション Solar cell module

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849808A2 (en) * 1996-12-20 1998-06-24 Nippon Shokubai Co., Ltd. Photoelectric conversion element
EP0849808A3 (en) * 1996-12-20 1999-01-20 Nippon Shokubai Co., Ltd. Photoelectric conversion element
DE19747613A1 (en) * 1997-10-29 1999-05-12 Hne Elektronik Gmbh & Co Satel Photovoltaic module with solar radiation energy concentrator
EP1069623A1 (en) * 1999-07-15 2001-01-17 Kaneka Corporation Amorphous silicon-based thin film photovoltaic device
JP2001036102A (en) * 1999-07-15 2001-02-09 Sanyo Electric Co Ltd Solar cell module
DE10134901B4 (en) * 2000-07-21 2010-11-11 Sharp K.K. Transmissive thin-film solar cell module with a transparent substrate, a translucent section and a translucent sealing layer
WO2004047153A3 (en) * 2002-11-20 2004-08-12 Berkshire Lab Inc High efficiency solar cells
WO2004047153A2 (en) * 2002-11-20 2004-06-03 Berkshire Laboratories, Inc. High efficiency solar cells
JP2009260274A (en) * 2008-03-21 2009-11-05 Mitsubishi Rayon Co Ltd Transparent member for solar cell, and solar cell
JP2010219495A (en) * 2009-02-18 2010-09-30 Nagaoka Univ Of Technology Transparent member for solar cell, and solar cell
KR101275840B1 (en) * 2009-04-20 2013-06-18 한국전자통신연구원 Transparent Solar Cell
WO2010142626A3 (en) * 2009-06-10 2011-08-11 Vaeaenaenen Mikko Method and means for a high power solar cell
EP2261996A1 (en) * 2009-06-10 2010-12-15 Mikko Kalervo Väänänen Method and means for a high power solar cell
WO2010142626A2 (en) * 2009-06-10 2010-12-16 Vaeaenaenen Mikko Method and means for a high power solar cell
US8198530B2 (en) 2009-06-10 2012-06-12 Vaeaenaenen Mikko Method and means for a high power solar cell
JP2011023602A (en) * 2009-07-16 2011-02-03 Ohbayashi Corp Solar battery module, and construction method
JP2011023601A (en) * 2009-07-16 2011-02-03 Ohbayashi Corp Solar battery unit, and construction method
JP2011023600A (en) * 2009-07-16 2011-02-03 Ohbayashi Corp Solar battery unit, and construction method
JP2011077179A (en) * 2009-09-29 2011-04-14 Dainippon Printing Co Ltd Conversion efficiency-enhancing member for solar cell module, and solar cell module
JP2012182160A (en) * 2011-02-28 2012-09-20 Ulvac Japan Ltd Antireflection body, solar battery, method for manufacturing antireflection body, and method for manufacturing solar battery
WO2013172448A1 (en) * 2012-05-18 2013-11-21 三菱レイヨン株式会社 Film, method for producing same, plate-like product, image display device, and solar cell
JP2018018894A (en) * 2016-07-26 2018-02-01 京セラ株式会社 Solar cell and solar cell module
JP6417068B1 (en) * 2018-06-18 2018-10-31 コナース コーポレーション Solar cell module
JP2019220522A (en) * 2018-06-18 2019-12-26 コナース コーポレーション Solar cell module

Similar Documents

Publication Publication Date Title
JPH09162435A (en) Filter for solar battery
JP2613719B2 (en) Method of manufacturing solar cell module
US5421909A (en) Photovoltaic conversion device
US5656098A (en) Photovoltaic conversion device and method for producing same
RU2423755C2 (en) Front contact with adjacent intermediate layer(s) for use in photoelectric devices and method of making said contact
US20090032098A1 (en) Photovoltaic device having multilayer antireflective layer supported by front substrate
US20080236661A1 (en) Solar cell
WO2007040065A1 (en) Solar battery and solar battery module
JPWO2008096711A1 (en) Solar cell module and wavelength conversion type condensing film for solar cell module
JPH08139350A (en) Solar cell module
JP2010045368A (en) Solar cell with color modulation and method of manufacturing the same
US5700332A (en) Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system
JP2007027271A (en) Solar power generation module
JPS63200576A (en) Solar cell
JP2000156518A (en) Solar power generating system
JP2012216620A (en) Solar cell module
JP2011129925A (en) Solar cell module using semiconductor nanocrystal
CN103493215A (en) Thin film silicon solar cell in multi-junction configuration on textured glass
JP4438293B2 (en) Solar cell and installation method thereof
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
JP2001094128A (en) Solar cell module and method for fabricating the same
JP2003086823A (en) Thin film solar battery
RU2410796C1 (en) Photovoltaic module design
JP2005347444A (en) Photovoltaic element
CN109087959B (en) Solar cell packaging structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131