JP2018018894A - Solar cell and solar cell module - Google Patents

Solar cell and solar cell module Download PDF

Info

Publication number
JP2018018894A
JP2018018894A JP2016146444A JP2016146444A JP2018018894A JP 2018018894 A JP2018018894 A JP 2018018894A JP 2016146444 A JP2016146444 A JP 2016146444A JP 2016146444 A JP2016146444 A JP 2016146444A JP 2018018894 A JP2018018894 A JP 2018018894A
Authority
JP
Japan
Prior art keywords
solar cell
translucent member
photoelectric conversion
conversion element
translucent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016146444A
Other languages
Japanese (ja)
Other versions
JP6693828B2 (en
Inventor
田中 政博
Masahiro Tanaka
政博 田中
新楽 浩一郎
Koichiro Niira
浩一郎 新楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016146444A priority Critical patent/JP6693828B2/en
Publication of JP2018018894A publication Critical patent/JP2018018894A/en
Application granted granted Critical
Publication of JP6693828B2 publication Critical patent/JP6693828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell capable of lowering the temperature thereof.SOLUTION: A solar cell includes a photoelectric conversion element 4 and a translucent member 2 disposed on the photoelectric conversion element 4 and having a surface exposed to the outside, while having a plurality of linear protrusions 7 on a surface of the translucent member 2. A solar cell also includes a photoelectric conversion element 4 and a translucent member 2 disposed on the photoelectric conversion element 4 and having a surface exposed to the outside, while having a plurality of protrusions with a height of 12 μm or higher on a surface of the translucent member 2. A solar cell module comprises a plurality of such solar cells electrically connected via wiring.SELECTED DRAWING: Figure 1

Description

本発明は、太陽電池に関するものである。   The present invention relates to a solar cell.

太陽電池は、太陽の光を直接電気エネルギーに変換できるという特徴から、クリーン且つ無尽蔵なエネルギーの利用手段として注目されており、火力発電や原子力発電に代わる新しい電力源として、ますます期待が高まっている。   Solar cells are attracting attention as a means of using clean and inexhaustible energy because of the ability to directly convert sunlight into electrical energy, and expectations are increasing as a new power source to replace thermal power generation and nuclear power generation. Yes.

このような太陽電池は、光電変換素子の表面に透光性部材が配置されており、太陽光は、透光性部材を介して光電変換素子に入射される(例えば、特許文献1を参照)。   In such a solar cell, a translucent member is disposed on the surface of the photoelectric conversion element, and sunlight is incident on the photoelectric conversion element via the translucent member (see, for example, Patent Document 1). .

特開2015−29069号公報JP 2015-29069 A

従来の特許文献1等の一般の太陽電池では、太陽電池自体の温度が高温となるという問題があった。これに伴い、発電効率が低下するという問題があった。   Conventional solar cells such as Patent Document 1 have a problem that the temperature of the solar cell itself becomes high. Along with this, there was a problem that the power generation efficiency was lowered.

本発明は、温度を低下できる太陽電池を提供することを目的とする。   An object of this invention is to provide the solar cell which can reduce temperature.

本発明の太陽電池は、光電変換素子と、該光電変換素子上に配置されるとともに外部に露出した表面を有する透光性部材とを具備するとともに、該透光性部材の前記表面に複数の線状凸部を有することを特徴とする。   The solar cell of the present invention includes a photoelectric conversion element and a translucent member that is disposed on the photoelectric conversion element and has a surface exposed to the outside, and a plurality of the translucent member on the surface of the translucent member. It has a linear convex part.

また、本発明の太陽電池は、光電変換素子と、該光電変換素子上に配置されるとともに外部に露出した表面を有する透光性部材とを具備するとともに、該透光性部材の前記表面に、高さが12μm以上の複数の凸部を有することを特徴とする。   The solar cell of the present invention includes a photoelectric conversion element and a translucent member that is disposed on the photoelectric conversion element and has a surface exposed to the outside, and is provided on the surface of the translucent member. And a plurality of convex portions having a height of 12 μm or more.

さらに、本発明の太陽電池は、光電変換素子と、該光電変換素子上に配置された透光性部材と、該透光性部材上に配置されるとともに、外部に露出した表面を有する透光性の被覆部材とを具備するとともに、前記透光性部材の前記被覆部材側の表面に複数の線状凸部を有し、前記被覆部材が、波長8μm以上の赤外領域における放射率が80%以上の材料からなることを特徴とする。   Furthermore, the solar cell of the present invention includes a photoelectric conversion element, a translucent member disposed on the photoelectric conversion element, a translucent member disposed on the translucent member and having a surface exposed to the outside. And a plurality of linear protrusions on the surface of the translucent member on the side of the covering member, and the covering member has an emissivity of 80 in the infrared region having a wavelength of 8 μm or more. % Of material.

また、本発明の太陽電池は、光電変換素子と、この光電変換素子上に配置された透光性部材と、該透光性部材上に配置されるとともに、外部に露出した表面を有する透光性の被覆部材とを具備するとともに、前記透光性部材の前記被覆部材側の表面に、高さが12μm以上の複数の凸部を有し、前記被覆部材が、波長8μm以上の赤外領域における放射率が80%以上の材料からなることを特徴とする。   Moreover, the solar cell of the present invention includes a photoelectric conversion element, a translucent member disposed on the photoelectric conversion element, and a translucent member disposed on the translucent member and having a surface exposed to the outside. And having a plurality of convex portions with a height of 12 μm or more on the surface of the translucent member on the side of the covering member, and the covering member has an infrared region with a wavelength of 8 μm or more. It is characterized by comprising a material having an emissivity of 80% or more.

本発明の太陽電池モジュールは、上記の太陽電池の複数個を、配線を介して電気的に接続してなることを特徴とする。   The solar cell module of the present invention is characterized in that a plurality of the above-described solar cells are electrically connected via wiring.

本発明によれば、太陽電池自体の温度を低下できる。   According to the present invention, the temperature of the solar cell itself can be lowered.

太陽電池の積層状態を示す概略断面図である。It is a schematic sectional drawing which shows the lamination | stacking state of a solar cell. (a)は透光性部材を示す斜視図、(b)は(a)のA−A’線断面図、(c)は線状凸部の形成周期を変えた透光性部材の断面図である。(A) is a perspective view showing a translucent member, (b) is a cross-sectional view taken along the line AA ′ of (a), and (c) is a cross-sectional view of the translucent member with the formation cycle of the linear protrusions changed. It is. ガラスからなる透光性部材における波長と放射率との関係を示すシミュレーション結果であり、(a)は透光性部材の露出面がフラットな場合、(b)は透光性部材の露出面に図2(a)に示すような線状凸部を形成した場合である。It is a simulation result which shows the relationship between the wavelength and emissivity in the translucent member which consists of glass, (a) is when the exposed surface of a translucent member is flat, (b) is the exposed surface of a translucent member. This is a case where a linear convex portion as shown in FIG. 透光性部材の露出面における線状凸部の高さと形成周期を変更した場合における放射率を示すシミュレーション結果である。It is a simulation result which shows the emissivity at the time of changing the height and formation period of the linear convex part in the exposed surface of a translucent member. 太陽電池モジュールを示すもので、(a)は概略断面図、(b)は(a)のB−B’線断面図である。The solar cell module is shown, in which (a) is a schematic cross-sectional view, and (b) is a cross-sectional view taken along line B-B 'of (a). (a)は透光性部材の表面に被覆部材を有する太陽電池を示す断面図、(b)は被覆部材を有する太陽電池の他の例を示す断面図である。(A) is sectional drawing which shows the solar cell which has a coating member on the surface of a translucent member, (b) is sectional drawing which shows the other example of the solar cell which has a coating member.

太陽電池の一実施形態について、図1を基に説明する。本実施形態の太陽電池は、基板状の透光性部材2、光電変換素子4、封止層5、およびカバー層6が順に積層されたものである。なお、光電変換素子4の両主面には電極(図示せず)が設けられている。また、透光性部材2と光電変換素子4との間に波長変換層が介在していてもよく、さらには、封止層5とカバー層6との間に反射層が介在していても良い。また、図1は、光電変換素子4の上面を除いて封止層5で被覆した場合について説明したが、光電変換素子4の全面を封止層5で被覆しても良い。   One embodiment of a solar cell will be described with reference to FIG. In the solar cell of the present embodiment, a substrate-like translucent member 2, a photoelectric conversion element 4, a sealing layer 5, and a cover layer 6 are sequentially laminated. Note that electrodes (not shown) are provided on both main surfaces of the photoelectric conversion element 4. Further, a wavelength conversion layer may be interposed between the translucent member 2 and the photoelectric conversion element 4, and furthermore, a reflection layer may be interposed between the sealing layer 5 and the cover layer 6. good. 1 describes the case where the photoelectric conversion element 4 is covered with the sealing layer 5 except for the upper surface thereof, the entire surface of the photoelectric conversion element 4 may be covered with the sealing layer 5.

このような太陽電池において、透光性部材2側から入射した太陽光1のうち、光電変換素子4が吸収して電気エネルギーに変換可能な波長領域、すなわち有効波長領域の光は、透光性部材2を通過して光電変換素子4に入射し、電気エネルギーに変換される。   In such a solar cell, light in a wavelength region that can be converted into electric energy by the photoelectric conversion element 4 in the sunlight 1 incident from the translucent member 2 side, that is, light in an effective wavelength region is translucent. It passes through the member 2 and enters the photoelectric conversion element 4 and is converted into electric energy.

光電変換素子4は、光起電力を有する基材の両主面に電極を設けたものである。基材は例えば0.3〜0.4mmの板状であることが好ましいが、例えば球状型や薄膜型などの形態をとっても構わない。基材には、単結晶シリコンや多結晶シリコン、アモルファスシリコン等のシリコン系材料のほか、CIGS化合物系、CdTe化合物、有機系、色素増感型材料等のいずれを用いてもよい。   The photoelectric conversion element 4 has electrodes provided on both main surfaces of a substrate having photovoltaic power. The substrate is preferably in the form of a plate having a thickness of 0.3 to 0.4 mm, for example, but may take a form such as a spherical shape or a thin film shape. In addition to silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, any of CIGS compound-based materials, CdTe compounds, organic-based materials, dye-sensitized materials, and the like may be used for the base material.

太陽光は、300〜3000nmの領域の様々な波長を有する光で構成され、その波長により、可視光領域(下界が360〜400nm、上界が760〜830nmの範囲)を中心に、その下界よりも短い波長の近紫外光領域、その上界よりも長い波長の近赤外領域、および赤外光領域に分類される。   Sunlight is composed of light having various wavelengths in the region of 300 to 3000 nm, and depending on the wavelength, the visible light region (the lower bound is 360 to 400 nm, the upper bound is 760 to 830 nm), and the lower bound Are also classified into a near-ultraviolet region having a short wavelength, a near-infrared region having a wavelength longer than the upper limit, and an infrared region.

光電変換素子4の変換効率の高い波長領域、すなわち有効波長領域は、例えば単結晶および多結晶シリコン太陽電池では400〜1100nm、CIGS化合物系およびCdTe化合物系太陽電池では400〜1200nm、アモルファスシリコン、有機系、および色素増感型太陽電池では350〜750nmであることが知られており、その大半は可視光領域と重複している。   The wavelength region where the conversion efficiency of the photoelectric conversion element 4 is high, that is, the effective wavelength region is, for example, 400 to 1100 nm for single crystal and polycrystalline silicon solar cells, 400 to 1200 nm for CIGS compound-based and CdTe compound-based solar cells, amorphous silicon, organic In systems and dye-sensitized solar cells, it is known to be 350-750 nm, most of which overlaps the visible light region.

そして、本実施形態においては、図1、および図2(a)(b)に示すように、透光性部材2の外部に露出した表面に、複数の線状凸部7を有している。透光性部材2はSiOを含有するガラスで形成されており、この透光性部材2の表面に直線状の線状凸部7が形成されている。線状凸部7の断面が、図2(b)に示すような断面が2等辺三角形だと
すると、線状凸部7とは、断面の上端および底辺が同じ方向に延びているものをいい、図2(a)に示すように直線状に延びている場合に限定されない。
In this embodiment, as shown in FIG. 1 and FIGS. 2A and 2B, a plurality of linear protrusions 7 are provided on the surface exposed to the outside of the translucent member 2. . The translucent member 2 is made of glass containing SiO 2 , and linear linear convex portions 7 are formed on the surface of the translucent member 2. If the cross section of the linear convex portion 7 is an isosceles triangle as shown in FIG. 2B, the linear convex portion 7 means that the top and bottom sides of the cross section extend in the same direction. It is not limited to the case where it extends linearly as shown in 2 (a).

このように透光性部材2の露出面に線状凸部7が形成されているため、太陽電池内部の赤外線を効果的に外部に放射でき、太陽電池の内部温度を低下させ、これにより発電量を向上できる。さらには、赤外線の放射は、大気への熱伝達や放射ではなく、宇宙への放射となるため、温室効果を低減できる。   Thus, since the linear convex part 7 is formed in the exposed surface of the translucent member 2, the infrared rays inside a solar cell can be radiated | emitted outside effectively, the internal temperature of a solar cell is lowered | hung, thereby generating electric power The amount can be improved. Furthermore, since infrared radiation is not heat transfer or radiation to the atmosphere but radiation to the universe, the greenhouse effect can be reduced.

また、直線状の線状凸部7を、太陽電池が傾斜する方向に延びるように配置することで、雨水が流れ易くなる。   Moreover, rainwater becomes easy to flow by arrange | positioning the linear linear convex part 7 so that it may extend in the direction in which a solar cell inclines.

線状凸部7は、図2(b)に示したように、高さhが、例えば12μm以上とされている。これにより、太陽電池内部の赤外線を効果的に外部に放射でき、太陽電池内部の温度を低下させ、これにより発電量を向上できる。   As shown in FIG. 2B, the linear protrusion 7 has a height h of, for example, 12 μm or more. Thereby, the infrared rays inside the solar cell can be effectively radiated to the outside, the temperature inside the solar cell can be lowered, and thereby the amount of power generation can be improved.

複数の線状凸部7の形成周期wは、例えば8μm以下とされている。これにより、太陽電池の赤外線を効果的に外部に放射でき、太陽電池内部の温度を低下させ、これにより発電量を向上できる。なお、線状凸部7の形成周期wとは、複数の線状凸部7が、図2(b)に示したように、その幅方向Bに連続して形成されている場合には、線状凸部7の底の幅に該当する。   The formation period w of the plurality of linear protrusions 7 is set to 8 μm or less, for example. Thereby, the infrared rays of the solar cell can be effectively radiated to the outside, the temperature inside the solar cell can be lowered, and thereby the amount of power generation can be improved. In addition, the formation period w of the linear convex part 7 means that when the plurality of linear convex parts 7 are continuously formed in the width direction B as shown in FIG. This corresponds to the width of the bottom of the linear protrusion 7.

なお、本願の各図は模式的なものであり、凹凸の大きさや各層の厚さは実際の寸法関係を反映したものではない。   In addition, each figure of this application is typical, and the magnitude | size of an unevenness | corrugation and the thickness of each layer do not reflect actual dimensional relationships.

また、図2(a)(b)には、透光性部材2の外部に露出した表面に、複数の直線状の線状凸部7を、線状凸部7の幅方向に連続して形成した場合について説明したが、図2(c)に示すように、複数の線状凸部7を、一定の間隔をおいて離間して形成しても良い。   2A and 2B, a plurality of linear linear convex portions 7 are continuously provided in the width direction of the linear convex portion 7 on the surface exposed to the outside of the translucent member 2. Although the case where it formed was demonstrated, as shown in FIG.2 (c), you may form the several linear convex part 7 spaced apart with a fixed space | interval.

さらに、図2(a)および(b)における線状凸部7の断面を、先端に行くほど幅wが小さくなるような錐形にしたが、錐形とした場合の先端の形状は、尖っていてもよいし、丸められたものであってもよい。   Furthermore, although the cross section of the linear convex portion 7 in FIGS. 2A and 2B has a cone shape in which the width w decreases toward the tip, the shape of the tip in the case of the cone shape is pointed. It may be rounded or rounded.

透光性部材2の線状凸部7は、成形時に金型を用いて形成することができる。また、透光性部材2の表面を研削しても形成することができる。   The linear convex part 7 of the translucent member 2 can be formed using a mold at the time of molding. Further, it can be formed by grinding the surface of the translucent member 2.

本実施形態の効果についてシミュレーションを用いて検証した。シミュレーションは、下記の条件を用いた。光は電磁波の一種であるため、電磁波シミュレーションには有限差分時間領域(Finite-Difference Time-Domain=FDTD)法を用いた。   The effect of this embodiment was verified using simulation. The following conditions were used for the simulation. Since light is a type of electromagnetic wave, the Finite-Difference Time-Domain (FDTD) method was used for electromagnetic wave simulation.

FDTD法は、時間を適当な刻みで分割するとともに、空間を直方体に細分化(離散化)して解く方法である。今回のシミュレーションでは、空間を一辺が200nmの立方体で細分化した。時間刻みは約0.4fsとした。シミュレーションでは、計約4psの過渡現象を解析した。   The FDTD method is a method in which time is divided into appropriate increments and the space is subdivided (discretized) into rectangular parallelepipeds. In this simulation, the space was subdivided into cubes with sides of 200 nm. The time increment was about 0.4 fs. In the simulation, a transient phenomenon of about 4 ps in total was analyzed.

約4psにわたる電磁波の伝搬をフーリエ変換し、波長毎の放射率を計算した。出射光は波長6〜15μmの赤外光である。また、線状凸部7は、図2(a)(b)に示すよう
な直線状の線状凸部7とし、高さhを6μm、周期wを9μmとし、線状凸部7をその幅方向Bに連続する形状とした。図3に結果を示す。図3では、横軸が赤外光の波長であり、縦軸が放射率を示している。
The propagation of the electromagnetic wave over about 4 ps was Fourier transformed, and the emissivity for each wavelength was calculated. The outgoing light is infrared light having a wavelength of 6 to 15 μm. Moreover, the linear convex part 7 is made into the linear linear convex part 7 as shown to Fig.2 (a) (b), the height h is 6 micrometers, the period w is 9 micrometers, and the linear convex part 7 is made into that The shape was continuous in the width direction B. The results are shown in FIG. In FIG. 3, the horizontal axis represents the wavelength of infrared light, and the vertical axis represents the emissivity.

この図3から、Siを含有するガラスからなる透光性部材2の表面に線状凸部7を形成した場合(図3(b))には、透光性部材2の表面がフラットな場合(図3(a))に比較して、波長が8〜11μmの赤外光の放射率が高くなり、その結果、透光性部材2の表面がフラットな場合の太陽電池の温度が54.3℃であったのに対して、透光性部材2の表面に線状凸部7を形成した場合の太陽電池の温度が52.5℃となり、太陽電池の内部温度が低下することがわかる。   From FIG. 3, when the linear convex part 7 is formed on the surface of the translucent member 2 made of glass containing Si (FIG. 3B), the surface of the translucent member 2 is flat. Compared with (FIG. 3 (a)), the emissivity of infrared light having a wavelength of 8 to 11 μm is increased, and as a result, the temperature of the solar cell when the surface of the translucent member 2 is flat is 54. In contrast to the temperature of 3 ° C., the temperature of the solar cell when the linear protrusion 7 is formed on the surface of the translucent member 2 is 52.5 ° C., and the internal temperature of the solar cell is reduced. .

さらに、図2(a)(b)に示すような線状凸部7の高さhを6〜16μmの範囲で、形成周期wを6〜16μmの範囲で変更して、シミュレーションを行い、その結果を図4に示した。この図4から、線状凸部7の高さhは12μm以上の場合に、複数の線状凸部7の形成周期wが8μm以下の場合に、波長が8〜11μmの赤外光の放射率が高くなることがわかる。   Furthermore, the simulation is performed by changing the height h of the linear convex portion 7 as shown in FIGS. 2A and 2B in the range of 6 to 16 μm and the formation period w in the range of 6 to 16 μm. The results are shown in FIG. From FIG. 4, when the height h of the linear protrusion 7 is 12 μm or more, and the formation period w of the plurality of linear protrusions 7 is 8 μm or less, the emission of infrared light having a wavelength of 8 to 11 μm. It can be seen that the rate is high.

例えば、周期wが9μmで、高さhが6μmの線状凸部7を形成した場合の太陽電池の温度は52.5℃であり、周期wが6μmで高さhが16μmの線状凸部7を形成した場合の太陽電池の温度は49.1℃であり、透光性部材2の表面がフラットな場合の太陽電池の温度54.3℃に比較して内部温度が低下していることがわかる。   For example, the temperature of the solar cell in the case where the linear protrusion 7 having a period w of 9 μm and a height h of 6 μm is formed is 52.5 ° C., and the linear protrusion having a period w of 6 μm and a height h of 16 μm. The temperature of the solar cell when the portion 7 is formed is 49.1 ° C., and the internal temperature is lower than the temperature of the solar cell 54.3 ° C. when the surface of the translucent member 2 is flat. I understand that.

これにより、太陽電池の赤外線を効果的に外部に放射でき、太陽電池内部の温度を低下させ、これにより発電量を向上できることがわかる。   Thereby, it turns out that the infrared rays of a solar cell can be radiated | emitted effectively outside, the temperature inside a solar cell can be lowered | hung, and this can improve the electric power generation amount by this.

また、透光性部材2の表面に線状凸部7を形成することにより、例えば、透光性部材2の表面に落下した落ち葉との接触面積が減少し、落下し易くなり、透光性部材2の表面に落ち葉等の太陽光を遮蔽する遮蔽物が長期残存することがなく、発電性能を高く維持できる。特に、太陽電池が下側に傾斜する方向に延びるように、透光性部材2の表面に線状凸部7を形成することにより、落ち葉等の遮蔽物の落下を誘発できる。   Moreover, by forming the linear convex part 7 in the surface of the translucent member 2, for example, a contact area with the fallen leaf which fell on the surface of the translucent member 2 reduces, it becomes easy to fall, and translucency The shielding object which shields sunlight, such as a fallen leaf, does not remain on the surface of the member 2 for a long time, and can maintain high power generation performance. In particular, by forming the linear protrusions 7 on the surface of the translucent member 2 so that the solar cell extends in a downwardly inclined direction, it is possible to induce the fall of a shielding object such as a fallen leaf.

さらに、透光性部材2の表面に落ち葉等の遮蔽物が位置していたとしても、線状凸部7から斜めに太陽光が入射し、遮蔽物の後ろに位置する光電変換素子4に太陽光が入射し、発電性能の低下を低減できる。このような遮蔽物による効果を得るためには、線状凸部7の高さh/周期wの比が0.5以上であることが望ましい。   Furthermore, even if a shielding object such as a fallen leaf is located on the surface of the translucent member 2, sunlight is incident obliquely from the linear convex portion 7, and the sun is applied to the photoelectric conversion element 4 located behind the shielding object. The incidence of light makes it possible to reduce the decrease in power generation performance. In order to obtain such an effect by the shielding object, it is desirable that the ratio of the height h / cycle w of the linear protrusion 7 is 0.5 or more.

透光性部材2は、光電変換素子4等の太陽電池を構成する各要素を保護するものであり、耐候性や機械的強度の点から、Siを含有するガラス製であることが好ましく、その厚さは3〜5mm程度とすることが好ましい。   The translucent member 2 protects each element constituting the solar cell such as the photoelectric conversion element 4, and is preferably made of glass containing Si from the viewpoint of weather resistance and mechanical strength. The thickness is preferably about 3 to 5 mm.

光電変換素子4の両主面に設ける電極は、導電性を有する材料で構成されており、Ag、Ni、Cu、Al等の金属材料や半田等の合金材料、カーボン材料、酸化インジウム錫(ITO)などの導電性酸化物材料、およびこれらをフィラーとして含む導電性樹脂材料等から適宜選択することができる。   The electrodes provided on both main surfaces of the photoelectric conversion element 4 are made of a conductive material, such as a metal material such as Ag, Ni, Cu, and Al, an alloy material such as solder, a carbon material, indium tin oxide (ITO ) And other conductive oxide materials, and conductive resin materials containing these as fillers.

封止層5には、例えばエチレン−酢酸ビニル共重合体を主成分とする樹脂が用いられ、光電変換素子4への接着性、耐久性および加工性の点で、ポリビニルブチラール(PVB)やシリコーンなどが10質量%以下の割合で含まれていてもよい。また、波長変換層および封止層の厚さは合計で0.4〜1mm程度がよい。   For the sealing layer 5, for example, a resin mainly composed of ethylene-vinyl acetate copolymer is used, and polyvinyl butyral (PVB) or silicone is used in terms of adhesion to the photoelectric conversion element 4, durability, and workability. Etc. may be contained at a ratio of 10% by mass or less. The total thickness of the wavelength conversion layer and the sealing layer is preferably about 0.4 to 1 mm.

カバー層6には、水分を透過しないようにアルミ箔を挟持した耐候性を有するフッ素系樹脂シートや、アルミナまたはシリカを蒸着したポリエチレンテレフタレート(PET)シートなどが好適に用いられる。   For the cover layer 6, a fluorine resin sheet having weather resistance in which an aluminum foil is sandwiched so as not to transmit moisture, a polyethylene terephthalate (PET) sheet on which alumina or silica is deposited, and the like are preferably used.

なお、上記形態では、線状凸部7を有する太陽電池について説明したが、線状である必要はない。この場合には、凸部は、高さが12μm以上であることが望ましい。   In addition, although the said form demonstrated the solar cell which has the linear convex part 7, it does not need to be linear. In this case, it is desirable that the convex portion has a height of 12 μm or more.

図5(a)は、本発明の一実施形態である太陽電池モジュールについて示した概略断面図であり、太陽光1が入射する受光面側から、板状の透光性部材2、波長変換層13、複数の光電変換素子4、封止層5、反射層16およびカバー層6がこの順に積層され、一方の光電変換素子4の受光面である透光性部材2側の電極(図示せず)と他方の光電変換素子4の反射層6側の電極(図示せず)とがインターコネクタ9によって接続された構成となっている。   Fig.5 (a) is the schematic sectional drawing shown about the solar cell module which is one Embodiment of this invention, and the plate-shaped translucent member 2, wavelength conversion layer from the light-receiving surface side into which sunlight 1 injects. 13, a plurality of photoelectric conversion elements 4, a sealing layer 5, a reflective layer 16, and a cover layer 6 are laminated in this order, and an electrode (not shown) on the translucent member 2 side that is the light receiving surface of one photoelectric conversion element 4. ) And an electrode (not shown) on the reflective layer 6 side of the other photoelectric conversion element 4 are connected by an interconnector 9.

なお、図5(b)の受光面側である透光性部材2側からみた、(a)のB−B’線断面図では、図5(a)の複数の光電変換素子4の接続状態を示している。本実施形態では複数の光電変換素子4に対し、その透光性部材2側に一枚の波長変換層13を備えているが、複数の光電変換素子4の透光性部材2側にそれぞれ個別に波長変換層13を設けることもできる。インターコネクタ9には、ハンダを被覆した銅箔等が好適に用いられる。   In addition, in the cross-sectional view taken along the line BB ′ in FIG. 5A as viewed from the light-transmitting member 2 side that is the light-receiving surface side in FIG. 5B, the connection state of the plurality of photoelectric conversion elements 4 in FIG. Is shown. In the present embodiment, one wavelength conversion layer 13 is provided on the light transmissive member 2 side with respect to the plurality of photoelectric conversion elements 4, but each of the plurality of photoelectric conversion elements 4 is individually provided on the light transmissive member 2 side. The wavelength conversion layer 13 can also be provided. For the interconnector 9, a copper foil or the like coated with solder is preferably used.

図1では、透光性部材2が外部に露出した形態について説明したが、図6に示すように、透光性部材2の表面に、線状凸部7を覆うように、外部に露出した表面を有する被覆部材11を配置しても良い。この被覆部材11は、赤外線放射率の高い材料から構成されている。言い換えれば、被覆部材11は、波長8μm以上の赤外領域における放射率が80%以上の材料で形成されている。   In FIG. 1, although the form which the translucent member 2 was exposed outside was demonstrated, as shown in FIG. 6, it exposed outside so that the linear convex part 7 might be covered on the surface of the translucent member 2 A covering member 11 having a surface may be disposed. The covering member 11 is made of a material having a high infrared emissivity. In other words, the covering member 11 is formed of a material having an emissivity of 80% or more in an infrared region having a wavelength of 8 μm or more.

以上、本発明の実施形態の一例である太陽電池および太陽電池モジュールについて説明したが、本発明はこれらの実施形態に限定されるものではなく、本発明を逸脱しない範囲で種々変更したものについても適用することができる。   As mentioned above, although the solar cell and the solar cell module which are examples of embodiment of this invention were demonstrated, this invention is not limited to these embodiment, About what was variously changed in the range which does not deviate from this invention. Can be applied.

1・・・・・太陽光
2・・・・・透光性部材
4・・・・・光電変換素子
5・・・・・封止層
6・・・・・カバー層
7・・・・・線状凸部
DESCRIPTION OF SYMBOLS 1 ... Sunlight 2 ... Translucent member 4 ... Photoelectric conversion element 5 ... Sealing layer 6 ... Cover layer 7 ... Linear convex part

Claims (8)

光電変換素子と、該光電変換素子上に配置されるとともに外部に露出した表面を有する透光性部材とを具備するとともに、該透光性部材の前記表面に複数の線状凸部を有することを特徴とする太陽電池。   A photoelectric conversion element and a translucent member that is disposed on the photoelectric conversion element and has a surface exposed to the outside, and have a plurality of linear protrusions on the surface of the translucent member A solar cell characterized by. 前記複数の線状凸部の高さが12μm以上であることを特徴とする請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein a height of the plurality of linear protrusions is 12 μm or more. 前記複数の線状凸部の形成周期が8μm以下であることを特徴とする請求項1または2に記載の太陽電池。   3. The solar cell according to claim 1, wherein a formation period of the plurality of linear protrusions is 8 μm or less. 前記透光性部材は、波長8μm以上の赤外領域における放射率が80%以上の材料からなることを特徴とする請求項1乃至3のうちのいずれかに記載の太陽電池。   The solar cell according to claim 1, wherein the translucent member is made of a material having an emissivity of 80% or more in an infrared region having a wavelength of 8 μm or more. 光電変換素子と、該光電変換素子上に配置されるとともに外部に露出した表面を有する透光性部材とを具備するとともに、該透光性部材の前記表面に、高さが12μm以上の複数の凸部を有することを特徴とする太陽電池。   A photoelectric conversion element and a translucent member disposed on the photoelectric conversion element and having a surface exposed to the outside; and a plurality of a plurality of light transmissible members having a height of 12 μm or more on the surface of the translucent member A solar cell having a convex portion. 光電変換素子と、該光電変換素子上に配置された透光性部材と、該透光性部材上に配置されるとともに、外部に露出した表面を有する透光性の被覆部材とを具備するとともに、前記透光性部材の前記被覆部材側の表面に複数の線状凸部を有し、前記被覆部材が、波長8μm以上の赤外領域における放射率が80%以上の材料からなることを特徴とする太陽電池。   A photoelectric conversion element, a translucent member disposed on the photoelectric conversion element, and a translucent covering member disposed on the translucent member and having a surface exposed to the outside The translucent member has a plurality of linear convex portions on the surface of the covering member, and the covering member is made of a material having an emissivity of 80% or more in an infrared region having a wavelength of 8 μm or more. A solar cell. 光電変換素子と、該光電変換素子上に配置された透光性部材と、該透光性部材上に配置されるとともに、外部に露出した表面を有する透光性の被覆部材とを具備するとともに、前記透光性部材の前記被覆部材側の表面に、高さが12μm以上の複数の凸部を有し、前記被覆部材が、波長8μm以上の赤外領域における放射率が80%以上の材料からなることを特徴とする太陽電池。   A photoelectric conversion element, a translucent member disposed on the photoelectric conversion element, and a translucent covering member disposed on the translucent member and having a surface exposed to the outside A material having a plurality of convex portions having a height of 12 μm or more on the surface of the translucent member on the coating member side, wherein the coating member has an emissivity of 80% or more in an infrared region having a wavelength of 8 μm or more. A solar cell comprising: 請求項1乃至7のいずれかに記載の太陽電池の複数個を、配線を介して電気的に接続してなることを特徴とする太陽電池モジュール。   A solar cell module comprising a plurality of the solar cells according to any one of claims 1 to 7 electrically connected via wiring.
JP2016146444A 2016-07-26 2016-07-26 Solar cells and solar cell modules Active JP6693828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016146444A JP6693828B2 (en) 2016-07-26 2016-07-26 Solar cells and solar cell modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146444A JP6693828B2 (en) 2016-07-26 2016-07-26 Solar cells and solar cell modules

Publications (2)

Publication Number Publication Date
JP2018018894A true JP2018018894A (en) 2018-02-01
JP6693828B2 JP6693828B2 (en) 2020-05-13

Family

ID=61081946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146444A Active JP6693828B2 (en) 2016-07-26 2016-07-26 Solar cells and solar cell modules

Country Status (1)

Country Link
JP (1) JP6693828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210727A1 (en) * 2021-03-30 2022-10-06 出光興産株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910282A (en) * 1982-07-09 1984-01-19 Nec Corp Solar battery module
JPH09162435A (en) * 1995-12-07 1997-06-20 Toppan Printing Co Ltd Filter for solar battery
JP2001007371A (en) * 1999-06-17 2001-01-12 Nippon Telegr & Teleph Corp <Ntt> Solar cell module
JP2003188394A (en) * 2001-12-19 2003-07-04 Toppan Printing Co Ltd Film for solar cell and solar cell module
US20120298200A1 (en) * 2010-01-25 2012-11-29 Cambridge Enterprise Limited Photovoltaic cell
JP2014216381A (en) * 2013-04-23 2014-11-17 京セラ株式会社 Solar cell and solar cell module
JP2015023216A (en) * 2013-07-22 2015-02-02 三菱電機株式会社 Solar cell and manufacturing method therefor, solar cell module and manufacturing method therefor
US20150131146A1 (en) * 2013-11-13 2015-05-14 The Board Of Trustees Of The Leland Stanford Junior University Illumination and radiative cooling
JP2015149388A (en) * 2014-02-06 2015-08-20 株式会社カネカ Solar battery module and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910282A (en) * 1982-07-09 1984-01-19 Nec Corp Solar battery module
JPH09162435A (en) * 1995-12-07 1997-06-20 Toppan Printing Co Ltd Filter for solar battery
JP2001007371A (en) * 1999-06-17 2001-01-12 Nippon Telegr & Teleph Corp <Ntt> Solar cell module
JP2003188394A (en) * 2001-12-19 2003-07-04 Toppan Printing Co Ltd Film for solar cell and solar cell module
US20120298200A1 (en) * 2010-01-25 2012-11-29 Cambridge Enterprise Limited Photovoltaic cell
JP2014216381A (en) * 2013-04-23 2014-11-17 京セラ株式会社 Solar cell and solar cell module
JP2015023216A (en) * 2013-07-22 2015-02-02 三菱電機株式会社 Solar cell and manufacturing method therefor, solar cell module and manufacturing method therefor
US20150131146A1 (en) * 2013-11-13 2015-05-14 The Board Of Trustees Of The Leland Stanford Junior University Illumination and radiative cooling
JP2015149388A (en) * 2014-02-06 2015-08-20 株式会社カネカ Solar battery module and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU, LINXIAO ET AL.: "Radiative cooling of solar cells", OPTICA, vol. 1, no. 1, JPN6020010424, July 2014 (2014-07-01), US, pages 32 - 38, XP055132012, ISSN: 0004235452, DOI: 10.1364/OPTICA.1.000032 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210727A1 (en) * 2021-03-30 2022-10-06 出光興産株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element

Also Published As

Publication number Publication date
JP6693828B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP5178705B2 (en) Non-planar solar unit assembly with internal spacing
US8039731B2 (en) Photovoltaic concentrator for solar energy system
US20120167942A1 (en) Low-concentration flat profile photovoltaic modules
US20130306130A1 (en) Solar module apparatus with edge reflection enhancement and method of making the same
WO2012164814A1 (en) Solar cell module
KR20140003691A (en) Solar cell module and ribbon assembly
US9698291B2 (en) Solar cell panel and method for manufacturing the same
WO2011065571A1 (en) Photoelectric conversion module, method for manufacturing same, and power generation device
TW201517291A (en) Transparent cover, solar module, and method of fabricating solar cell
US20170194525A1 (en) High power solar cell module
JP6693828B2 (en) Solar cells and solar cell modules
EP2897180B1 (en) Photovoltaic device with fiber array for sun tracking
JP3198443U (en) Solar cell module
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
JP2016086154A (en) Solar battery module
JP2015023216A (en) Solar cell and manufacturing method therefor, solar cell module and manufacturing method therefor
JP5340312B2 (en) Photoelectric conversion module
JP2007149796A (en) Photovoltaic device, manufacturing method thereof and photovoltaic generator
JP6199597B2 (en) Solar cell and solar cell module
KR101866309B1 (en) Metal welding solar cell
JP6328891B2 (en) Solar cell and solar cell module
KR101557020B1 (en) Scattering metal-layer coated electrode and solar cell using the same, and a method of manufacturing them
KR101278916B1 (en) Thin film solar module
JP2011249494A (en) Photoelectric conversion device
KR101170595B1 (en) Flexible thin film type Solar Cell and Method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200416

R150 Certificate of patent or registration of utility model

Ref document number: 6693828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150