JPS6132582A - Light transmission type semiconductor photodetector - Google Patents

Light transmission type semiconductor photodetector

Info

Publication number
JPS6132582A
JPS6132582A JP15315784A JP15315784A JPS6132582A JP S6132582 A JPS6132582 A JP S6132582A JP 15315784 A JP15315784 A JP 15315784A JP 15315784 A JP15315784 A JP 15315784A JP S6132582 A JPS6132582 A JP S6132582A
Authority
JP
Japan
Prior art keywords
light
semiconductor
layer
main surface
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15315784A
Other languages
Japanese (ja)
Inventor
Junichi Oura
純一 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15315784A priority Critical patent/JPS6132582A/en
Publication of JPS6132582A publication Critical patent/JPS6132582A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a small-sized device having high optical transmittance and photoelectric conversion efficiency by forming a semiconductor layer, EG thereof is smaller than hnu and impurity concentration therein is lower than a specific value, to a p-n junction section while bringing the transmittance of beams reaching to one main surface from the other main surface to a specific value or more. CONSTITUTION:A photodetecting section in which a semiconductor layer 22, a band gap EG thereof is smaller than the energy hnu of input beams and impurity concentration therein is lower than 1X10<19>cm<-3>, is formed onto a first conduction type semiconductor substrate 21, EG thereof is larger than hnu, and a semiconductor layer 23, EG thereof is larger than hnu and which has a conduction type reverse to the semiconductor substrate 21, is shaped onto the semiconductor layer 22 is constituted. The transmittance of beams reaching to one main surface from the other main surface is brought to 50% or more. The layer 22 such as an In0.25Ga0.75As one 22 in doner concentration of 1X10<15>cm<-3> is grown on the substrate 21 such as an n type GaAs one 21 to which Te is doped, and the layer 23 such as a p type GaAs one 23 to which zinc is doped is grown on the layer 22. Optical transmittance is controlled by the thickness of the optical absorption layer 22.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、光を透過または反射させるとともに、入力
先の一部を電気信号に変換する半導体光検出装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor photodetection device that transmits or reflects light and converts a portion of an input destination into an electrical signal.

〔発明の技術蝮背景とその問題点〕[Technical background of the invention and its problems]

半導体のPN接合あるいはショットキ接合を用いた従来
の半導体光検出装置は光を吸収して光電変換を行うもの
で、光電変換効率を高めるだめに入射光を吸収するのに
十分な厚さの半導体層を用いておシ、不透明である。入
射光の一部だけを用いて光検出を行い、その他の光を透
過させて外にと9出すためには、第3図に示したように
、入射光1の光路の中にハーフミ2−4を挿入し、入射
光の一部を反射させてその反射光を光検出装置5で検知
する方法を用いなければならない。この方法は、ハーフ
ミラ−を固定゛rる空間と、ハーフミ2−の傾きを調整
する装置を必要とするため、光検出系を小さくすること
が困難でアリ、シたがって微小な光情報処理用の回路な
どに適用するととが出来ない。また、ハーンミンーには
薄い金RM着展が用いられているので、透過率が低くな
る短所がある。
Conventional semiconductor photodetectors using semiconductor PN junctions or Schottky junctions absorb light and perform photoelectric conversion, and in order to increase the photoelectric conversion efficiency, the semiconductor layer must be thick enough to absorb the incident light. It is opaque. In order to perform light detection using only a part of the incident light and transmit the other light and output it to the outside, a half mirror 2 is inserted in the optical path of the incident light 1, as shown in FIG. 4, a part of the incident light is reflected, and the reflected light is detected by the photodetector 5. This method requires a space to fix the half mirror and a device to adjust the inclination of the half mirror 2, making it difficult to make the light detection system small. When applied to circuits, etc., it cannot be used. Also, since Hahn Min uses a thin gold RM coating, it has the disadvantage of low transmittance.

別の方法として、半導体のPN接合を薄膜にして光透過
性を4=J加する方法が考えられるが、この場合は空乏
層とならない半導体の電気的に中性な領域における光吸
収が存在するために光透過率の損失がでてくる。
Another method is to make the PN junction of the semiconductor a thin film and increase the optical transparency by 4=J, but in this case, there is light absorption in the electrically neutral region of the semiconductor that does not become a depletion layer. This results in a loss of light transmittance.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、上記した半導体光検出装置の欠点を
なくし、光透過率が高く、光電変換効率が高し)、小形
の半導体光検出装置を提供するにある。
An object of the present invention is to eliminate the above-described drawbacks of the semiconductor photodetection device, and to provide a compact semiconductor photodetection device that has high light transmittance and high photoelectric conversion efficiency.

〔発明の概要〕[Summary of the invention]

この発明による半導体光検出装置れ、バンドギヤノンJ
、!!(]が入射する光のエネルギー11ν(hはブラ
ンク定数、νは元の振動数)より大きな半導体材料を用
いてPN接合を形成するにあた松、PN筬合部にMoが
hνより小さく不純物濃度が】X)O”tyn−’より
低い半導体層を設けるとともに、 一方の主面からもう
一方の主面に到る光の透過率をi以上としたことを特徴
とするものである。
Semiconductor photodetector according to the present invention, Bandganon J
,! ! (] is the incident light energy 11ν (h is the blank constant, ν is the original frequency) to form a PN junction using a semiconductor material larger than that, and in the PN reed part Mo is smaller than hν and is an impurity. It is characterized by providing a semiconductor layer having a concentration lower than .

〔発明の効果〕〔Effect of the invention〕

この発明によると、光を吸収して電子と正孔の対発生を
させる半導体層(2)の全体に内部電界が加わるように
することができるので、電子および正孔がその内部電界
によって夫々逆の方向に加速され、し九がって電子と正
孔の再結合確率が小さくなシ、高い効率で光電変換をす
ることができる。
According to this invention, an internal electric field can be applied to the entire semiconductor layer (2) that absorbs light and generates pairs of electrons and holes, so that electrons and holes are reversed by the internal electric field. Therefore, the probability of recombination of electrons and holes is small, and photoelectric conversion can be performed with high efficiency.

また、光吸収領域である半導体層(粉の厚さを薄くする
ことが可能で、それにより光透過率を高くすることがで
きる。この半導体光検出装置は、光路の途中に挿入する
だけで、光路を変えることなく光信号を検出することが
できる。この装置は、薄く小屋にすることができるので
、集積化した光情報処理回路の中に組み込むことができ
、量産化することも可能である。
In addition, it is possible to reduce the thickness of the semiconductor layer (powder), which is the light absorption region, and thereby increase the light transmittance.This semiconductor photodetector can be inserted in the middle of the optical path. It is possible to detect optical signals without changing the optical path.This device can be made into a thin structure, so it can be incorporated into an integrated optical information processing circuit and mass-produced. .

〔発明の実施例〕[Embodiments of the invention]

光信号の光源として発光波要人が940OA(hシー1
.32eV)のGaAs発光ダイオードを選び、本発明
による半導体光検出装置について以下に説明する。
As the light source of the optical signal, the luminescent wave key person uses 940OA (h sea 1
.. A GaAs light emitting diode (32 eV) is selected and a semiconductor photodetection device according to the present invention will be described below.

P形およびN影領域の半導体材料として、波長が87O
A以上の光に対して透明なと化ガリウムUaAs(、l
]G=1.43eV)を、光吸収領域の半導体材料とし
てIn rx GaxAs (x 請0.75. F:
Gwl、12eV )を用いた。第1図が本発明による
半導体光検出装置で、ドナーとして濃度5X1016m
−’ のチルyTeをドープしたn形Ga A 8基板
21の上に、ドナー濃度lX1015cm−’ (D 
In 0.2L Ga0.75 AS層22を成長させ
、さらにその上にアクセプタとして濃度5XlOcm 
 の亜鉛をドープしたP形Ga A s層23を成長さ
せたものである。光電流または光起電力のと)出し電極
は、一方の主面26の上に形成された電極24およびも
う一方の主面27の上に形成された電極25とである。
As a semiconductor material of P type and N shadow region, the wavelength is 87O
Gallium atomide UaAs (, l
]G = 1.43 eV), and In rx GaxAs (x = 0.75. F:
Gwl, 12 eV) was used. Figure 1 shows a semiconductor photodetector according to the present invention, with a concentration of 5x1016 m as a donor.
-' (D
An In0.2L Ga0.75 AS layer 22 is grown, and a concentration of 5XlOcm is further grown on it as an acceptor.
A P-type GaAs layer 23 doped with zinc is grown. The output electrodes for photocurrent or photovoltaic force are an electrode 24 formed on one main surface 26 and an electrode 25 formed on the other main surface 27.

光電流を検出するか光起電力を検出するかは外部の検出
回路によってお)、従来のPN接合フォトダイオードの
場合と同様に、外部のインピーダンスを小さくすれば光
起電力が検出できる。第1図は、光の光路を変えずに光
検出を行う装置で、2つの主面の上で光の入出力を行う
部分は金属電極を除去しである。主面26に入射した光
が主面27に到達する光透過率は、光吸収層(a層)2
2の厚さによって制御することができ、a層の厚さを4
00OA  とすることによって光透過率60%以上を
得た。
Whether photocurrent or photovoltaic force is detected is determined by an external detection circuit.) As with conventional PN junction photodiodes, photovoltaic force can be detected by reducing external impedance. FIG. 1 shows a device that detects light without changing the optical path of light, and the metal electrodes are removed from the parts on the two main surfaces where light is input and output. The light transmittance of the light incident on the main surface 26 reaching the main surface 27 is the light absorption layer (a layer) 2
The thickness of the a layer can be controlled by the thickness of 4.
By setting it to 00OA, a light transmittance of 60% or more was obtained.

〔発明の他の実施例〕[Other embodiments of the invention]

以上の実施例においては、GaAs発光ダイオードを用
いた場合について、GaAsを中心とした半導体材料に
よる光検出装置を説明したが、取扱う光の波長が異る場
合は特許請求の範囲のW、X項で述べた条件を満足する
半導体材料の組み合わせを用いることができる。P影領
域の半導体材料は、前述した実施例においてはN影領域
の半導体材料と同一であったが、特許請求の範囲第1項
で述べた条件を満足するものであれば、N影領域の半導
体材料と異りでもよい。また、第1図22の光吸収層に
ついて実施例ではn形半導体を用いたが、するP形半導
体でもよい。光入射面は、第1図における主面26とし
ても、それと反対側の主面27としてもよい。第1図は
、入射光と透過光の進行方向が同一となっているが、入
射側の主面と反対側の主面の上を反射面とするか、ある
いは第2図に示したように入射側主面と反対側の主面の
近傍に反射面【設けて、入射波を反射させ、同時に光検
出も行う装置とすることができる。
In the above embodiments, a photodetector made of a semiconductor material mainly made of GaAs has been described for the case where a GaAs light emitting diode is used. However, if the wavelength of the light to be handled is different, please refer to the claims W and X of the claims. A combination of semiconductor materials that satisfies the conditions described above can be used. Although the semiconductor material of the P shadow region is the same as the semiconductor material of the N shadow region in the above-described embodiment, it may be the same as the semiconductor material of the N shadow region as long as it satisfies the conditions stated in claim 1. It may be different from the semiconductor material. Further, although an n-type semiconductor is used in the embodiment for the light absorption layer shown in FIG. 22, a p-type semiconductor may also be used. The light incident surface may be the main surface 26 in FIG. 1 or the main surface 27 on the opposite side. In Figure 1, the traveling directions of the incident light and the transmitted light are the same, but the main surface on the opposite side to the incident side may be used as a reflecting surface, or as shown in Figure 2. A reflective surface may be provided near the main surface on the opposite side to the main surface on the incident side to reflect the incident wave and also perform light detection at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明0一実施例である光透過形半導体光検出
装置を説明するための図、第2図は本発明の他の実施例
を示す光反射形半導体光検出装置を説明するための図、
第3図は従来技術による光透過形検出装置を説明するだ
めの図である。 1、・・・入射光、2.・・・出力光、3.・・・反射
光。 4、・・・ハーフミラ−15,・・・光検出器、21.
33・・・N形半導体基板、   22.32.・・・
光吸収層、  23.33.・・・P形半導体層、  
 24.25.34.35.・・・電極、26.36.
・・・一方の主面、  27.37.・・・他方の主面
、38.・・・光反射板。 第1図 第2図 第8図
FIG. 1 is a diagram for explaining a light transmission type semiconductor photodetection device which is an embodiment of the present invention, and FIG. 2 is a diagram for explaining a light reflection type semiconductor photodetection device showing another embodiment of the present invention. diagram,
FIG. 3 is a diagram for explaining a light transmission type detection device according to the prior art. 1. Incident light, 2. ...output light, 3. ···reflected light. 4, . . . half mirror 15, . . photodetector, 21.
33...N-type semiconductor substrate, 22.32. ...
Light absorption layer, 23.33. ...P-type semiconductor layer,
24.25.34.35. ...electrode, 26.36.
...One main surface, 27.37. ...Other main surface, 38. ...Light reflecting plate. Figure 1 Figure 2 Figure 8

Claims (3)

【特許請求の範囲】[Claims] (1)禁制帯(エネルギーバンドギャップE_G)が入
力先のエネルギーhνより大きな第1導電形の半導体基
板(1)の上に、E_Gがhνより小さく、不純物濃度
が1×10^1^9cm^−^3より低い半導体層(2
)を形成し、該半導体層上にE_Gがhνより大きく、
半導体基板(1)と反対の導電形を有する半導体層(8
)を形成してなる光検出部をもち、一方の主面から他の
主面に到る光の透過率を50%以上にしたことを特徴と
する光透過形半導体光検出装置。
(1) On a semiconductor substrate (1) of the first conductivity type whose forbidden band (energy band gap E_G) is larger than the energy hν of the input destination, E_G is smaller than hν and the impurity concentration is 1×10^1^9 cm^ −^3 Semiconductor layer lower than 3 (2
) is formed on the semiconductor layer, E_G is larger than hν,
A semiconductor layer (8) having a conductivity type opposite to that of the semiconductor substrate (1).
1. A light-transmissive semiconductor photodetecting device, characterized in that it has a photodetecting section formed by forming a semiconductor device with a light transmittance of 50% or more from one principal surface to the other principal surface.
(2)一方の主面から入射した光が他方の主面の外へ透
過することを特徴とする特許請求の範囲第1項記載の半
導体光検出装置。
(2) The semiconductor photodetecting device according to claim 1, wherein light incident from one principal surface is transmitted out of the other principal surface.
(3)光入射面と反対側の主面の上、あるいはその近傍
に光反射面を設け、入射光を反射させることを特徴とす
る特許請求の範囲第1項記載の光透過形半導体光検出装
置。
(3) A light-transmissive semiconductor photodetector according to claim 1, characterized in that a light-reflecting surface is provided on or near the main surface opposite to the light-incident surface to reflect the incident light. Device.
JP15315784A 1984-07-25 1984-07-25 Light transmission type semiconductor photodetector Pending JPS6132582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15315784A JPS6132582A (en) 1984-07-25 1984-07-25 Light transmission type semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15315784A JPS6132582A (en) 1984-07-25 1984-07-25 Light transmission type semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS6132582A true JPS6132582A (en) 1986-02-15

Family

ID=15556275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15315784A Pending JPS6132582A (en) 1984-07-25 1984-07-25 Light transmission type semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS6132582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126875A (en) * 1989-07-19 1992-06-30 Fujitsu Limited Semiconductor optical device having a variable refractive index profile
JPH05501759A (en) * 1989-11-28 1993-04-02 ハネウェル・インコーポレーテッド Linearization of the output of the detection bridge circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126875A (en) * 1989-07-19 1992-06-30 Fujitsu Limited Semiconductor optical device having a variable refractive index profile
JPH05501759A (en) * 1989-11-28 1993-04-02 ハネウェル・インコーポレーテッド Linearization of the output of the detection bridge circuit

Similar Documents

Publication Publication Date Title
US6326649B1 (en) Pin photodiode having a wide bandwidth
JP2008066584A (en) Photosensor
JPH0677518A (en) Semiconductor photodetector
JPH04111478A (en) Light-receiving element
JPH04246868A (en) P-i-n photodiode and method of improving efficiency thereof
US5272364A (en) Semiconductor photodetector device with short lifetime region
JPS6132582A (en) Light transmission type semiconductor photodetector
JPS63244688A (en) Photovoltaic element
JPH05102513A (en) Semiconductor phtodetector
JPH04263475A (en) Semiconductor photodetector and manufacture thereof
JPS6269687A (en) Semiconductor photodetector
JPH04342174A (en) Semiconductor photoelectric receiving element
JPS5996777A (en) Photovoltaic element
JPS63161680A (en) Semiconductor photodetector
JP2001308366A (en) Photodiode
JPS5990964A (en) Photodetector
JP2004158763A (en) Semiconductor photo detector
JPH1117211A (en) Semiconductor planar photodiode and device therewith
US20240186434A1 (en) Light Sensitive Element
JP2004327886A (en) Semiconductor photo-receiving element
JPH05136446A (en) Semiconductor photodetector
JPH02241066A (en) Semiconductor photodetector
JPH05327001A (en) Photodetector
JPH0373576A (en) Semiconductor photodetector
JPH0427171A (en) Semiconductor device