JP2004327886A - Semiconductor photo-receiving element - Google Patents

Semiconductor photo-receiving element Download PDF

Info

Publication number
JP2004327886A
JP2004327886A JP2003123261A JP2003123261A JP2004327886A JP 2004327886 A JP2004327886 A JP 2004327886A JP 2003123261 A JP2003123261 A JP 2003123261A JP 2003123261 A JP2003123261 A JP 2003123261A JP 2004327886 A JP2004327886 A JP 2004327886A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
photo
light
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123261A
Other languages
Japanese (ja)
Inventor
Nobuyuki Komaba
信幸 駒場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003123261A priority Critical patent/JP2004327886A/en
Publication of JP2004327886A publication Critical patent/JP2004327886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor photo-receiving element which allows improvement of photo-sensitivity and increase of photo-response rate which are contradictory each other. <P>SOLUTION: An n-type InP buffer layer 22, a reflector layer 23, an i-type InGaAs photo-absorption layer 24, and an n-type InP cap layer 28 are laminated on an n-type InP substrate, and zinc(Zn) is diffused in the n-type InP cap layer 28 to form a p-type diffusion region 32 as a photo-receiving portion. The reflector layer 23 is formed of a laminated structure where 16 to 22 pairs of InP and AlGaInAs are laminated. The light passing through the i-type InGaAs photo-absorption layer 24, in light incident from the p-type diffusion region 32, is reflected to the i-type InGaAs photo-absorption 24 by the reflector layer 23, and a film thickness of the i-type InGaAs photo-absorption layer 24 may increase in appearance. Since carriers, produced in the i-type InGaAs photo-absorption layer 24, pass through the reflector layer 23 as it is, an effect on a photo-response rate does not occur. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光検出器モジュールに用いられ、入力した光信号を電気信号に変換する半導体受光素子に関する。
【0002】
【従来の技術】
従来、半導体受光素子として、例えば、特許文献1に開示されたものが知られている。この公報に開示されている従来の半導体受光素子は、受光部となるpn接合を拡散により形成したpin構造のフォトダイオードである。図1に従来の受光素子が形成されたウエハ構造の断面図を示す。n−InP基板20上に、n−InPバッファ層22,i(アンドープ)−InGaAs光吸収層24,n−InPキャップ層28が積層され、n−InPキャップ層28内に亜鉛(Zn)が拡散されて、p型拡散領域32が形成され、pinフォトダイオードが作られる。
【0003】
p型拡散領域32にp型電極34を形成し、基板裏面にn型電極36を形成し、また、表面には窒化シリコン膜単膜の反射防止膜30を有する。
【0004】
i−InGaAs光吸収層24で光が吸収されてキャリアを発生し、キャリアのドリフトによりp型電極34とn型電極36の間に光起電力を発生する。p型電極34とn型電極36が外部回路で閉じている場合、その回路には光電流(入射光量に比例する電流)が流れる。
【0005】
【特許文献1】
特開平5−37002号公報
【0006】
【発明が解決しようとする課題】
しかしながら、この光吸収層にInGaAsを用いた従来の半導体受光素子において、受光感度を向上させようとすると、次のような問題があった。
【0007】
すなわち、受光感度を向上させるためには、InGaAs層での光の吸収を増大させる必要がある。InGaAs層での光の吸収量I−Iは、
−I=I−Iexp(−αd)=I{1−exp(−αd)}
:入射光量 I:透過光量 α:吸収係数 d:膜厚
で決まるため、InGaAs層での光の吸収を増大させるには、InGaAs層の膜厚を増加させることが必要となる。
【0008】
図2は、InGaAs層の吸収係数が1.23×10−4/cmであるときの、λ=1.55μmの光に対するInGaAs層の膜厚と光の吸収量との関係を示す図である。光吸収量は、入射光量が全て吸収されたときを1.0として示している。図2に示すように、膜厚が増加するにつれて、光吸収量が増大している。
【0009】
一方でInGaAs層において発生したキャリアは、電界方向すなわち膜厚方向に移動するため、膜厚の増大は、電極までのキャリアのドリフト時間を長くすることになり、光応答速度を低下させるという問題がある。図3は、InGaAs層の膜厚と応答時間との関係を示す図である。受光部サイズを50μmφ、キャリア濃度を1×1015cm−3、外部抵抗を50Ω、ドリフト速度を10cm/sとした。細い実線は、キャリアのドリフト時間を示しており、点線は、RC時定数に起因した応答時間を示しており、太い実線は、合計した時間を示している。図3から、膜厚が約1μm以上の部分で、膜厚が増加するにつれて光応答速度が低下することが分かる。
【0010】
以上のように、受光領域で生成されたキャリアは、電界方向すなわち厚さ方向にドリフトするため、膜厚が厚いほど時間を要し、光応答速度が遅くなり、一方で膜厚が薄いと光吸収量が減少し、感度の低下をもたらす。
【0011】
本発明は、このような従来の問題点に着目してなされたもので、その目的は、相反する受光感度の向上と光応答速度の向上を可能にする半導体受光素子を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、半導体基板上に第1導電型の第1の半導体層と、光吸収層と、第1導電型の第2の半導体層とを積層して備え、第2の半導体層内に前記光吸収層に達する第2導電型の拡散領域が形成されている半導体受光素子において、光吸収層と第1の半導体層との間に、表面より入射した光を反射する反射鏡層を備えることを特徴とする。
【0013】
反射鏡層は、ブラッグ反射の条件を満たす第1の反射鏡層と第2の反射鏡層とを重ねたものを1ペアとして複数ペア積層した積層構造からなることが好ましく、第1の反射鏡層と第2の反射鏡層とを重ねたものを1ペアとして16〜22ペア積層させた構造からなることが好ましい。
【0014】
また、第1の反射鏡層はInPからなり、第2の反射鏡層はAlGaInAsからなることが好ましく、光吸収層は、アンドープのInGaAsからなり、第1および第2の半導体層は、n型のInPからなることが好ましい。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して説明する。
【0016】
図4は、本発明に係る半導体受光素子が形成されたウエハ構造を示す断面図である。本発明に係る半導体受光素子は、図1に示した従来の拡散型受光素子の光吸収層下部すなわちInPバッファ層とInGaAs光吸収層との間に、ブラッグ反射の条件を満たす2つの層を重ねたものを1ペアとして複数ペア積層した反射鏡構造の層を挿入したものである。表面より入射した光のうち、光吸収層を通過した光は、反射鏡構造により光吸収層に反射される。図4において、図1と同じ構成要素には、同一の参照番号を付して示している。
【0017】
n−InP基板20上に、n−InPバッファ層22,反射鏡層23,i(アンドープ)−InGaAs光吸収層24,n−InPキャップ層28が積層され、n−InPキャップ層28内に亜鉛(Zn)が拡散されて、受光部となるp型拡散領域32が形成されている。
【0018】
p型拡散領域32にはp型電極34が形成され、基板裏面にはn型電極36が形成され、また、表面には窒化シリコン(SiN)膜単膜の反射防止膜30が形成されている。すなわち、本発明に係る半導体受光素子は、pin構造のフォトダイオードである。
【0019】
このような受光素子は、次のようにして作製される。n−InP基板20上に、MOCVD法により、n−InPバッファ層22,反射鏡層23,i−InGaAs光吸収層24,n−InPキャップ層28を連続してエピタキシャル成長する。次に、n−InPキャップ層28の一部にZnを拡散させて、i−InGaAs光吸収層24に達するp型拡散領域32からなる受光部を形成する。そして、n−InPキャップ層28上に反射防止膜30を形成し、基板表面に、p型拡散領域32の一部に接触するp型電極を形成し、基板裏面にn型電極36を形成する。
【0020】
i−InGaAs光吸収層24とInPバッファ層22との間に反射鏡構造の反射鏡層23を挿入すると、p型拡散領域32より入射した光のうち、i−InGaAs光吸収層24を通過した光は、反射鏡層23によりi−InGaAs光吸収層24に反射される。例えば、反射鏡層23での光吸収をゼロとした場合、i−InGaAs光吸収層24の膜厚が実質的に2倍になる。しかし、発生したキャリアにとっては、反射鏡層23はそのまま通過するため光応答速度への影響は発生しない。
【0021】
図5は、反射鏡層の構造の一例を示す図である。反射鏡層は、図5に示すように、InPとAl0.05Ga0.42In0.53As(以下、AlGaInAsと略す)を重ねたものを1ペアとして、16〜22ペア積層した積層構造となっている。この材料は、InPに格子整合する材料系であるので、特別な成長技法は不要である。
【0022】
波長1.55μmでの各層の屈折率は、InP層が3.17、AlGaInAs層が3.80である。
【0023】
各層の膜厚は、ブラッグ反射の条件(λ/4n、ここで、λは波長、nは屈折率)から設定され、波長λを1.55μmとした場合、InP層の膜厚は、1550/(4×3.17)=122.2nmとなり、AlGaInAs層の膜厚は、1550/(4×3.80)=102.0nmとなる。
【0024】
したがって、InP層とAlGaInAs層からなる1ペアの膜厚は224.2nmとなり、22ペア積層させた構造の反射鏡層の膜厚は、224.2×22=4932.4nm=4.93μmとなり、16ペア積層させた構造の反射鏡層の膜厚は、224.2×16=3587.2nm=3.59μmとなる。
【0025】
このようなInP層とAlGaInAs層を22ペア積層させたときの反射率は、99.9%と、ほぼ100%に達した。また、16ペア積層させたときの反射率は96%であった。
【0026】
図1に示す従来のウエハ構造、および図4に示す反射鏡層を挿入したウエハ構造を用いて受光素子を作製し、その光感度を測定した。InGaAs光吸収層の膜厚は、従来のウエハ構造および反射鏡層を挿入したウエハ構造とも1.4μmとした。また、反射鏡層は、InP層とAlGaInAs層とを22ペア積層して形成した。
【0027】
反射鏡層のない受光素子の場合の光感度は、1.0A/Wであったが、反射鏡層のある受光素子の場合には、光感度が1.14A/Wに増大し、光感度の向上が確認できた。
【0028】
これは、入射光が反射鏡により透過することなく再度光吸収層に反射され、吸収に寄与するため、光吸収層の膜厚が実質的に2倍になり、光吸収量が増加するためである。
【0029】
【発明の効果】
以上説明したように、本発明は、従来の半導体受光素子構造に比べ、より薄い光吸収層膜厚で同等の光感度が得られ、また、光吸収層膜厚が薄いため、キャリアの走行時間が低減され、そのため、光応答速度が向上する。
【図面の簡単な説明】
【図1】従来の受光素子が形成されたウエハ構造を示す断面図である。
【図2】InGaAs層の膜厚と光の吸収量との関係を示す図である。
【図3】InGaAs層の膜厚と応答時間との関係を示す図である。
【図4】本発明に係る半導体受光素子が形成されたウエハ構造を示す断面図である。
【図5】反射鏡層の構造の一例を示す図である。
【符号の説明】
20 n−InP基板
22 n−InPバッファ層
23 反射鏡層
24 i−InGaAs光吸収層
28 n−InPキャップ層
30 反射防止膜
32 p型拡散領域
34 p型電極
36 n型電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light receiving element that is used for a photodetector module and converts an input optical signal into an electric signal.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a semiconductor light receiving element, for example, one disclosed in Patent Document 1 is known. The conventional semiconductor light receiving element disclosed in this publication is a photodiode having a pin structure in which a pn junction serving as a light receiving portion is formed by diffusion. FIG. 1 shows a sectional view of a wafer structure on which a conventional light receiving element is formed. An n-InP buffer layer 22, an i- (undoped) -InGaAs light absorbing layer 24, and an n-InP cap layer 28 are stacked on an n-InP substrate 20, and zinc (Zn) diffuses into the n-InP cap layer 28. Thus, a p-type diffusion region 32 is formed, and a pin photodiode is manufactured.
[0003]
A p-type electrode 34 is formed in the p-type diffusion region 32, an n-type electrode 36 is formed on the back surface of the substrate, and an antireflection film 30 of a single silicon nitride film is formed on the surface.
[0004]
Light is absorbed by the i-InGaAs light absorbing layer 24 to generate carriers, and photovoltaic power is generated between the p-type electrode 34 and the n-type electrode 36 due to the drift of the carriers. When the p-type electrode 34 and the n-type electrode 36 are closed by an external circuit, a photocurrent (a current proportional to the amount of incident light) flows through the circuit.
[0005]
[Patent Document 1]
JP-A-5-37002
[Problems to be solved by the invention]
However, in a conventional semiconductor light receiving element using InGaAs for the light absorbing layer, there are the following problems when trying to improve the light receiving sensitivity.
[0007]
That is, in order to improve the light receiving sensitivity, it is necessary to increase the light absorption in the InGaAs layer. The light absorption amount I 0 -I in the InGaAs layer is
I 0 −I = I 0 −I 0 exp (−αd) = I 0 {1-exp (−αd)}
I 0 : incident light amount I: transmitted light amount α: absorption coefficient d: determined by the film thickness, it is necessary to increase the film thickness of the InGaAs layer in order to increase light absorption in the InGaAs layer.
[0008]
FIG. 2 is a diagram showing the relationship between the thickness of the InGaAs layer and the amount of light absorption for light of λ = 1.55 μm when the absorption coefficient of the InGaAs layer is 1.23 × 10 −4 / cm. . The light absorption amount is shown as 1.0 when all the incident light amounts are absorbed. As shown in FIG. 2, the light absorption increases as the film thickness increases.
[0009]
On the other hand, carriers generated in the InGaAs layer move in the direction of the electric field, that is, in the direction of the film thickness. Therefore, increasing the film thickness increases the drift time of the carriers to the electrode, and lowers the optical response speed. is there. FIG. 3 is a diagram showing the relationship between the thickness of the InGaAs layer and the response time. The size of the light receiving portion was 50 μmφ, the carrier concentration was 1 × 10 15 cm −3 , the external resistance was 50Ω, and the drift speed was 10 7 cm / s. The thin solid line shows the carrier drift time, the dotted line shows the response time due to the RC time constant, and the thick solid line shows the total time. From FIG. 3, it can be seen that the light response speed decreases as the film thickness increases in a portion where the film thickness is about 1 μm or more.
[0010]
As described above, the carriers generated in the light receiving region drift in the direction of the electric field, that is, in the thickness direction. Therefore, the longer the film thickness, the longer the time and the slower the optical response speed. The absorption is reduced, leading to a reduction in sensitivity.
[0011]
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a semiconductor light receiving element capable of improving contradictory light receiving sensitivity and light response speed.
[0012]
[Means for Solving the Problems]
The present invention includes a first semiconductor layer of a first conductivity type, a light absorption layer, and a second semiconductor layer of a first conductivity type stacked on a semiconductor substrate, wherein the second semiconductor layer is provided in the second semiconductor layer. In a semiconductor light receiving element having a diffusion region of the second conductivity type reaching the light absorption layer, a reflection mirror layer for reflecting light incident from the surface is provided between the light absorption layer and the first semiconductor layer. It is characterized by.
[0013]
The reflecting mirror layer preferably has a laminated structure in which a plurality of pairs of a first reflecting mirror layer and a second reflecting mirror layer satisfying the Bragg reflection condition are stacked as one pair. It is preferable to have a structure in which 16 to 22 pairs are stacked as one pair in which a layer and a second reflecting mirror layer are stacked.
[0014]
Preferably, the first reflector layer is made of InP, the second reflector layer is made of AlGaInAs, the light absorbing layer is made of undoped InGaAs, and the first and second semiconductor layers are n-type. Of InP.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0016]
FIG. 4 is a sectional view showing a wafer structure on which the semiconductor light receiving element according to the present invention is formed. In the semiconductor light receiving device according to the present invention, two layers satisfying the Bragg reflection condition are stacked below the light absorption layer of the conventional diffusion type light reception device shown in FIG. 1, that is, between the InP buffer layer and the InGaAs light absorption layer. In this example, a plurality of layers are stacked as a pair, and layers of a reflecting mirror structure in which a plurality of pairs are stacked are inserted. Of the light incident from the surface, light that has passed through the light absorbing layer is reflected by the light absorbing layer by the reflecting mirror structure. 4, the same components as those in FIG. 1 are denoted by the same reference numerals.
[0017]
On an n-InP substrate 20, an n-InP buffer layer 22, a reflector layer 23, an i (undoped) -InGaAs light absorbing layer 24, and an n-InP cap layer 28 are stacked. (Zn) is diffused to form a p-type diffusion region 32 serving as a light receiving portion.
[0018]
A p-type electrode 34 is formed in the p-type diffusion region 32, an n-type electrode 36 is formed on the back surface of the substrate, and an antireflection film 30 made of a single silicon nitride (SiN) film is formed on the front surface. . That is, the semiconductor light receiving element according to the present invention is a photodiode having a pin structure.
[0019]
Such a light receiving element is manufactured as follows. On the n-InP substrate 20, an n-InP buffer layer 22, a reflecting mirror layer 23, an i-InGaAs light absorbing layer 24, and an n-InP cap layer 28 are successively epitaxially grown by MOCVD. Next, Zn is diffused into a part of the n-InP cap layer 28 to form a light receiving portion including the p-type diffusion region 32 reaching the i-InGaAs light absorption layer 24. Then, an anti-reflection film 30 is formed on the n-InP cap layer 28, a p-type electrode is formed on a part of the p-type diffusion region 32 on the surface of the substrate, and an n-type electrode 36 is formed on the back surface of the substrate. .
[0020]
When the reflecting mirror layer 23 having a reflecting mirror structure was inserted between the i-InGaAs light absorbing layer 24 and the InP buffer layer 22, of the light incident from the p-type diffusion region 32, the light passed through the i-InGaAs light absorbing layer 24. The light is reflected by the reflecting mirror layer 23 to the i-InGaAs light absorbing layer 24. For example, when the light absorption in the reflecting mirror layer 23 is set to zero, the thickness of the i-InGaAs light absorbing layer 24 is substantially doubled. However, the generated carriers pass through the reflecting mirror layer 23 as they are, so that there is no influence on the optical response speed.
[0021]
FIG. 5 is a diagram illustrating an example of the structure of the reflecting mirror layer. As shown in FIG. 5, 16 to 22 pairs of reflective mirror layers are stacked, with InP and Al 0.05 Ga 0.42 In 0.53 As (hereinafter abbreviated as AlGaInAs) as one pair. It has a structure. Since this material is a material system that is lattice-matched to InP, no special growth technique is required.
[0022]
The refractive index of each layer at a wavelength of 1.55 μm is 3.17 for the InP layer and 3.80 for the AlGaInAs layer.
[0023]
The thickness of each layer is set based on the condition of Bragg reflection (λ / 4n, where λ is a wavelength and n is a refractive index). When the wavelength λ is 1.55 μm, the thickness of the InP layer is 1550 / (4 × 3.17) = 122.2 nm, and the thickness of the AlGaInAs layer is 1550 / (4 × 3.80) = 102.0 nm.
[0024]
Therefore, the film thickness of one pair of the InP layer and the AlGaInAs layer is 224.2 nm, and the film thickness of the reflecting mirror layer having a structure of 22 pairs is 224.2 × 22 = 4932.4 nm = 4.93 μm. The thickness of the reflecting mirror layer having a structure in which 16 pairs are stacked is 224.2 × 16 = 3587.2 nm = 3.59 μm.
[0025]
When 22 pairs of such an InP layer and an AlGaInAs layer were stacked, the reflectance reached 99.9%, almost reaching 100%. In addition, the reflectivity when 16 pairs were stacked was 96%.
[0026]
Light receiving elements were manufactured using the conventional wafer structure shown in FIG. 1 and the wafer structure in which the reflecting mirror layer was inserted as shown in FIG. 4, and the light sensitivity was measured. The thickness of the InGaAs light absorbing layer was 1.4 μm for both the conventional wafer structure and the wafer structure in which the reflecting mirror layer was inserted. The reflecting mirror layer was formed by laminating 22 pairs of an InP layer and an AlGaInAs layer.
[0027]
The light sensitivity in the case of the light receiving element without the reflecting mirror layer was 1.0 A / W, but in the case of the light receiving element with the reflecting mirror layer, the light sensitivity increased to 1.14 A / W, and the light sensitivity was increased. Improvement was confirmed.
[0028]
This is because the incident light is reflected by the light absorbing layer again without being transmitted by the reflecting mirror and contributes to the absorption, so that the film thickness of the light absorbing layer is substantially doubled, and the amount of light absorption increases. is there.
[0029]
【The invention's effect】
As described above, according to the present invention, compared with the conventional semiconductor light receiving element structure, the same light sensitivity can be obtained with a thinner light absorbing layer thickness, and the carrier absorption time can be reduced because the light absorbing layer thickness is thinner. Is reduced, and the light response speed is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a wafer structure on which a conventional light receiving element is formed.
FIG. 2 is a diagram showing the relationship between the thickness of an InGaAs layer and the amount of light absorbed.
FIG. 3 is a diagram showing a relationship between the thickness of an InGaAs layer and a response time.
FIG. 4 is a sectional view showing a wafer structure on which a semiconductor light receiving element according to the present invention is formed.
FIG. 5 is a diagram showing an example of the structure of a reflecting mirror layer.
[Explanation of symbols]
Reference Signs List 20 n-InP substrate 22 n-InP buffer layer 23 reflecting mirror layer 24 i-InGaAs light absorbing layer 28 n-InP cap layer 30 antireflection film 32 p-type diffusion region 34 p-type electrode 36 n-type electrode

Claims (5)

半導体基板上に第1導電型の第1の半導体層と、光吸収層と、第1導電型の第2の半導体層とを積層して備え、前記第2の半導体層内に前記光吸収層に達する第2導電型の拡散領域が形成されている半導体受光素子において、
前記光吸収層と前記第1の半導体層との間に、表面より入射した光を反射する反射鏡層を備えることを特徴とする半導体受光素子。
A first conductivity type first semiconductor layer, a light absorption layer, and a first conductivity type second semiconductor layer laminated on a semiconductor substrate, wherein the light absorption layer is provided in the second semiconductor layer; In a semiconductor light receiving element in which a diffusion region of the second conductivity type reaching
A semiconductor light receiving element comprising a reflector layer between the light absorbing layer and the first semiconductor layer for reflecting light incident from a surface.
前記反射鏡層は、ブラッグ反射の条件を満たす第1の反射鏡層と第2の反射鏡層とを重ねたものを1ペアとして複数ペア積層した積層構造からなることを特徴とする請求項1に記載の半導体受光素子。2. The reflection mirror layer according to claim 1, wherein a plurality of pairs of a first reflection mirror layer and a second reflection mirror layer satisfying a Bragg reflection condition are stacked. 3. The semiconductor light receiving element according to item 1. 前記反射鏡層は、第1の反射鏡層と第2の反射鏡層とを重ねたものを1ペアとして16〜22ペア積層させた構造からなることを特徴とする請求項1または2に記載の半導体受光素子。The said reflecting mirror layer has the structure which laminated | stacked 16-22 pairs as what laminated | stacked the 1st reflecting mirror layer and the 2nd reflecting mirror layer as one pair, The Claim 1 or 2 characterized by the above-mentioned. Semiconductor light receiving element. 前記第1の反射鏡層はInPからなり、前記第2の反射鏡層はAlGaInAsからなることを特徴とする請求項1〜3のいずれかに記載の半導体受光素子。4. The semiconductor light receiving device according to claim 1, wherein said first reflecting mirror layer is made of InP, and said second reflecting mirror layer is made of AlGaInAs. 前記光吸収層は、アンドープのInGaAsからなり、前記第1および第2の半導体層は、n型のInPからなることを特徴とする請求項1〜4のいずれかに記載の半導体受光素子。5. The semiconductor light receiving device according to claim 1, wherein said light absorbing layer is made of undoped InGaAs, and said first and second semiconductor layers are made of n-type InP.
JP2003123261A 2003-04-28 2003-04-28 Semiconductor photo-receiving element Pending JP2004327886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123261A JP2004327886A (en) 2003-04-28 2003-04-28 Semiconductor photo-receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123261A JP2004327886A (en) 2003-04-28 2003-04-28 Semiconductor photo-receiving element

Publications (1)

Publication Number Publication Date
JP2004327886A true JP2004327886A (en) 2004-11-18

Family

ID=33501203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123261A Pending JP2004327886A (en) 2003-04-28 2003-04-28 Semiconductor photo-receiving element

Country Status (1)

Country Link
JP (1) JP2004327886A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283854A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Optical semiconductor device
JP2011071252A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Semiconductor light receiving element
JP2013506287A (en) * 2009-09-24 2013-02-21 スウェディセ アクチボラゲット Avalanche type photodiode
CN112234116A (en) * 2019-06-27 2021-01-15 张家港恩达通讯科技有限公司 Indium gallium arsenic photoelectric detector with reflecting layer and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283854A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Optical semiconductor device
JP2013506287A (en) * 2009-09-24 2013-02-21 スウェディセ アクチボラゲット Avalanche type photodiode
JP2011071252A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Semiconductor light receiving element
CN112234116A (en) * 2019-06-27 2021-01-15 张家港恩达通讯科技有限公司 Indium gallium arsenic photoelectric detector with reflecting layer and preparation method thereof

Similar Documents

Publication Publication Date Title
US20190259888A1 (en) Photovoltaic device
US7795064B2 (en) Front-illuminated avalanche photodiode
TW580774B (en) Photodetector having improved photoresponsitivity over a broad wavelength region
US20080191241A1 (en) Semiconductor photodetector device
JP2006339413A (en) Semiconductor light receiving device and its manufacturing method
JP2002289904A (en) Semiconductor light-receiving element and its manufacturing method
JP2011124450A (en) Semiconductor light reception element
US9406832B2 (en) Waveguide-coupled MSM-type photodiode
JPH0677518A (en) Semiconductor photodetector
EP1204148A2 (en) Planar resonant cavity enhanced photodetector
JP2004327886A (en) Semiconductor photo-receiving element
JPH01296676A (en) Semiconductor photodetecting device
JPH07118548B2 (en) III-V group compound semiconductor PIN photo diode
JP2004319684A (en) Semiconductor light receiving device and its manufacturing method
JPS6269687A (en) Semiconductor photodetector
JPH05102513A (en) Semiconductor phtodetector
JP2004158763A (en) Semiconductor photo detector
JPH05327001A (en) Photodetector
JPS62282469A (en) Semiconductor photodetector
JPS59149070A (en) Photodetector
JPH01205477A (en) Photo diode
JPH01264273A (en) Semiconductor photodetector
JPH0480973A (en) Semiconductor photodetector
SE0950698A1 (en) Avalanche photodiode photodiode.
JPH05136446A (en) Semiconductor photodetector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118