JPS63204645A - Photodetector and optoelectronic device having such photodetector built-in - Google Patents

Photodetector and optoelectronic device having such photodetector built-in

Info

Publication number
JPS63204645A
JPS63204645A JP62035535A JP3553587A JPS63204645A JP S63204645 A JPS63204645 A JP S63204645A JP 62035535 A JP62035535 A JP 62035535A JP 3553587 A JP3553587 A JP 3553587A JP S63204645 A JPS63204645 A JP S63204645A
Authority
JP
Japan
Prior art keywords
light
receiving element
photodetector
receiving
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62035535A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ito
清志 伊藤
Masaaki Tsuchiya
土屋 正明
Yoichi Yasuda
洋一 安田
Tsunetoshi Kawabata
川端 常敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Renesas Eastern Japan Semiconductor Inc
Original Assignee
Hitachi Ltd
Hitachi Tohbu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Tohbu Semiconductor Ltd filed Critical Hitachi Ltd
Priority to JP62035535A priority Critical patent/JPS63204645A/en
Publication of JPS63204645A publication Critical patent/JPS63204645A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a photodetector improved in characteristics, having a large photodetecting area and generating less dark current, by forming the photodetector of an InGaAsP-type material generating little dark current and providing a plurality of photodetecting regions electrically independently from each other on the principal face thereof so as to utilize these region in series for photo detection. CONSTITUTION:A photodetector 1 is formed of an InGaAsP-type material and constructed such that a plurality of photodetecting regions 2 electrically independent from each other are arranged close to each other on the principal face thereof. When this photodetector 1 is incorporated in a package, one electrodes of the photodetecting regions 2 are electrically connected to leads which are electrically independent from each other. Since the InGaAsP-type material forming the photodetector generates little dark current, it is possible to obtain a long-wave photodetector having improved characteristics, in noise properties for example. Further, since a plurality of photodetecting regions 2 are arranged close to each other, it is possible to substantially increase the photodetecting area by using these photodetecting regions in series.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は受光素子、特に受光面積の広い受光素子および
この受光素子を組み込んだ光電子装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light receiving element, particularly a light receiving element having a large light receiving area, and a photoelectronic device incorporating this light receiving element.

〔従来の技術〕[Conventional technology]

光通信用半纏体レーザ装置において、発光されるレーザ
光の光出力を検出するデテクタとして、一般に受光素子
が使用されている。たとえば、工業調査会発行「電子材
料J 1979年12月号、昭和54年12月1日発行
、P35〜P39には、m−v族化合物半導体材料で構
成された受光素子について記載されている。また、同文
献には、波長1.0μm〜1.6μm帯の光を受光する
ものとして、Ge受光素子があるが、Ge受光素子は暗
電流が大きく、Si受光素子に比較してアバランシェホ
トダイオードの増倍雑音特性が劣る旨記載されている。
In a semi-integrated laser device for optical communication, a light receiving element is generally used as a detector for detecting the optical output of emitted laser light. For example, "Electronic Materials J, December 1979 issue, December 1, 1979, pages 35 to 39, published by Kogyo Research Association, describes a light-receiving element made of an m-v group compound semiconductor material. In addition, the same document describes a Ge light receiving element as a device that receives light in the wavelength band of 1.0 μm to 1.6 μm, but the Ge light receiving element has a large dark current, and compared to the Si light receiving element, it is difficult to use an avalanche photodiode. It is stated that the multiplication noise characteristics are inferior.

また、この文献には、I nGaAsP系の受光素子の
暗電流は、バイアス電圧−2ovf約3X10−’A/
cm”であり、Ge−APDの暗電流約I Xl 0−
’A/ cm”と比ヘテ1桁以上小さい旨記載されてい
る。
In addition, this document states that the dark current of an InGaAsP-based light receiving element is approximately 3X10-'A/
cm”, and the dark current of Ge-APD is about I Xl 0−
It is stated that the ratio is more than one order of magnitude smaller than 'A/cm'.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、長波長帯受光素子としては、Ge受光素
子が使用されている。また、Ge受光素子は、結晶がG
eのみによる単結晶であることから、結晶欠陥も少なく
、受光面積を大きくできる特長もある。たとえば、Ge
受光素子にあっては、受光領域(面積)の直径が2〜3
mmにも及ぶ受光素子の量産化も可能である。
As mentioned above, a Ge light receiving element is used as a long wavelength band light receiving element. In addition, in the Ge photodetector, the crystal is G
Since it is a single crystal made only of e, it has the advantage of having few crystal defects and a large light-receiving area. For example, Ge
In the light-receiving element, the diameter of the light-receiving region (area) is 2 to 3
It is also possible to mass-produce light-receiving elements up to mm in size.

これに対して、m−v族化合物半導体を用いた受光素子
、たとえば、InGaAsP系の受光素子の場合は、受
光面積の直径が1mm程度のものしか量産化できない。
On the other hand, in the case of a light-receiving element using an m-v group compound semiconductor, for example, an InGaAsP-based light-receiving element, only a light-receiving area with a diameter of about 1 mm can be mass-produced.

これは、InGaAsP系の受光素子が数種類の元素を
組み合わせた化合物半導体によるものであり、前記Ge
受光素子の単一材料を用いた場合の結晶、すなわち、単
結晶に比較して、結晶欠陥が発生し易いことによる。結
晶欠陥が発生し易い材料による受光面積の大きい受光素
子の製造は、歩留り等生産コストを考慮した場合、量産
化は困難となる。
This is because the InGaAsP-based light-receiving element is made of a compound semiconductor that combines several types of elements, and the Ge
This is because crystal defects are more likely to occur when compared to crystals when a single material is used for the light-receiving element, that is, single crystals. When manufacturing a light-receiving element with a large light-receiving area using a material that is prone to crystal defects, it is difficult to mass-produce it when production costs such as yield are taken into consideration.

本発明の目的は、受光面積の増大を達成できる受光素子
および受光装置を提供することにある。
An object of the present invention is to provide a light-receiving element and a light-receiving device that can increase the light-receiving area.

本発明の他の目的は、暗電流の少ないI nGaAsP
受光素子の受光面積の増大を達成することにある。
Another object of the present invention is to use InGaAsP with low dark current.
The object of the present invention is to increase the light-receiving area of a light-receiving element.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔問題点を解決するための手段〕[Means for solving problems]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、本発明の受光素子は、InGaAsP系の材
料によって構成されているとともに、その主面に相互に
近接して電気的に独立した複数の受光領域を有する構造
となっている。また、この受光素子は、パッケージに組
み込まれた際、各受光領域の一方の電極は相互に独立し
たリードに電気的に接続されている。
That is, the light-receiving element of the present invention is made of an InGaAsP-based material and has a structure in which a plurality of electrically independent light-receiving regions are provided in close proximity to each other on the main surface thereof. Further, when this light receiving element is assembled into a package, one electrode of each light receiving area is electrically connected to mutually independent leads.

〔作用〕[Effect]

上記した手段によれば、本発明の受光素子は、複数の独
立した受光領域を有することから、各受光領域を光検出
に用いれば、全体の受光面積は増大するため、受光面積
の広い受光素子となる。また、この受光素子は、受光領
域が相互に独立していることから、単結晶に比較して結
晶欠陥が生じ易い化合物半導体結晶を用いて製造した場
合、結晶欠陥が発生しても、これら結晶欠陥が受光領域
等アクティブ領域から外れる率も高いこと、各受光領域
は小面積である故に熱歪等で劣化し難いこと等によって
、歩留りの向上が達成できる。さらに、この受光素子は
InGaAsP系によって向上されていることから、G
e受光素子に比較して暗電流の発生が低く、雑音特性の
高い受光素子となる。
According to the above means, since the light receiving element of the present invention has a plurality of independent light receiving areas, if each light receiving area is used for light detection, the total light receiving area increases. becomes. In addition, since the light-receiving regions of this light-receiving element are mutually independent, when manufactured using a compound semiconductor crystal that is more likely to have crystal defects than a single crystal, even if crystal defects occur, these crystal The yield can be improved because the rate at which defects are removed from active areas such as the light-receiving area is high, and each light-receiving area has a small area and is therefore less susceptible to deterioration due to thermal strain or the like. Furthermore, since this photodetector is improved by InGaAsP system, G
Compared to the e-light-receiving element, the generation of dark current is lower and the light-receiving element has higher noise characteristics.

〔実施例〕〔Example〕

第1図は本発明の一実施例による受光素子を示す模式的
平面図、第2図は同じく受光素子を組み込んだ光電子装
置の要部を示す断面図である゛。
FIG. 1 is a schematic plan view showing a light receiving element according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a main part of a photoelectronic device incorporating the same light receiving element.

この実施例の受光素子は、第1図の模式図で示されるよ
うな構造となっている。すなわち、第1図は本発明に係
わる受光素子1の図である。すなわち、受光素子1はI
nGaAsP系の材料によって構成されているとともに
、矩形状となっている。その主面には、それぞれハツチ
ングで示されるように、複数の受光領域2が配設されて
いる。
The light receiving element of this embodiment has a structure as shown in the schematic diagram of FIG. That is, FIG. 1 is a diagram of a light receiving element 1 according to the present invention. That is, the light receiving element 1 is
It is made of nGaAsP-based material and has a rectangular shape. A plurality of light-receiving areas 2 are arranged on the main surface thereof, as indicated by hatching.

これら受光領域2は、円を12等分した略扇状の形状と
なっている。また、各受光領域2の周縁にはそれぞれ電
気的に独立した電極(上部電極)3が設けられている。
These light-receiving areas 2 have a substantially fan-like shape obtained by dividing a circle into 12 equal parts. Furthermore, electrically independent electrodes (upper electrodes) 3 are provided at the periphery of each light-receiving region 2 .

これら上部電極3は受光領域2の外側に迄延在し、ワイ
ヤを接続するに充分な広さのポンディングパッド4を構
成している。また、隣接する受光領域2は区割線5で示
されるように、電気的に絶縁されている。また、受光素
子1の裏面には各受光領域2の共通の電極となる共通電
極が設けられている。この受光素子1は、後述するよう
に、パッケージに内蔵される場合は、前記共通電極面を
介してパンケージのステム等に固定される。
These upper electrodes 3 extend to the outside of the light-receiving area 2 and constitute a bonding pad 4 having a sufficient width to connect a wire. Further, adjacent light receiving areas 2 are electrically insulated as shown by dividing lines 5. Further, a common electrode that is a common electrode for each light receiving area 2 is provided on the back surface of the light receiving element 1 . As will be described later, when the light receiving element 1 is built into a package, it is fixed to a stem of a pan cage or the like via the common electrode surface.

このような受光素子1は、複数の受光領域2を相互に近
接して主面に有しているため、各受光領域2全体を一群
の受光面として使用することができる。したがって、G
eに比較して結晶欠陥が生じ易いInGaAsPの場合
でも、総体的に受光面積の増大を図ることができる。こ
の結果、暗電流が発生し難いInGaAsPによって受
光素子を構成することができるため、雑音特性が優れた
受光面積を得ることができる。さらに、この受光素子は
、主面に設ける受光領域2は面積が小さいことから、そ
の製造時に熱を受けても歪等の劣化が生じ難い。すなわ
ち、受光領域2の面積が大きくなる程、拡散等の熱によ
って受光領域の劣化が生じ易い。したがって、受光面積
の小さい本発明による受光領域2は熱による劣化が生じ
難い。また、前記受光領域2は小面積で、各受光領域2
間には、結晶欠陥が存在しても特性に影響を受けない領
域が存在していることから、受光素子1の製造時結晶欠
陥が生じても、結晶欠陥が前記受光領域2のようなアク
ティブ領域を外れる率も高く、上記の熱による劣化も少
ないことと相俟って、製造歩留りが向上する。
Since such a light-receiving element 1 has a plurality of light-receiving regions 2 close to each other on the main surface, each light-receiving region 2 can be used as a whole as a group of light-receiving surfaces. Therefore, G
Even in the case of InGaAsP, which is more likely to have crystal defects than e, it is possible to increase the overall light receiving area. As a result, the light-receiving element can be constructed of InGaAsP, which hardly generates dark current, so that a light-receiving area with excellent noise characteristics can be obtained. Furthermore, since the light-receiving region 2 provided on the main surface of this light-receiving element has a small area, deterioration such as distortion is unlikely to occur even if the light-receiving element receives heat during manufacturing. That is, as the area of the light receiving region 2 becomes larger, the light receiving region is more likely to deteriorate due to heat such as diffusion. Therefore, the light-receiving region 2 according to the present invention, which has a small light-receiving area, is unlikely to be deteriorated by heat. Further, the light receiving area 2 has a small area, and each light receiving area 2 has a small area.
In between, there is a region in which the characteristics are not affected even if crystal defects exist. Therefore, even if crystal defects occur during the manufacturing of the light receiving element 1, the crystal defects do not affect the active region such as the light receiving region 2. Coupled with the fact that the rate of deviation from the area is high and the deterioration due to heat is low, the manufacturing yield is improved.

つぎに、第2図を参照しながら、受光素子lの構造およ
び受光素子1を組み込んだ光電子装置について説明する
Next, the structure of the light receiving element 1 and the optoelectronic device incorporating the light receiving element 1 will be explained with reference to FIG.

この実施例では、単に光、たとえば、1.0〜1.6μ
m帯の長波長光を検出する構造の光電子装置の例につい
て説明する。
In this example, simply light, e.g. 1.0-1.6μ
An example of an optoelectronic device having a structure for detecting long wavelength light in the m band will be described.

光電子装置は、第2図に示されるように、金属板からな
るステム6と、このステム6の主面にソルダー7を介し
て固定される受光素子1と、この受光素子1の周囲に位
置しかつ前記ステム6に絶縁体8を介して貫通状態で絶
縁的に取り付けられる複数のリード9等と、これらリー
ド9の先端および受光素子1等を被うようにステム6の
主面に気密的に取り付けられたキャップ10とからなっ
ている。また、前記キャップ10はその天井部に設けた
開口部、すなわち、窓11を塞ぐように、透明なガラス
板12が、固定材13を介して気密的に取り付けられて
いる。なお、前記ステム6は受光素子1の下部の電極と
電気的に接続されることから、ステム6の下面には図示
しない1本のリードが機械的かつ電気的に接続されてい
る。
As shown in FIG. 2, the optoelectronic device includes a stem 6 made of a metal plate, a light-receiving element 1 fixed to the main surface of the stem 6 via a solder 7, and a light-receiving element 1 located around the light-receiving element 1. In addition, a plurality of leads 9 are insulatively attached to the stem 6 through an insulator 8, and a plurality of leads 9 are attached to the main surface of the stem 6 in an airtight manner so as to cover the tips of these leads 9 and the light receiving element 1, etc. It consists of an attached cap 10. Further, a transparent glass plate 12 is airtightly attached via a fixing member 13 so as to close an opening provided in the ceiling of the cap 10, that is, a window 11. Since the stem 6 is electrically connected to the lower electrode of the light receiving element 1, a single lead (not shown) is mechanically and electrically connected to the lower surface of the stem 6.

つぎに、前記ステムlの主面に固定された受光素子6に
ついて説明する。
Next, the light receiving element 6 fixed to the main surface of the stem 1 will be explained.

受光素子1は、n十形のInP基板14上に順次n形の
InGaAsP層15.n形のInP層16を有すると
ともに、前記InP層」6の表層部に、p十形のInP
層17を有し、このInP層17とInP層16との界
面にpn接合を構成し、受光領域2を形成している。前
記InP層17は、第1図に示されるように、円を12
等分した状態で円の中心を中心として放射状に12個配
設されている。また、各受光領域2の表面には酸化膜か
らなる反射防止膜18が設けられている。
The light receiving element 1 includes n-type InGaAsP layers 15 . In addition to having an n-type InP layer 16, a p-type InP layer is formed on the surface layer of the InP layer 6.
A pn junction is formed at the interface between the InP layer 17 and the InP layer 16, and a light receiving region 2 is formed. The InP layer 17 has 12 circles as shown in FIG.
Twelve pieces are equally divided and arranged radially around the center of the circle. Furthermore, an anti-reflection film 18 made of an oxide film is provided on the surface of each light-receiving region 2 .

また、受光素子1の主面には絶縁膜からなるパッシベー
ション膜19が設けられている。さらに、各受光領域2
には、受光領域2のInPJIi17に電気的に接続さ
れる電極(上部電極)3が設けられている。この上部電
極3は受光領域2の周囲近傍に沿うように枠状となると
ともに、一群の受光領域2からなる円の外側に迄延在し
、ポンディングパッド4を構成している。これら各ポン
ディングパッド4は、ワイヤ20を介して前記ステム6
に絶縁的に取り付けられたリード9の上端に電気的に接
続している。また、受光素子1の下面には電極21が設
けられている。受光素子lはこの電極21面が、ソルダ
ー7を介してステム6の主面に機械的かつ電気的に接続
されている。したがって、前記受光素子lの下部電極2
1は、ステム6と同電極となるとともに、このステム6
に電気的に接続された図示しない共通リードと電気的に
接続される。
Further, a passivation film 19 made of an insulating film is provided on the main surface of the light receiving element 1. Furthermore, each light receiving area 2
An electrode (upper electrode) 3 electrically connected to the InPJIi 17 in the light receiving area 2 is provided. The upper electrode 3 has a frame shape along the vicinity of the periphery of the light receiving area 2 and extends to the outside of the circle formed by the group of light receiving areas 2, forming a bonding pad 4. Each of these bonding pads 4 is connected to the stem 6 via a wire 20.
It is electrically connected to the upper end of a lead 9 that is insulatively attached to. Furthermore, an electrode 21 is provided on the lower surface of the light receiving element 1 . The electrode 21 surface of the light receiving element 1 is mechanically and electrically connected to the main surface of the stem 6 via the solder 7. Therefore, the lower electrode 2 of the light receiving element l
1 is the same electrode as the stem 6, and this stem 6
It is electrically connected to a common lead (not shown) that is electrically connected to.

このような光電子装置にあっては、ステム6とキャップ
10とからなるパッケージの外から送り込まれる光22
、すなわち、窓11のガラス板12を透過した光22を
、受光素子1の各受光領域2で受光し、電気エネルギー
として共通リードと各リード9間に取り出すようになっ
ている。この光電子装置にあっては、受光部は多数の受
光領域2の集合体となっていることから、大面積となり
、広い面積の光を受光することができる。したがって、
各リードを直列に接続すれば、大面積を有する受光素子
と同様の働きをするようになる。また、リードを並列に
取り出せば、各受光領域2を相互に独立させることがで
き、■乃至数個の受光検出に使用している場合、これら
使用に供している一群の受光領域2が損傷した際、残り
の受光領域2を使用に切り換えることができるという使
い方もある。
In such an optoelectronic device, light 22 is sent from outside the package consisting of the stem 6 and the cap 10.
That is, light 22 transmitted through the glass plate 12 of the window 11 is received by each light receiving area 2 of the light receiving element 1, and is extracted between the common lead and each lead 9 as electrical energy. In this optoelectronic device, since the light receiving section is an aggregate of a large number of light receiving regions 2, it has a large area and can receive light over a wide area. therefore,
If each lead is connected in series, it will function similarly to a light receiving element having a large area. In addition, by taking out the leads in parallel, each light receiving area 2 can be made independent from each other. In some cases, the remaining light-receiving area 2 can be switched to use.

また、この光電子装置にあっては、受光素子1は暗電流
が生じ難いInGaAsP系の材質で形成されているこ
とから雑音特性等の特性が向上する。
Further, in this optoelectronic device, since the light receiving element 1 is formed of an InGaAsP-based material that does not easily generate dark current, characteristics such as noise characteristics are improved.

さらに、受光素子1について言えば、前述のように、受
光領域2は小さくかつ分散しているため、材料に結晶欠
陥が生じることがあっても、その欠陥部が受光領域2内
に現れる確率は少なくなり、歩留りが向上する。また、
受光領域2は小さいことから、製造時拡散等熱を受けた
場合でも、面積が小さい故に劣化することはなく歩留り
が向上する。
Furthermore, regarding the light-receiving element 1, as mentioned above, the light-receiving region 2 is small and dispersed, so even if a crystal defect occurs in the material, the probability that the defect will appear in the light-receiving region 2 is low. This will improve yield. Also,
Since the light-receiving region 2 is small, even if it is subjected to heat such as diffusion during manufacturing, the light-receiving region 2 is small, so it does not deteriorate and the yield is improved.

このような実施例によれば、つぎのような効果が得られ
る。
According to such an embodiment, the following effects can be obtained.

(1)本発明の受光素子は、暗電流の発生の少ないIn
QaA3p系の材料で構成されていることから、雑音特
性等の特性が優れた長波長用受光素子を得ることができ
るという効果が得られる。
(1) The light receiving element of the present invention is made of In, which generates less dark current.
Since it is made of QaA3p-based material, it is possible to obtain a long wavelength light receiving element with excellent characteristics such as noise characteristics.

(2)本発明の受光素子は、複数の受光領域を近接配置
していることから、これら複数の受光領域を直列に使用
することによって、実質的に受光面積の増大を達成する
ことができるという効果が得られる。
(2) Since the light-receiving element of the present invention has a plurality of light-receiving regions arranged close to each other, it is possible to substantially increase the light-receiving area by using these plurality of light-receiving regions in series. Effects can be obtained.

(釦上記(1)および(2)により、本発明によれば、
受光面積の大きいI nGaAsP受光素子を得ること
ができるという効果が得られる。
(Button) According to (1) and (2) above, according to the present invention,
The effect is that an InGaAsP light-receiving element with a large light-receiving area can be obtained.

(4)上記(2)により、本発明の受光素子は、相互に
独立した受光領域を複数有する構造となっていることか
ら、それぞれの受光領域を独立して使用するようにすれ
ば、適宜必要な受光領域を選択的に使用できる光電子装
置を得ることができるという効果が得られる。
(4) According to (2) above, since the light-receiving element of the present invention has a structure having a plurality of mutually independent light-receiving regions, if each light-receiving region is used independently, it is possible to The effect is that it is possible to obtain a photoelectronic device that can selectively use a light-receiving area.

(5)本発明の受光素子にあっては、受光体は小面積の
受光領域の一群となっていることから、全体で大面積の
受光面積を有するようになっても、受光領域が小さくか
つ点在しているため、その製造時、受光領域が熱影響に
よって劣化するようなこともなく、結晶欠陥が発生して
も、これら結晶欠陥が受光領域に現れる確率は、単一の
大面積の受光面を有する受光素子に比較して少なくなる
ため、歩留りの向上が達成できるという効果が得られる
(5) In the light-receiving element of the present invention, since the photoreceptor is a group of light-receiving areas with a small area, even if the light-receiving area has a large overall area, the light-receiving area is small and Because they are scattered, the light-receiving area will not deteriorate due to thermal effects during manufacturing, and even if crystal defects occur, the probability that these crystal defects will appear in the light-receiving area is lower than that of a single large area. Since the amount is reduced compared to a light-receiving element having a light-receiving surface, an effect of improving yield can be obtained.

(6)上記(5)により、本発明によって受光素子の製
造コスト低減が達成できるという効果が得られる。
(6) According to the above (5), it is possible to achieve the effect that the manufacturing cost of the light receiving element can be reduced by the present invention.

(7)上記(1)〜(6)により、本発明によれば、特
性が優れた受光素子および光電子装置を安価に提供する
ことができるという相乗効果が得られる。
(7) According to the above (1) to (6), according to the present invention, a synergistic effect is obtained in that a light receiving element and a photoelectronic device with excellent characteristics can be provided at a low cost.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は上記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない、たとえば、第3図に示さ
れるように、受光素子1における受光領域2は、円形で
あっても前記実施例同様な効果が得られる。また、特に
図示はしないが、受光素子lの上部電極3を受光素子1
の主面で相互に接続するパターンとし、受光素子自体で
各受光領域2の直列化を図り、大面積の受光素子として
もよい。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. For example, as shown in FIG. 3, even if the light receiving area 2 of the light receiving element 1 is circular, the same effect as in the above embodiment can be obtained. Although not particularly shown, the upper electrode 3 of the light receiving element 1 is connected to the light receiving element 1.
The pattern may be such that the light receiving regions 2 are connected to each other on the main surface thereof, and the light receiving regions 2 may be connected in series in the light receiving element itself to form a large area light receiving element.

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野であるInGaAsP系の
受光素子およびこの受光素子を組み込んだ光電子装置に
ついて説明したが、それに限定されるものではなく、た
とえば、Ge受光素子、St受光素子等他の材料による
受光素子の製造技術などに適用できる。
In the above description, the invention made by the present inventor has mainly been explained in terms of an InGaAsP light-receiving element and a photoelectronic device incorporating this light-receiving element, which is the field of application that forms the background of the invention. , Ge photodetector, St photodetector, and other materials.

本発明は少なくとも受光素子について適用できる。The present invention can be applied to at least light receiving elements.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、下記のとおりであ
る。
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

本発明の受光素子は、Ge受光素子に比較して暗電流の
発生が低いInGaAsP系の材料によって構成されて
いるとともに、その主面に相互に近接して電気的に独立
した複数の受光領域を有する構造となっている。したが
って、各受光領域を直列状態で光検出に用いれば、全体
の受光面積は増大するため、受光面積の広い暗電流の発
生が低い特性の優れた受光素子となる。また、この受光
素子は、受光領域が相互に独立していることから、単結
晶に比較して結晶欠陥が生じ易い化合物半導体結晶を用
いて製造した場合、結晶欠陥が発生しても、これら結晶
欠陥が受光領域等アクティブ領域から外れる率も高いこ
と、各受光領域は小面積である故に熱歪等で劣化し難い
こと等によって、歩留りの向上が達成できる。
The light-receiving element of the present invention is made of an InGaAsP-based material that generates a lower dark current than a Ge light-receiving element, and has a plurality of electrically independent light-receiving regions close to each other on its main surface. It has a structure that has Therefore, if the light receiving regions are used in series for photodetection, the overall light receiving area increases, resulting in a light receiving element with a wide light receiving area and excellent characteristics with low generation of dark current. In addition, since the light-receiving regions of this light-receiving element are mutually independent, when manufactured using a compound semiconductor crystal that is more likely to have crystal defects than a single crystal, even if crystal defects occur, these crystal The yield can be improved because the rate at which defects are removed from active areas such as the light-receiving area is high, and each light-receiving area has a small area and is therefore less susceptible to deterioration due to thermal strain or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による受光素子を示す模式的
平面図、 第2図は同じく受光素子を組み込んだ光電子装置の要部
を示す断面図、 第3図は本発明の他の実施例による受光素子の模式的平
面図である。 1・・・受光素子、2・・・受光領域、3・・・電極(
上部電極)、4・・・ポンディングパッド、5・・・区
割線、6・・・ステム、7・・・ソルダー、8・・・絶
縁体、9・・・リード、10・・・キャップ、11・・
・窓、12・・・ガラス板、I3・・・固定材、14・
・・InP基板、15−InGaAsP層、16・・・
InP層、17・・・InP層、18・・・反射防止膜
、19・・・パッシベーション膜、20・・・ワイヤ、
21・・・電極、22・・・光。 第   1  図 第  2  図 第  3  図
FIG. 1 is a schematic plan view showing a light-receiving element according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a main part of a photoelectronic device incorporating the light-receiving element, and FIG. 3 is another embodiment of the present invention. FIG. 3 is a schematic plan view of a light receiving element according to an example. 1... Light receiving element, 2... Light receiving area, 3... Electrode (
upper electrode), 4... bonding pad, 5... dividing line, 6... stem, 7... solder, 8... insulator, 9... lead, 10... cap, 11...
・Window, 12...Glass plate, I3...Fixing material, 14.
...InP substrate, 15-InGaAsP layer, 16...
InP layer, 17... InP layer, 18... antireflection film, 19... passivation film, 20... wire,
21... Electrode, 22... Light. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、主面に受光領域を有するモノリシックな受光素子で
あって、前記受光素子はその主面に複数の受光領域を有
することを特徴とする受光素子。 2、前記複数の受光領域は相互に電気的に独立している
ことを特徴とする特許請求の範囲第1項記載の受光素子
。 3、パッケージと、このパッケージ内に内蔵された受光
素子と、を有する光電子装置であって、前記受光素子に
は相互に独立した複数の受光領域が設けられていること
を特徴とする光電子装置。 4、前記各受光領域の一方の電極は、パッケージに絶縁
的に取り付けられた各リードに電気的に接続されている
ことを特徴とする特許請求の範囲第3項記載の光電子装
置。
[Scope of Claims] 1. A monolithic light-receiving element having a light-receiving area on its main surface, the light-receiving element having a plurality of light-receiving areas on its main surface. 2. The light receiving element according to claim 1, wherein the plurality of light receiving regions are electrically independent from each other. 3. A photoelectronic device comprising a package and a light-receiving element built into the package, wherein the light-receiving element is provided with a plurality of mutually independent light-receiving areas. 4. The optoelectronic device according to claim 3, wherein one electrode of each light receiving area is electrically connected to each lead insulatively attached to the package.
JP62035535A 1987-02-20 1987-02-20 Photodetector and optoelectronic device having such photodetector built-in Pending JPS63204645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62035535A JPS63204645A (en) 1987-02-20 1987-02-20 Photodetector and optoelectronic device having such photodetector built-in

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035535A JPS63204645A (en) 1987-02-20 1987-02-20 Photodetector and optoelectronic device having such photodetector built-in

Publications (1)

Publication Number Publication Date
JPS63204645A true JPS63204645A (en) 1988-08-24

Family

ID=12444427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035535A Pending JPS63204645A (en) 1987-02-20 1987-02-20 Photodetector and optoelectronic device having such photodetector built-in

Country Status (1)

Country Link
JP (1) JPS63204645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150371A (en) * 1987-12-07 1989-06-13 Matsushita Electric Ind Co Ltd Photodetector
JP2008512870A (en) * 2004-09-09 2008-04-24 ザ・ボーイング・カンパニー Multijunction laser photodetector with multiple voltage device implementations
US7479999B2 (en) 2002-03-26 2009-01-20 National Institute Of Information And Communications Technology Photodetection device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150371A (en) * 1987-12-07 1989-06-13 Matsushita Electric Ind Co Ltd Photodetector
US7479999B2 (en) 2002-03-26 2009-01-20 National Institute Of Information And Communications Technology Photodetection device and method
JP2008512870A (en) * 2004-09-09 2008-04-24 ザ・ボーイング・カンパニー Multijunction laser photodetector with multiple voltage device implementations

Similar Documents

Publication Publication Date Title
US11888003B2 (en) Photodetector
US4354115A (en) Photocoupling device
US4318115A (en) Dual junction photoelectric semiconductor device
JPH04111479A (en) Light-receiving element
JP2006237570A (en) Light-emitting diode package with integrated photodiode for monitor
JPH05110048A (en) Opto-electronic integrated circuit
JP2011124450A (en) Semiconductor light reception element
JP2661341B2 (en) Semiconductor light receiving element
JPH04111478A (en) Light-receiving element
US7777234B2 (en) Light-receiving element and photonic semiconductor device provided therewith
JPS63204645A (en) Photodetector and optoelectronic device having such photodetector built-in
JP3768099B2 (en) Light receiving element and optical semiconductor device including the same
US6989522B2 (en) Light-receiving module and light-receiving device having malfunction preventing structure
JP2002319669A (en) Backside incident type photodiode and photodiode array
JP2773930B2 (en) Light detection device
JPS6195580A (en) Photoreceptor and photoelectric device containing the same photoreceptor
JP3427125B2 (en) Semiconductor device with optical lens function
JP2675574B2 (en) Semiconductor light receiving element
JP5503380B2 (en) Infrared sensor
CN219286423U (en) Semiconductor photoelectric detector
JPH1117211A (en) Semiconductor planar photodiode and device therewith
JP3026396B2 (en) Optically coupled semiconductor device
WO2022077456A1 (en) Single photon avalanche diode, image sensor and electronic device
JPS62232958A (en) Semiconductor image pick-up element
CN117542906A (en) Photosensitive element, manufacturing method thereof and photosensitive detector