JPH073881B2 - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH073881B2
JPH073881B2 JP61188535A JP18853586A JPH073881B2 JP H073881 B2 JPH073881 B2 JP H073881B2 JP 61188535 A JP61188535 A JP 61188535A JP 18853586 A JP18853586 A JP 18853586A JP H073881 B2 JPH073881 B2 JP H073881B2
Authority
JP
Japan
Prior art keywords
light receiving
light
photocell
semiconductor light
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61188535A
Other languages
Japanese (ja)
Other versions
JPS6345870A (en
Inventor
泰宏 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61188535A priority Critical patent/JPH073881B2/en
Publication of JPS6345870A publication Critical patent/JPS6345870A/en
Publication of JPH073881B2 publication Critical patent/JPH073881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数半導体受光素子を同一基板上に設けた光
電変換装置に関する。
The present invention relates to a photoelectric conversion device having a plurality of semiconductor light receiving elements provided on the same substrate.

〔従来技術〕[Prior art]

一般に各々直列接続されたフォトダイオードが同一基板
上に設けられたフォトダイオードアレイでは、各々のフ
ォトダイオード(以下フォトセルと呼ぶ)が等しい受光
面積で構成されている。このフォトセルに例えば点光源
の光を照射する場合、各フォトセルが受光する光強度は
異なり、光源から離れたフォトセルほど光強度は弱くな
る。等面積のフォトセルから得られる光電流は照射され
る光強度に比例し、光源から離れたフォトセルの光電流
は光源に近いフォトセルの光電流より小さくなる。これ
らのセルが直列に接続されたフォトダイオードアレイに
流れる短絡電流は光源から最も離れたセルに流れる電流
すなわち最小の光電流に決まる。一方1つのフォトセル
の開放電圧は光強度に大きく依存されずフォトダイオー
ドアレイの総開放電圧は、各セルの開放電圧の総和とな
るので受光面積を効率良く使用することができなかっ
た。
Generally, in a photodiode array in which photodiodes connected in series are provided on the same substrate, the respective photodiodes (hereinafter referred to as photocells) have the same light receiving area. When this photocell is irradiated with light from a point light source, for example, the light intensity received by each photocell is different, and the light intensity is weaker as the photocell is farther from the light source. The photocurrent obtained from a photocell having the same area is proportional to the intensity of the irradiated light, and the photocurrent of the photocell far from the light source is smaller than the photocurrent of the photocell close to the light source. The short-circuit current flowing in the photodiode array in which these cells are connected in series is determined by the current flowing in the cell farthest from the light source, that is, the minimum photocurrent. On the other hand, the open circuit voltage of one photocell is not largely dependent on the light intensity, and the total open circuit voltage of the photodiode array is the sum of the open circuit voltages of the cells, so that the light receiving area cannot be used efficiently.

〔発明が解決する問題点〕[Problems solved by the invention]

従来の等面積のフォトセルで構成されたフォトダイオー
ドアレイにおいて例えば点光源のように各フォトセルに
不均一な光が照射される場合、フォトセルが直列接線さ
れたフォトダイオードアレイに流れる電流が、各セルに
流れ得る電流のうち最小値に決まってしまうことから光
源に近く受光強度の大きいフォトセルからより大きい電
流を得ることができず、電流と電圧が制限されて、フォ
トダイオードアレイの効率が悪いという欠点があった。
In a photodiode array composed of conventional equal-area photodiodes, for example, when non-uniform light is applied to each photodiode like a point light source, the current flowing through the photodiode array in which the photodiodes are connected in series is Since the minimum value of the current that can flow in each cell is determined, it is not possible to obtain a larger current from a photocell that is close to the light source and has a high received light intensity, and the current and voltage are limited, and the efficiency of the photodiode array is reduced. It had the drawback of being bad.

本発明では、一定面積のフォトダイオードアレイにおい
て各セルからより大きい電圧及び電流が得られ、効率の
良い光電変換装置を提供することを目的とする。
It is an object of the present invention to provide an efficient photoelectric conversion device in which a larger voltage and current can be obtained from each cell in a photodiode array having a fixed area.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光電変換装置は、半導体基板上に複数設けられ
る半導体受光素子の面積が各々半導体受光素子に照射さ
れる光強度に対応して異なることを特徴とする。
The photoelectric conversion device of the present invention is characterized in that a plurality of semiconductor light receiving elements provided on the semiconductor substrate have different areas corresponding to the light intensities applied to the semiconductor light receiving elements.

〔作用〕[Action]

点光源から照射される光の強度は点光源からの距離によ
り決まり、点光源から離れる程、光強度が弱くなる。本
発明では、一定面積の光電変換装置において点光源から
近い半導体受光素子の受光面積を小さく、点光源から遠
い半導体受光素子の受光面積を大きく構成することによ
り、各セルに流れる短絡電流が略等しくなるようにし
た。本発明では、従来の等面積の半導体受光素子で構成
された光電変換装置のように得られる光電流が、最小値
に限定されることがない。
The intensity of light emitted from the point light source is determined by the distance from the point light source, and the light intensity decreases as the distance from the point light source increases. In the present invention, in the photoelectric conversion device having a constant area, by configuring the light receiving area of the semiconductor light receiving element close to the point light source to be small and the light receiving area of the semiconductor light receiving element far from the point light source to be large, the short-circuit currents flowing in the respective cells are substantially equal. I tried to be. In the present invention, the photocurrent obtained unlike the conventional photoelectric conversion device formed of semiconductor light receiving elements having the same area is not limited to the minimum value.

〔実施例〕〔Example〕

本発明の一実施例を第1図に示した例えばLEDのような
点光源1に対向して設置されたフォトダイオードアレイ
2において説明する。同一半導体基板3上に各々が直列
接続されたフォトダイオードからなる複数のフォトセル
4が形成され、フォトダイオードアレイ2を構成してい
る。各々のフォトダイオード(フォトセル)4は、点光
源1からの距離によって受光面積を異にしており、点光
源1から最短距離に設置されたフォトセル4aは最小面積
に形成され、点光源1から最長距離に設置されたフォト
セル4bは、最大面積に形成される。各々のフォトセルは
配線5により直列に接続されている。
One embodiment of the present invention will be described with reference to a photodiode array 2 installed facing a point light source 1 such as an LED shown in FIG. A plurality of photocells 4 each composed of a photodiode connected in series are formed on the same semiconductor substrate 3 to form a photodiode array 2. Each photodiode (photocell) 4 has a different light receiving area depending on the distance from the point light source 1, and the photocell 4a installed at the shortest distance from the point light source 1 is formed to have the smallest area. The photocell 4b installed at the longest distance has the largest area. The respective photocells are connected in series by the wiring 5.

上述した一実施例の具体的実験例について説明する。こ
の実験は、全受光面積が一定のフォトダイオードアレイ
において、第2図に示す従来のような各々等しい受光面
積のフォトセルに光強度の異なる光を照射したものと、
本発明を施した第3図及び第4図に示すような各々受光
面積の異なるフォトセルに光強度の異なる照射したもの
とを使用した。これらのフォトセルに色温度2870Kの標
準タングステン電球から光を照射する。光強度は照度計
により測定し、照射する際、光強度の強い側はフォトセ
ルの受光面積を小さく、光強度の弱い側はフォトセルの
受光面積を大きく設定する。それぞれのフォトダイオー
ドアレイの開放電圧及び短絡電流を各々電圧計,電流計
により測定し、比較をする。以下に測定の結果を示す。
第2図(a)はフォトダイオードアレイの平面図,
(b)は等価回路であり、フォトセル11及び12はそれぞ
れ受光面積8.7〔mm2〕の等しいフォトセルであり、フォ
トセル11には1.0〔mW/cm2〕の光,フォトセル12には2.0
〔mW/cm2〕の光を照射した結果、フォトセル11とフォト
セル12とが直列接続されたフォトダイオードアレイ13か
ら640〔mV〕の開放電圧,11〔μA〕の短絡電流が得られ
た。
A specific experimental example of the above-described embodiment will be described. In this experiment, in a photodiode array in which the total light receiving area is constant, light having different light intensities is applied to photocells having the same light receiving area as in the conventional case shown in FIG.
Photocells having different light receiving areas as shown in FIG. 3 and FIG. 4 according to the present invention, which are irradiated with different light intensities, were used. These photocells are illuminated by a standard tungsten light bulb with a color temperature of 2870K. The light intensity is measured by an illuminometer, and when the light is irradiated, the light receiving area of the photocell is set to be small on the side having a high light intensity, and the light receiving area of the photocell is set to be large on the side having a weak light intensity. The open-circuit voltage and short-circuit current of each photodiode array are measured with a voltmeter and an ammeter, respectively, and compared. The measurement results are shown below.
FIG. 2 (a) is a plan view of the photodiode array,
(B) is an equivalent circuit, and the photocells 11 and 12 are photocells having the same light receiving area of 8.7 [mm 2 ] respectively. The photocell 11 has a light of 1.0 [mW / cm 2 ] and the photocell 12 has a light receiving area of 8.7 [mm 2 ]. 2.0
As a result of irradiating with light of [mW / cm 2 ], an open circuit voltage of 640 [mV] and a short circuit current of 11 [μA] were obtained from the photodiode array 13 in which the photocell 11 and the photocell 12 were connected in series. .

次に第3図に示したフォトダイオードアレイ17は、受光
面積が8.7〔mm2〕のフォトセル14と、受光面積が4.35
〔mm2〕のフォトセル2個15,16とから構成される。フォ
トダイオード14に1.0〔mW/cm2〕の光、フォトダイオー
ド15及び16に2.0〔mW/cm2〕の光を照射した結果、フォ
トダイオードアレイ17から930〔mV〕の開放電圧,11〔μ
A〕の短絡電流が得られた。
Next, the photodiode array 17 shown in FIG. 3 includes a photocell 14 having a light receiving area of 8.7 [mm 2 ] and a light receiving area of 4.35.
It is composed of two photo cells 15 and 16 of [mm 2 ]. As a result of irradiating the photodiode 14 with light of 1.0 (mW / cm 2 ) and the photodiodes 15 and 16 with light of 2.0 (mW / cm 2 ), the photodiode array 17 outputs an open voltage of 930 (mV), 11 (μ).
The short circuit current of A] was obtained.

続いて第4図に示したフォトダイオードアレイ20は、受
光面積が10.88〔mm2〕のフォトセル18と受光面積が6.52
〔mm2〕のフォトセル19とから構成される。フォトセル1
8に1.0〔mW/cm2〕の光を照射した結果、フォトダイオー
ドアレイ20から640〔mV〕の開放電圧,16〔μA〕の短絡
電流が得られた。
Next, the photodiode array 20 shown in FIG. 4 has a photocell 18 having a light receiving area of 10.88 [mm 2 ] and a light receiving area of 6.52.
It is composed of a photocell 19 of [mm 2 ]. Photo cell 1
As a result of irradiating 8 with 1.0 [mW / cm 2 ] of light, an open circuit voltage of 640 [mV] and a short circuit current of 16 [μA] were obtained from the photodiode array 20.

以上の結果より、等面積に構成された(セル)にそれぞ
れ照射される光強度が異なる場合(第2図)に比べ、第
3図のように光強度の強いフォトセルを分割して直列接
続した場合は、半導体受光素子アレイの総開放電圧がお
よそ1.5倍に向上した。また、第4図のように光強度の
弱いフォトセルの受光面積の占める割合を大きくとると
フォトダイオードアレイの短絡電流は、およそ1.5倍に
向上した。このように光強度によってフォトセルの受光
面積を最適化すれば、光源から照射された不均一の光を
一定面積の受光装置で受ける場合、従来に比べ、光電変
換装置に流れる短絡電流、及び総開放電圧を大きくする
ことができて、受光面積に対する効率が上る。
From the above results, as compared with the case where the light intensity irradiated to (cells) configured to have the same area is different (Fig. 2), the photocells with high light intensity are divided and connected in series as shown in Fig. 3. In that case, the total open-circuit voltage of the semiconductor light receiving element array was improved by about 1.5 times. Further, as shown in FIG. 4, when the ratio of the light receiving area of the photocell having the weak light intensity is increased, the short-circuit current of the photodiode array is improved by about 1.5 times. By optimizing the light receiving area of the photocell according to the light intensity in this way, when the non-uniform light emitted from the light source is received by the light receiving device with a constant area, the short-circuit current flowing in the photoelectric conversion device and the total The open circuit voltage can be increased and the efficiency with respect to the light receiving area can be increased.

本実施例では、半導体受光素子アレイを形成するフォト
セルとしてフォトダイオードを使用したがこれに限定さ
れることはない。また、光源から離れたフォトセルを互
いに並列に接続して1つの大きなフォトセルとして光源
からより近いフォトセルに直列に接続することにより、
開放電圧を向上させることもできる。
In this embodiment, the photodiode is used as the photocell forming the semiconductor light receiving element array, but the present invention is not limited to this. Also, by connecting the photocells away from the light source in parallel to each other and connecting them in series as one large photocell to a photocell closer to the light source,
The open circuit voltage can be improved.

〔発明の効果〕〔The invention's effect〕

本発明によれば、半導体受光装置の基板上に複数形成さ
れた半導体受光素子の受光面積を光強度に対応して異な
らせたことにより、一定面積の光電変換装置から得られ
る総開放電圧及び短絡電流が向上し、変換効率の良い光
電変換装置が得られた。
According to the present invention, since the light receiving areas of a plurality of semiconductor light receiving elements formed on the substrate of the semiconductor light receiving device are made different according to the light intensity, the total open circuit voltage and the short circuit obtained from the photoelectric conversion device having a constant area can be obtained. A photoelectric conversion device with improved current and good conversion efficiency was obtained.

【図面の簡単な説明】 第1図は本発明の一実施例を示し、第2図(a)
(b),第3図(a)(b)及び第4図(a)(b)は
本発明の実験例を示す。 1……点光源、2……半導体受光素子アレイ 3……半導体基板、4……半導体受光素子、5……配線 11,12,14,15,16,18,19……フォトダイオード 13,17,20……フォトダイオードアレイ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, and FIG.
(B), FIGS. 3 (a) and (b), and FIGS. 4 (a) and (b) show experimental examples of the present invention. 1 ... Point light source, 2 ... Semiconductor light receiving element array 3 ... Semiconductor substrate, 4 ... Semiconductor light receiving element, 5 ... Wiring 11,12,14,15,16,18,19 ... Photodiode 13,17 , 20 …… Photodiode array

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、 この半導体基板上に複数個形成され、第1導電型領域と
この第1導電型領域内に各々形成された第2導電型領域
とからなる半導体受光素子と、 互いに隣合った前記半導体受光素子を電気的に直列接続
する手段とからなり、 前記第1導電型領域及び第2導電型領域の表面を受光面
とする前記半導体受光素子の受光面積は、半導体受光素
子に照射される光強度に対応して異なり、受光強度の強
い半導体受光素子が受光強度の弱い半導体受光素子より
小さく形成されることを特徴とする光電変換装置。
1. A semiconductor light receiving element comprising: a semiconductor substrate; and a plurality of semiconductor light receiving elements formed on the semiconductor substrate, the first conductivity type region and the second conductivity type regions respectively formed in the first conductivity type region. The semiconductor light receiving element has means for electrically connecting the semiconductor light receiving elements adjacent to each other in series, and the light receiving area of the semiconductor light receiving element having the surfaces of the first conductivity type region and the second conductivity type region as a light receiving surface is a semiconductor light receiving area. A photoelectric conversion device characterized in that a semiconductor light receiving element having a high light receiving intensity, which is different depending on the light intensity applied to the element, is formed smaller than a semiconductor light receiving element having a weak light receiving intensity.
JP61188535A 1986-08-13 1986-08-13 Photoelectric conversion device Expired - Lifetime JPH073881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61188535A JPH073881B2 (en) 1986-08-13 1986-08-13 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61188535A JPH073881B2 (en) 1986-08-13 1986-08-13 Photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS6345870A JPS6345870A (en) 1988-02-26
JPH073881B2 true JPH073881B2 (en) 1995-01-18

Family

ID=16225403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61188535A Expired - Lifetime JPH073881B2 (en) 1986-08-13 1986-08-13 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH073881B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426863U (en) * 1987-03-25 1989-02-15
JP2002005738A (en) * 2000-06-23 2002-01-09 Matsushita Electric Works Ltd Illuminance sensor
JP4726962B2 (en) * 2009-01-09 2011-07-20 シャープ株式会社 Thin film solar cell module and thin film solar cell array

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390790A (en) * 1979-08-09 1983-06-28 Theta-J Corporation Solid state optically coupled electrical power switch
JPS5984478A (en) * 1982-11-04 1984-05-16 Matsushita Electric Ind Co Ltd Solar battery module
JPS619775A (en) * 1984-06-25 1986-01-17 Matsushita Electric Works Ltd Picture image processor
JPS6184527A (en) * 1984-10-02 1986-04-30 Asahi Glass Co Ltd Optical sensor
JPS6190474A (en) * 1984-10-09 1986-05-08 Sanyo Electric Co Ltd Photovoltaic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390790A (en) * 1979-08-09 1983-06-28 Theta-J Corporation Solid state optically coupled electrical power switch
JPS5984478A (en) * 1982-11-04 1984-05-16 Matsushita Electric Ind Co Ltd Solar battery module
JPS619775A (en) * 1984-06-25 1986-01-17 Matsushita Electric Works Ltd Picture image processor
JPS6184527A (en) * 1984-10-02 1986-04-30 Asahi Glass Co Ltd Optical sensor
JPS6190474A (en) * 1984-10-09 1986-05-08 Sanyo Electric Co Ltd Photovoltaic device

Also Published As

Publication number Publication date
JPS6345870A (en) 1988-02-26

Similar Documents

Publication Publication Date Title
US4042417A (en) Photovoltaic system including a lens structure
KR910004992B1 (en) Light receiving element
US3366802A (en) Field effect transistor photosensitive modulator
DE3751133D1 (en) Junction photocell with P-I-N junctions of the heterogeneous type.
US4242695A (en) Low dark current photo-semiconductor device
EP0012585A1 (en) A semiconductor optical device
US4078243A (en) Phototransistor array having uniform current response and method of manufacture
JPH10223874A (en) Electromagnetic wave detector
JP2001291853A (en) Semiconductor energy detecting element
US4575576A (en) Three-junction solar cell
JPH073881B2 (en) Photoelectric conversion device
JPH01181577A (en) Optical semiconductor device
US4629882A (en) Image position detector
JPH01117375A (en) Semiconductor device
JPS57181176A (en) High voltage amorphous semiconductor/amorphous silicon hetero junction photosensor
US3617825A (en) Multijunction photodiode detector
JPS61239678A (en) Photoelectric conversion device
US4717946A (en) Thin line junction photodiode
US4140545A (en) Plural solar cell arrangement including transparent interconnectors
JPS5687380A (en) Semiconductor device for detection of radiant light
US3781553A (en) Apparatus for analyzing an image
GB2238165A (en) A photodetector device
JP3982138B2 (en) Photodiode array element
Rumyantsev et al. Luminescent characterization of contactless AlGaAs/GaAs heterostructure for solar cells and diodes
Fraas et al. High efficiency GaAs/GaSb tandem solar cells and tandem circuit cards