JPS6190474A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS6190474A
JPS6190474A JP59212181A JP21218184A JPS6190474A JP S6190474 A JPS6190474 A JP S6190474A JP 59212181 A JP59212181 A JP 59212181A JP 21218184 A JP21218184 A JP 21218184A JP S6190474 A JPS6190474 A JP S6190474A
Authority
JP
Japan
Prior art keywords
power generation
light
area
photovoltaic device
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59212181A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamada
義明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59212181A priority Critical patent/JPS6190474A/en
Publication of JPS6190474A publication Critical patent/JPS6190474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent the decrease in output current value of the whole device by a method wherein the effective photo receiving area of those pieces out of four or more power generation regions which have been arranged at both ends in the array direction is made larger than that of another region. CONSTITUTION:The titled device is the photovoltaic device produced by arranging four or more power generation regions in an array, at least on the insulation substrate, into an electrical series connection. The effective photo receiving area of those pieces out of four or move power generation regions 2a, 2b... which have been arranged at both ends in the array direction is made larger than that of another region. Thereby, even if either one of power generation regions at both side edges in the array direction is capped with a casing and shielded from light at the time of mounting this photovoltaic device to the casing, it is the power generation region of either one edge of large effective area that is shielded from light. Even on more or less decrease in photo receiving area, this area only becomes almost equal to that of two or more power generation regions in the middle, but the output current does not decrease.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光照射を受けると起電力を発生する光起電力装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a photovoltaic device that generates an electromotive force when irradiated with light.

(ロ) 従来の技術 所望の高CWEEを得るべく透光性絶縁基板の一方の主
面に於いヂ支持きれた複数の発電領域を電気的に直列接
続せしめた光起電力装置は例えば米国特許第4.281
208号記載の如く既に知られており、またその構造は
電卓、腕時計、ボケ・ジットラジオ等の小型民生用電子
機器の電源として広く実用化されている。
(b) Conventional technology A photovoltaic device in which a plurality of power generation areas fully supported on one main surface of a transparent insulating substrate are electrically connected in series in order to obtain a desired high CWEE is disclosed in, for example, the U.S. patent. No. 4.281
The structure is already known as described in No. 208, and its structure has been widely put into practical use as a power source for small consumer electronic devices such as calculators, wristwatches, and radios.

第4図は光起電力装置の実装構造を示し、(11)はガ
ラス等の透光性絶縁基板、(12a)〜(12e)は上
記絶縁基板(11)の一方め主面に於いて支持きれた有
効面積が等しい複数(こ′の例では5個)の発電領域で
、例えば上記米国特許に開示きれたアモルファスシリコ
ンのpin接合型構造にあっては1つの発電領域に於い
て螢光灯20011uxの光照射条件に於いて標準動作
電圧0.3vを発生し、それ等を電気的に直列接続する
ことによって標準動作電圧1.5Vを出力する。
Figure 4 shows the mounting structure of the photovoltaic device, in which (11) is a transparent insulating substrate such as glass, (12a) to (12e) are supported on one main surface of the insulating substrate (11). For example, in the pin junction structure of amorphous silicon disclosed in the above-mentioned U.S. patent, a fluorescent light is generated in a plurality of power generation regions (five in this example) with equal effective areas. A standard operating voltage of 0.3V is generated under the light irradiation conditions of 20011ux, and by electrically connecting them in series, a standard operating voltage of 1.5V is output.

(13)は上記基板(11)及び発電領域(12a)〜
Cl2e)からなる光起電力装!(SC)が実装される
電子機器のケーシング、(14)は該ケーシング(13
)の窓部〈15〉に上記光起電力装置(SC>を受光可
能に保持する保持部材である。
(13) represents the substrate (11) and the power generation area (12a).
A photovoltaic device consisting of Cl2e)! (SC) is a casing of an electronic device in which the casing (14) is mounted;
) is a holding member that holds the photovoltaic device (SC>) in the window part <15> so that it can receive light.

通常、窓部<15)の開口長りと、発電領域(12a)
〜(12e)の配列方向の両端間の距離Lsとは等しく
且つ、窓部(15)の端縁と上記発電領域(12a)〜
(12e)の配列方向に於ける両端<12aQ)(12
er)とが一致すべく設計きれている。
Usually, the opening length of the window <15) and the power generation area (12a)
The distance Ls between both ends in the arrangement direction of ~(12e) is equal, and the edge of the window portion (15) and the power generation area (12a)~
Both ends in the arrangement direction of (12e)<12aQ) (12
er) is designed to match.

然し乍ら、晃゛起軍刀装置(SC)をケーシングに実装
する際、上記窓部端縁(15QH15r)と発電領域(
12a)〜(12e)の両端(12aQ)(12er)
とを完全に一致きせることは難しく、特にゲージング(
13)の実装面(13s)を上方に向けて待機せるケー
シング(13)に、光起電力装置(SC)の受光面(l
ls)を下方にして窓部に配置すると、上記窓部端縁(
15Q)(15r)と発電領域(12a)〜(12e)
の両端(12au )(12−er )とが完全に一致
しているかどうかが作業者にとって目視することができ
ず、一層作業を困難なものにしている。
However, when mounting the SC to the casing, the edge of the window (15QH15r) and the power generation area (
Both ends of 12a) to (12e) (12aQ) (12er)
It is difficult to achieve a perfect match between the
The light-receiving surface (l
When placed in the window with the ls) facing downward, the edge of the window (
15Q) (15r) and power generation areas (12a) to (12e)
The operator cannot visually check whether the two ends (12au) and (12-er) are completely aligned, making the work even more difficult.

この様な理由により、例えば第5図のようにケーシング
(13)によって発電領域(12a)〜(12e)の両
端(12all)(12er)の内一方が遮光されると
、その遮光された発電領域(12a)(12e)はその
分だけ他の発電領域(12b)〜(12d)の受光面積
より小きくなる。
For this reason, for example, when one of the ends (12all) (12er) of the power generation areas (12a) to (12e) is shaded by the casing (13) as shown in FIG. 5, the shaded power generation area (12a) and (12e) are correspondingly smaller than the light receiving areas of the other power generation regions (12b) to (12d).

一つの発電領域(12a)或いは(12e)の受光面積
が小さくなることは同一の光照射条件の下で発生する電
流値が他の発電領域(12b)〜(12d)に比して低
下するこを意味し、直列接続関係にある発電領域(12
a)〜(12e)に於いて1つの領域(12a)或いは
(12e)の出力’IHTt値の低下は光起電力装置全
体の出力電流値をその値に規制する結果、光電変換効率
の減小を招く。
If the light receiving area of one power generation region (12a) or (12e) becomes smaller, the current value generated under the same light irradiation conditions will be lower than that of the other power generation regions (12b) to (12d). means the power generation area (12
In a) to (12e), a decrease in the output 'IHTt value of one region (12a) or (12e) results in a decrease in photoelectric conversion efficiency as a result of regulating the output current value of the entire photovoltaic device to that value. invite.

(ハ)発明が解決しようとする問題点 本発明は、直列接続形態の光起電力装置をケーシングに
対して実装する際、該光起電力装置を構成する発電領域
の整列方向の両端の何れか一方が上記ケーシングに遮光
されると、遮光された発電領域の出力電流が低下し、正
常に光電変換作用をなす発電領域の出力電流についても
低下した出力電流値に規制する点を解決するものである
(c) Problems to be Solved by the Invention The present invention provides that when a series-connected photovoltaic device is mounted on a casing, one of the two ends of the power generation regions constituting the photovoltaic device in the alignment direction. This solves the problem that when one side is shaded by the casing, the output current of the shaded power generation area decreases, and the output current of the power generation area that normally performs photoelectric conversion is also regulated to a reduced output current value. be.

(ニ)問題点を解決するための手段 4個以上の発電領域を電気的に直列接続せしめた本発明
光起電力装置は、上述の如き問題点を解決すべく、上記
4個以上の発電領域の内、整列方向の両端に配置された
発電領域の有効受光面積を他の発電領域の有効受光面積
に比して大きくした構成にある。
(d) Means for Solving the Problems In order to solve the above-mentioned problems, the photovoltaic device of the present invention has four or more power generation regions electrically connected in series. Among these, the effective light-receiving areas of the power-generating regions arranged at both ends in the alignment direction are made larger than the effective light-receiving areas of the other power-generating regions.

(ホ)作用 上述の如く4個以上の発電領域の内、整列方−向の両端
に配置きれた発電領域の有効受光面積を他の発電領域の
有効受光面積に比して大きくすることによって、仮に光
起電力″itをケーシングに対して実装する際発1t@
域の整列方向の両側縁の何れか一方が上記ケーシングに
より覆蓋きれ遮光されたとしても、遮光されるのは有効
面積の犬さい何れか一端の発電領域であり、多少その受
光面積が減少しても、中間の2個以上の発電領域のそれ
とほぼ等しくなるだけであり、出力電流は低下しない。
(E) Effect As mentioned above, by increasing the effective light-receiving area of the power-generating regions arranged at both ends of the alignment direction among the four or more power-generating regions, compared to the effective light-receiving area of the other power-generating regions, Suppose that when a photovoltaic force "it" is mounted on a casing, 1t@
Even if one of the edges in the alignment direction of the area is covered by the casing and is shielded from light, what is blocked is the power generation area at either end of the effective area, and the light receiving area is somewhat reduced. The output current is only approximately equal to that of two or more intermediate power generation regions, and the output current does not decrease.

(へ)実施例 第1図は本発明光起電力装置の一実施例を受光面側から
臨んだ正面図、第2図はその横断面図であるが、第2図
は説明の都合上第1図の寸法関係と相違している。
(f) Embodiment Figure 1 is a front view of an embodiment of the photovoltaic device of the present invention viewed from the light-receiving surface side, and Figure 2 is a cross-sectional view thereof. The dimensional relationship is different from that shown in Figure 1.

第1図及び第2図に於いて、(1)は透光性且つ絶縁性
のガラス等からなる基板、(2a)〜(2C)は上記基
板(1)の受光面側から見て背面に於いて直線的に整列
配置された5個の発電領域で、該発′X領域(2a)〜
(2e)は第1図に於いては基板(1〉の背面に位置す
るものの該基板(1)が透光性を呈するので実線で示し
てあり、斯る実線で囲まれた直角四辺形状の面積全てが
光電変換動作する有効受光面積に相当し、以下の説明に
あっては整列方向左から右に向って第1〜第5発電領域
(2a)〜(2c)と称す。
In Figures 1 and 2, (1) is a substrate made of light-transmitting and insulating glass, etc., and (2a) to (2C) are the back surfaces of the substrate (1) when viewed from the light-receiving surface side. There are five power generation regions arranged in a straight line, and the power generation regions (2a) to
Although (2e) is located on the back side of the substrate (1) in Fig. 1, it is shown as a solid line because the substrate (1) exhibits light-transmitting properties. The entire area corresponds to an effective light-receiving area for photoelectric conversion, and in the following description, they will be referred to as first to fifth power generation regions (2a) to (2c) from left to right in the alignment direction.

上記第1〜第5発1領域(2a)〜(2c)の幅はWと
共通で、整列方向の長さは両端の第1及び第5の発電領
域(2a)(2e)の方が長くなっている。即ち、第2
〜第4の発電領域(2b)〜(2d)の長さはLである
のに対し、両端の第1及び第5の発電領域(2a)(2
e)のそれはL+、、flと、Qだけ長くなっている。
The width of the first to fifth generating areas (2a) to (2c) is the same as W, and the length in the alignment direction is longer in the first and fifth generating areas (2a) (2e) at both ends. It has become. That is, the second
~The length of the fourth power generation areas (2b) to (2d) is L, whereas the length of the first and fifth power generation areas (2a) (2d) at both ends is L.
That of e) is longer by L+, , fl and Q.

この、11はL05〜10%程度になるべく設定される
。従って、第1及び第2の発電領域(2a)(2e)の
有効受光面積は第2〜第4の発電領域(2b)〜(2d
)のそれと比較してユρ×Wだけ大きい。
This 11 is preferably set to about L05 to 10%. Therefore, the effective light receiving areas of the first and second power generation regions (2a) (2e) are the same as those of the second to fourth power generation regions (2b) to (2d).
) is larger by ρ×W.

尚、第1図に於いて整列方向の距離りは第1発電領域(
2a〉の左端から。Q/2右に片寄った箇所を起点とし
、第5発電領域(2e)の右端から、Q/2左に片寄っ
た箇所までを示し、ケーシングの窓部の開孔長ど等しく
、第1〜第5の発電領域(2a)〜(2C)の各隣接間
隔長を8とすると、斯る距離りはD−5X L+ 4 
Xδ+4Q で与えられる。
In addition, in Fig. 1, the distance in the alignment direction is the first power generation area (
From the left end of 2a>. Starting from the point offset to the right of Q/2, it shows from the right end of the fifth power generation area (2e) to the point offset to the left of Q/2, and the opening length of the window of the casing is equal, and the first to fourth Assuming that the length of each adjacent interval between power generation areas (2a) to (2C) in No. 5 is 8, the distance is D-5X L+ 4
It is given by Xδ+4Q.

上記第1〜第5の発電領域(2a)〜(2e)は第2図
に示す如く受光面側から見て、5nOa、ITO等の透
光性導電酸化物の透明電極)d(3a)〜(3c)と、
シリコン化合物雰囲気中でのグロー放電(プラズマCV
D法)或いは光CVD法により形成されたpin接合等
の半導体接合を備えたアモルファスシリコン系半導体等
の光活性層(4a)〜(4e)と、オーミンク性金属の
背面電極層(5a)〜(5e)と、の三層を順次積層せ
しめた構成にあり、これら第1〜第5の発電領域(2a
)〜(2e)の有効面積とは上記透明電極N (3a)
〜(3e)、光活性層(4a)〜(4e)、及び背面電
極層(5a)〜(5d)の三層が完全に合致した領域の
面積のことを言う、上記第1〜第5の発電領域(2a)
〜(2e〉は各々が互いに隣接せる隣接間隅部に於いて
右隣りの透明電極層(3b〉〜(3e)上に左隣りの背
面電極層(5a)〜(5d)が延在することによって電
気的に直列接続され、その直列出力は一列状に整列配置
された第1〜第5の発電領域(2a)〜(2e)のその
延長線上に設けられた電気的両端部(6a)(6b)か
ら外部に導出される。
The first to fifth power generation regions (2a) to (2e) are transparent electrodes (3a) to 5nOa, made of translucent conductive oxide such as ITO, when viewed from the light-receiving surface side as shown in FIG. (3c) and
Glow discharge in a silicon compound atmosphere (plasma CV
D method) or photoactive layers (4a) to (4e) made of an amorphous silicon semiconductor having a semiconductor junction such as a pin junction formed by a photo-CVD method, and back electrode layers (5a) to (4e) made of an ohmink metal. It has a structure in which three layers of 5e) and 5e are sequentially laminated, and these first to fifth power generation areas
) to (2e) is the effective area of the transparent electrode N (3a)
- (3e), the area of the region where the three layers of the photoactive layers (4a) - (4e) and the back electrode layers (5a) - (5d) are completely matched; Power generation area (2a)
~(2e>) means that the back electrode layers (5a) to (5d) on the left extend over the transparent electrode layers (3b> to (3e) on the right at the corners between adjacent corners where they are adjacent to each other); are electrically connected in series with each other, and the series output is provided at both electrical ends (6a) ( 6b) to the outside.

第3図は(iv>の位置に配置された光起電力装置(S
C)に対しく1)〜(i)の夫々異なった位置にケーシ
ング(7)の窓部(8)があるときに実装された際、該
窓部(8)を介して光照射される整列方向の受光範囲を
模式的に表わしている。上記窓部(8)の整列方向の開
口長は全て等しくDであり、(1)の位置にあっては窓
部(8)の左側1(19)が第1発電領域(2a)の左
端(2afl)から。u/2右側に片寄る結果、第1発
電領域(2a)の、立/2長及び第5発電領域(2e)
の、Q/2長がケーシング(7)により遮光きれる。(
i)の窓部(8)の位置にあっては、該窓部(8)の左
側縁(811)と、第1発電領域(2a)の左端(2a
Q)が一致している結果、第5発電領域(2e)はその
右端(2er)から、、Ωの長さケーシングにより遮光
きれる。(i)の位置は(i)の位置と逆であり、窓部
(8)の右側縁(8r)と第5発電領域(2c)の右端
(2er)とが一致している結果、第1発電領域(2a
)はその左端(2afl>から。Qの長さ遮光される。
Figure 3 shows the photovoltaic device (S
When the windows (8) of the casing (7) are installed at different positions in 1) to (i) for C), the alignment is irradiated with light through the windows (8). It schematically represents the light receiving range in the direction. The opening lengths of the windows (8) in the alignment direction are all equal D, and in the position (1), the left side 1 (19) of the window (8) is the left end ( From 2afl). As a result of shifting to the right side of u/2, the vertical/2 length of the first power generation area (2a) and the fifth power generation area (2e)
Q/2 length of the light can be completely blocked by the casing (7). (
i), the left edge (811) of the window (8) and the left end (2a) of the first power generation area (2a)
As a result of the coincidence of Q), the fifth power generation region (2e) can be completely shielded from light by the casing having a length of Ω from its right end (2er). The position of (i) is opposite to the position of (i), and as a result of the right edge (8r) of the window part (8) and the right end (2er) of the fifth power generation area (2c) matching, the first Power generation area (2a
) is shielded from light for a length of Q from its left end (2afl>).

この様な第1〜第5の発電領域(2a)〜(2e〉と窓
部(8)との位置関係に於いて実装した場合、第2〜第
4の発電領域(2b)〜(2d)はケーシング(7)に
よい遮光されず、その受光面積は有効受光面積と一致す
るLXWであり、また第1及び第5の発電領域(2aH
2e)の受光面積は下表の通りである。
When mounted in such a positional relationship between the first to fifth power generation areas (2a) to (2e) and the window part (8), the second to fourth power generation areas (2b) to (2d) is not well-shielded by the casing (7), its light-receiving area is LXW, which matches the effective light-receiving area, and the first and fifth power generation areas (2aH
The light receiving area of 2e) is shown in the table below.

この様に第1及び第5の発電領域(2a)(2e)の受
光面積は、整列方向に於いて第3図(1)の位置を基準
にf Al/2の範囲で実装位置がずれたとしても第2
〜第4発電領域(2b)〜(2d)の受光面積であるL
XW以上の面積が得られる。従って、実装時の窓部〈8
)の基準位置を第3図(i)とすれば、光起電力装置(
SC)の長手方向である整列方向に(i)或いは(i)
の如く士、 It/2の実装誤差が発生しても、第1及
び第5の発電領域(2a)(2e)の受光面積はLXW
より小さくならず、最低でも第2〜第4の発電領域(2
b)〜(2d)の各々が出力するt流値以上の電流を発
生することができる。
In this way, the light-receiving areas of the first and fifth power generation regions (2a) and (2e) are shifted in mounting position within the range of fAl/2 with respect to the position shown in Fig. 3 (1) in the alignment direction. Even the second
~L which is the light receiving area of the fourth power generation region (2b) to (2d)
An area of XW or more can be obtained. Therefore, the window part <8
) is the reference position of the photovoltaic device (
(i) or (i) in the alignment direction that is the longitudinal direction of SC)
Even if a mounting error of It/2 occurs, the light receiving area of the first and fifth power generation areas (2a) (2e) is LXW.
at least the second to fourth power generation areas (2
It is possible to generate a current greater than the t current value output by each of b) to (2d).

尚、上記実施例にあっては第1〜第5の5個の発電領域
(2a)〜(2e)を電気的に直列接続せしめた光起電
力装置(SC)について詳述したがこれは光活性層(4
a)〜(4c)がアモルファスシリコン系半導体からな
る場合、螢光灯下で標準動作出力1.5■を出力するこ
とができ一般的であるからであり、この直列接続数に限
定されるものではなく4個以上であれば下記する本発明
の効果を奏するものである。
In the above embodiment, the photovoltaic device (SC) in which the first to fifth power generation regions (2a) to (2e) are electrically connected in series was described in detail. Active layer (4
This is because when a) to (4c) are made of amorphous silicon-based semiconductors, they can generally output a standard operating output of 1.5 ■ under a fluorescent light, and the number of series connections is limited to this. However, if the number is four or more, the effects of the present invention described below can be achieved.

(ト)発明の効果 本考案は以上の説明から明らかな如く、直列接続された
4個以上の発電領域の内、整列方向の両端に配置された
発電領域の有効受光面積に比して大きくすることによっ
て、仮に光起電力装置を実装する際に発電領域の整列方
向にずれたとしてもケーシングの遮光により受光面積が
減少するのは有効受光面積が大きい何れか一端の発電領
域であるので、多少その受光面積が減少しても中間の2
個以上の発電領域のそれとほぼ等しくなるだけであり、
装置全体の出力電流を規制するに至らない。従って、本
発明によれば光起電力装置の実装時に於ける整列方向の
ずれ幅の許容範囲が拡がり、厳格な作業条件が緩和され
るにも拘らず、装置全体の出力電流の低下を招くことは
ない。
(G) Effects of the Invention As is clear from the above description, the present invention makes the effective light-receiving area larger than the effective light-receiving area of the power-generating regions arranged at both ends in the alignment direction among four or more power-generating regions connected in series. Therefore, even if there is a shift in the alignment direction of the power generation regions when mounting the photovoltaic device, the light receiving area will be reduced due to the light blocking of the casing in the power generation region at either end, which has a large effective light receiving area, so it will be somewhat Even if the light-receiving area decreases, the middle 2
It is only approximately equal to that of a power generation area of 1 or more,
It is not enough to regulate the output current of the entire device. Therefore, according to the present invention, the permissible range of misalignment in the alignment direction when mounting a photovoltaic device is expanded, and although the strict working conditions are relaxed, the output current of the entire device does not decrease. There isn't.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光起電力装置を受光面側から臨んだ正面
図、第2図は本発明光起電力装置の横断面図、第3図は
ケーシングの窓の位置と受光範囲との関係を説明するた
めの模式図、第4図及び第5図は従来の実装構造を示す
模式図で、(1)は基板、(2a)〜(2e)は第1〜
第5の発電領域、(7)はケーシング、(8)は窓部、
を夫々示している。
Figure 1 is a front view of the photovoltaic device of the present invention viewed from the light-receiving surface side, Figure 2 is a cross-sectional view of the photovoltaic device of the present invention, and Figure 3 is the relationship between the position of the window of the casing and the light-receiving range. 4 and 5 are schematic diagrams showing conventional mounting structures, (1) is a board, (2a) to (2e) are first to
The fifth power generation area, (7) is the casing, (8) is the window,
are shown respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも基板の絶縁表面に4個以上の発電領域
を整列配置せしめ、それらの領域を電気的に直列接続せ
しめた光起電力装置であって、上記発電領域の内、整列
方向の両端に配置された発電領域の有効受光面積は他の
発電領域の有効受光面積に比して大きいことを特徴とす
る光起電力装置。
(1) A photovoltaic device in which four or more power generation regions are arranged in an array on at least an insulating surface of a substrate, and these regions are electrically connected in series, wherein both ends of the power generation regions in the alignment direction A photovoltaic device characterized in that the effective light receiving area of the arranged power generating region is larger than the effective light receiving area of the other power generating regions.
JP59212181A 1984-10-09 1984-10-09 Photovoltaic device Pending JPS6190474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212181A JPS6190474A (en) 1984-10-09 1984-10-09 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212181A JPS6190474A (en) 1984-10-09 1984-10-09 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS6190474A true JPS6190474A (en) 1986-05-08

Family

ID=16618254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212181A Pending JPS6190474A (en) 1984-10-09 1984-10-09 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6190474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345870A (en) * 1986-08-13 1988-02-26 Toshiba Corp Photoelectric transducer
WO2010079769A1 (en) * 2009-01-09 2010-07-15 シャープ株式会社 Thin-film solar cell module and thin-film solar cell array
WO2011105169A1 (en) * 2010-02-26 2011-09-01 三洋電機株式会社 Photoelectric conversion device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984478A (en) * 1982-11-04 1984-05-16 Matsushita Electric Ind Co Ltd Solar battery module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984478A (en) * 1982-11-04 1984-05-16 Matsushita Electric Ind Co Ltd Solar battery module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345870A (en) * 1986-08-13 1988-02-26 Toshiba Corp Photoelectric transducer
JPH073881B2 (en) * 1986-08-13 1995-01-18 株式会社東芝 Photoelectric conversion device
WO2010079769A1 (en) * 2009-01-09 2010-07-15 シャープ株式会社 Thin-film solar cell module and thin-film solar cell array
JP2010161300A (en) * 2009-01-09 2010-07-22 Sharp Corp Thin film solar battery module and thin film solar battery array
JP4726962B2 (en) * 2009-01-09 2011-07-20 シャープ株式会社 Thin film solar cell module and thin film solar cell array
WO2011105169A1 (en) * 2010-02-26 2011-09-01 三洋電機株式会社 Photoelectric conversion device

Similar Documents

Publication Publication Date Title
US4517403A (en) Series connected solar cells and method of formation
US4795500A (en) Photovoltaic device
US4513168A (en) Three-terminal solar cell circuit
EP2858124B1 (en) Bridged solar cell and solar power generation system
DE60212594D1 (en) SOLAR CELL STRUCTURE WITH ELECTRICAL CONTACTS DISTRIBUTED OVER THE WHOLE SURFACE
ATE195390T1 (en) SOLAR CELL
JPS6190474A (en) Photovoltaic device
TWI669828B (en) Solar battery module, solar battery module manufacturing method and wire
JP3198451U (en) 4 busbar solar cells
JPH0319234Y2 (en)
JPS5922360A (en) Optical input mos type transistor
CN218548446U (en) Solar cell and photovoltaic module
JPH0319235Y2 (en)
JPH06177408A (en) Thin film solar battery and its manufacture
JPS5984478A (en) Solar battery module
TWI689170B (en) Solar cell
JP2726045B2 (en) Light power generator
KR20110001385A (en) Solar cell aparatus
JP2001111087A (en) Solar battery module
JPH01152769A (en) Photoelectric transducer
JPS62111479A (en) Photovoltaic device
JPS6316913B2 (en)
JPS6260272A (en) Solar battery
CN111092133A (en) Solar photoelectric module
KR20230052401A (en) Solar cell module having bypass diode