WO2011105169A1 - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
WO2011105169A1
WO2011105169A1 PCT/JP2011/051780 JP2011051780W WO2011105169A1 WO 2011105169 A1 WO2011105169 A1 WO 2011105169A1 JP 2011051780 W JP2011051780 W JP 2011051780W WO 2011105169 A1 WO2011105169 A1 WO 2011105169A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
slit
conversion device
width
substrate
Prior art date
Application number
PCT/JP2011/051780
Other languages
French (fr)
Japanese (ja)
Inventor
和司 石木
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011105169A1 publication Critical patent/WO2011105169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a photoelectric conversion device.
  • a photoelectric conversion device using polycrystalline, microcrystalline, or amorphous silicon is known.
  • a photoelectric conversion device having a structure in which thin films of microcrystalline or amorphous silicon are stacked has attracted attention from the viewpoint of resources, cost reduction, and efficiency.
  • FIG. 9 schematically shows a top view and a cross-sectional view of the basic configuration of the photoelectric conversion device 200 as disclosed in Patent Document 1 of the related art.
  • the photoelectric conversion device 200 generally has a structure in which a transparent electrode 12, a photoelectric conversion layer 14, and a back electrode 16 are laminated on a transparent substrate 10 made of glass or the like. generate.
  • the photoelectric conversion device 200 is formed by laminating the transparent electrode 12, the photoelectric conversion layer 14, and the back electrode layer 16 in this order on the transparent substrate 10.
  • Examples of the photoelectric conversion layer 14 include an amorphous silicon (a-Si) photoelectric conversion layer, a microcrystalline ( ⁇ c-Si) photoelectric conversion layer, or a tandem structure thereof.
  • the stacked body is formed so as to be a power generation region by connecting the photoelectric conversion elements 20... Adjacent in the Y direction in series. And the electric power generation area
  • the photoelectric conversion device 200 is formed by sequentially laminating the photoelectric conversion layer 14 and the back electrode 16 on the transparent electrode 12 including the slits S1 and S2 formed on the main surface of the transparent substrate 10. And slit S5 was formed so that it might overlap with slit S2 by laser processing, and between adjacent photoelectric conversion elements 20 and 20 was electrically separated. At this time, the slits S5 are provided at regular intervals, and the photoelectric conversion element array 221 having a constant width is formed. That is, the width of the photoelectric conversion element rows 221 is set so that all n + 1 photoelectric conversion element rows 221 have the same width when n slits S5 are formed in the power generation region. A reverse voltage is applied to the photoelectric conversion element array 221 in order to improve the output. By applying the reverse voltage, defects such as defects or pinholes included in the photoelectric conversion layer 14 or leaked portions in the photoelectric conversion device 200 can be removed.
  • the moisture when moisture enters from the periphery of the transparent substrate 10, the moisture easily enters the slit S5 located at the end of the power generation region, and the photoelectric conversion layer 14 exposed through the slit S5 There has been a problem that moisture enters the interface such as the back electrode 16 and the film peels off.
  • An object of the present invention is to provide a photoelectric conversion device having improved weather resistance as compared with the conventional photoelectric conversion device described above.
  • a photoelectric conversion device forms a power generation region including a structure in which a first electrode, a photoelectric conversion layer, and a second electrode are sequentially stacked on a substrate.
  • a photoelectric conversion device in which a power generation region is divided into n + 1 power generation regions by n slits (n is 2 or more), and compared to the width of each photoelectric region when the power generation region is divided equally, at the end of the substrate The width of the photoelectric conversion region located is set to be wide.
  • a photoelectric conversion device with improved weather resistance can be provided.
  • 1 to 7 show a manufacturing process of the photoelectric conversion device 100 in the present embodiment.
  • 1 to 7 schematically show a top view and a cross-sectional view in each step of the manufacturing process of the photoelectric conversion device 100.
  • FIG. 1 to 7 schematically show a top view and a cross-sectional view in each step of the manufacturing process of the photoelectric conversion device 100.
  • the transparent electrode 12 is formed on the transparent substrate 10 as shown in FIG.
  • the transparent substrate 10 transmits light having a wavelength used for photoelectric conversion by the photoelectric conversion device and has an insulating surface.
  • glass, plastic, or the like can be used as the transparent substrate 10.
  • the transparent electrode 12 transmits light having a wavelength that the photoelectric conversion device uses for photoelectric conversion, and has conductivity.
  • transparent conductivity obtained by doping tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc.
  • An oxide (TCO) can be used.
  • a slit S1 extending in the X direction and a slit S2 extending in the Y direction are formed. That is, the transparent electrode 12 is formed in a strip shape by the slit S1, and the five slits S2 are formed to divide the transparent electrode 12 into six regions.
  • the width Ha of the transparent electrode region 12a (12f) located at the edge of the substrate is larger than the width h of the six transparent electrode regions 212 formed by providing five slits S2 at equal intervals in the X direction.
  • the transparent electrode region 12c (12d) located at the center of the substrate is divided so that the width Hc is narrow. That is, the width of the transparent electrode region is set such that Ha> h> Hc.
  • the slits S1 and S2 are formed to have a depth up to the surface of the transparent substrate 10.
  • a YAG laser (fundamental wave) having a wavelength of 1064 nm as the laser device for forming the slits S1 and S2. Formed by adjusting the power of the laser beam emitted from the laser device and irradiating the surface of the transparent electrode 12 opposite to the surface adjacent to the transparent substrate 10 so as to be focused on the surface of the transparent electrode 12 and scanning. can do.
  • the photoelectric conversion layer 14 is formed so as to cover the transparent electrode 12, as shown in FIG.
  • the photoelectric conversion layer 14 is not particularly limited, and examples thereof include an amorphous silicon (a-Si) photoelectric conversion layer, a microcrystalline ( ⁇ c-Si) photoelectric conversion layer, and a tandem structure thereof.
  • the photoelectric conversion layer 14 can be formed using plasma CVD or the like.
  • step S14 the photoelectric conversion layer 14 is removed using a laser to form a slit S3 extending in the X direction.
  • the slit S3 is formed to have a depth up to the surface of the transparent electrode 12 so as to divide the photoelectric conversion layer 14.
  • the slit S3 can be formed by adjusting the power of the laser beam emitted from the laser device, irradiating from the transparent substrate 10 side, and scanning.
  • the back electrode 16 is formed so as to cover the photoelectric conversion layer 14.
  • the back electrode 16 is preferably a reflective metal.
  • a stacked structure of a reflective metal and a transparent conductive oxide (TCO) is also preferable.
  • silver (Ag), aluminum (Al), or the like can be used as the reflective metal.
  • the transparent conductive oxide film (TCO) tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or the like can be used.
  • step S18 the photoelectric conversion layer 14 and the back electrode 16 are removed using a laser to form a slit S4 extending in the X direction.
  • the slit S4 is provided on the opposite side of the slit S1 in the Y direction when the slit S3 is used as a reference.
  • the slit S4 is formed to have a depth up to the interface with the transparent electrode 12 so as to divide the photoelectric conversion layer 14 and the back electrode 16. Thereby, it becomes the shape where multiple photoelectric conversion elements 20 ... which consist of the transparent electrode 12, the photoelectric converting layer 14, and the back surface electrode 16 were connected in series.
  • the slit S4 can be formed by adjusting the power of the laser beam emitted from the laser device, irradiating from the transparent substrate 10 side, and scanning.
  • step S20 as shown in FIG. 6, five slits S5 extending in the Y direction are formed by removing the photoelectric conversion layer 14 and the back electrode 16 using a laser. That is, the slit S5 that overlaps the slit S2 so as to divide the power generation region in which the photoelectric conversion elements 20 formed of the transparent electrode 12, the photoelectric conversion layer 14, and the back electrode 16 are connected in series into a plurality of regions 21a to 21f.
  • the slit S5 is formed to have a depth up to the interface between the photoelectric conversion layer 14 and the transparent substrate 10. Since the slit S5 overlaps the slit S2, the width relationship of the transparent electrode region where Ha> h> Hc is not changed.
  • a YAG laser (fundamental wave) with a wavelength of 1064 nm as the laser device for forming the slit S5. It can be formed by adjusting the power of the laser beam emitted from the laser device so as to be focused on the surface of the transparent electrode 12 from the transparent substrate 10 side and scanning the slit S5.
  • the photoelectric conversion device arrays 21a to 21f including the power generation region are arranged in parallel, and the photoelectric conversion device 100 connected in parallel is configured.
  • step S22 as shown in FIG. 7, a reverse voltage opposite to the photovoltaic force generated in each photoelectric conversion layer 14 is probed between adjacent photoelectric conversion elements 20. Apply by 30. At this time, the applied voltage is about 6V. By applying this reverse voltage, a low resistance portion such as a defect or a pinhole included in the photoelectric conversion layer 14 or a leaked portion in the photoelectric conversion device 100 can be evaporated and removed.
  • the width of the transparent electrode is Ha> h
  • the width of the photoelectric conversion element array 21a (21f) located at the end of the substrate is larger than the width of the photoelectric conversion element array 21 of the prior art.
  • interlayer refers to an interlayer between the photoelectric conversion layer 14 and the back electrode 16 or a back electrode 16 composed of a plurality of layers. It means the layer between the conductive film.
  • the width of the transparent electrode is set as Hc ⁇ h so that the width of the photoelectric conversion element array 21c (21d) located at the center of the substrate is narrower than the width of the photoelectric conversion element array 221 of the prior art. That is, when reverse voltages of the same magnitude are applied to the photoelectric conversion element array 221 and the photoelectric conversion element array 21c, the photoelectric conversion element array 21c (21d) having a narrower width than the photoelectric conversion element array 221 is per unit area.
  • the current applied to is increased. As a result, a larger current flows through a low resistance portion such as a defect or a pinhole included in the photoelectric conversion layer 14 or a defective portion such as a leak portion in the photoelectric conversion device 100. As a result, the amount of heat generated in a low resistance portion such as a defect or a pinhole, or a defective portion such as a leak portion increases, and the defective portion can be evaporated and better removed.
  • the photoelectric conversion element array 21a (21f) located at the edge of the substrate current is less likely to concentrate than in the central portion of the substrate, so that a defective portion that greatly affects the output of the photoelectric conversion device 100 is removed, Removal of a defective portion having little influence on the output of the photoelectric conversion device 100 is not performed.
  • This suppresses the formation of holes formed in the photoelectric conversion element array 21a (21f) located at the edge of the substrate by applying a reverse voltage to evaporate the defective portion. Therefore, it is possible to suppress moisture from entering from the hole and to suppress peeling of the film caused by moisture entering between the photoelectric conversion layer 14 and the back electrode 16. As a result, the weather resistance of the photoelectric conversion device 100 can be improved, and a decrease in conversion efficiency can be suppressed.
  • step S12 in the case of a tandem structure including a plurality of amorphous silicon (a-Si) photoelectric conversion layers and microcrystalline ( ⁇ c-Si) photoelectric conversion layers, a structure having an intermediate layer It is good.
  • a structure having an intermediate layer tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO) or the like is doped with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), or the like.
  • a transparent conductive oxide (TCO) may be used.
  • step S20 a step of removing the outer peripheral portion of the photoelectric conversion device 100 may be provided.
  • a step of forming a back sheet or a resin layer for protecting the surface of the photoelectric conversion device 100 may be provided after step S22.
  • the width in the CC cross section in the X direction is narrower in the slit S5 than in the slit S2, and the slit S5 is formed in the slit S2.
  • the slit S2 may be formed in the slit S5 such that the width in the cross section CC in the X direction is wider than the slit S2.
  • the interlayer that can obtain the effect (1) includes the interlayer between the transparent electrode 12 and the photoelectric conversion layer 14 in addition to the interlayer in the above embodiment.
  • the present invention can be used for a photoelectric conversion device.

Abstract

Disclosed is a photoelectric conversion device having improved weather resistance. In the photoelectric conversion device (100), a power generating region is formed, said power generating region including a structure wherein a first electrode (12), a photoelectric conversion layer (14), and a second electrode (16) are sequentially laminated on a substrate (10), and the power generating region is divided into six photoelectric conversion element columns (21) by means of five slits (S5). The width of a photoelectric conversion element column (21a(21f)) positioned at the end portion of the substrate is set wider than the width (h) of each photoelectric conversion element column (221) when the power generating region is equally divided.

Description

光電変換装置Photoelectric conversion device
 本発明は、光電変換装置に関する。 The present invention relates to a photoelectric conversion device.
 多結晶、微結晶またはアモルファスシリコンを用いた光電変換装置が知られている。特に、微結晶またはアモルファスシリコンの薄膜を積層した構造を有する光電変換装置は、資源の観点、コストの低下の観点および効率化の観点から注目されている。 A photoelectric conversion device using polycrystalline, microcrystalline, or amorphous silicon is known. In particular, a photoelectric conversion device having a structure in which thin films of microcrystalline or amorphous silicon are stacked has attracted attention from the viewpoint of resources, cost reduction, and efficiency.
 図9に、従来の特許文献1に開示されているような光電変換装置200の基本構成の上面図および断面図を模式的に示す。光電変換装置200は、一般的に、ガラス等の透明基板10上に透明電極12、光電変換層14および裏面電極16を積層した構造を有し、透明基板10から光を入射させることによって電力を発生させる。 光電変換装置200は、透明基板10上に透明電極12、光電変換層14、裏面電極層16を順に積層することにより形成されている。光電変換層14としては、アモルファスシリコン(a-Si)光電変換層、微結晶(μc-Si)光電変換層又はそれらのタンデム構造が挙げられる。積層体は、Y方向に隣接した光電変換素子20・・・を直列に接続して発電領域となるように形成される。そして、この直列接続された光電変換素子20・・・からなる発電領域は、Y方向に延在するスリットにより電気的に分離され、光電変換素子列221がX方向に複数並設された構造が得られる。そして、これらの光電変換素子列221は最終的に並列に接続され、光電変換装置200を構成する。 FIG. 9 schematically shows a top view and a cross-sectional view of the basic configuration of the photoelectric conversion device 200 as disclosed in Patent Document 1 of the related art. The photoelectric conversion device 200 generally has a structure in which a transparent electrode 12, a photoelectric conversion layer 14, and a back electrode 16 are laminated on a transparent substrate 10 made of glass or the like. generate. The photoelectric conversion device 200 is formed by laminating the transparent electrode 12, the photoelectric conversion layer 14, and the back electrode layer 16 in this order on the transparent substrate 10. Examples of the photoelectric conversion layer 14 include an amorphous silicon (a-Si) photoelectric conversion layer, a microcrystalline (μc-Si) photoelectric conversion layer, or a tandem structure thereof. The stacked body is formed so as to be a power generation region by connecting the photoelectric conversion elements 20... Adjacent in the Y direction in series. And the electric power generation area | region which consists of this photoelectric conversion element 20 ... connected in series is electrically isolate | separated by the slit extended in a Y direction, and the structure where multiple photoelectric conversion element row | line | columns 221 were arranged in parallel by the X direction has the structure. can get. These photoelectric conversion element arrays 221 are finally connected in parallel to constitute the photoelectric conversion device 200.
 この光電変換装置200では、透明基板10の主面に形成されたスリットS1,S2を含む透明電極12上に、光電変換層14、裏面電極16を順に積層することにより形成される。そして、スリットS5をレーザ加工によりスリットS2と重畳するように形成して隣接する光電変換素子20,20間を電気的に分離していた。このとき、スリットS5は、一定の間隔となるように設けられ、一定の幅の光電変換素子列221が形成される。すなわち、光電変換素子列221の幅は、発電領域にスリットS5がn本形成された場合、n+1本の光電変換素子列221がすべて同じ幅となるように設定されている。そして、この光電変換素子列221には、出力を向上させるために逆電圧が印加される。逆電圧が印加されることにより、光電変換層14に含まれる欠陥やピンホール等の低抵抗部、又は光電変換装置200中のリーク箇所などの不良部分を除去することができる。 The photoelectric conversion device 200 is formed by sequentially laminating the photoelectric conversion layer 14 and the back electrode 16 on the transparent electrode 12 including the slits S1 and S2 formed on the main surface of the transparent substrate 10. And slit S5 was formed so that it might overlap with slit S2 by laser processing, and between adjacent photoelectric conversion elements 20 and 20 was electrically separated. At this time, the slits S5 are provided at regular intervals, and the photoelectric conversion element array 221 having a constant width is formed. That is, the width of the photoelectric conversion element rows 221 is set so that all n + 1 photoelectric conversion element rows 221 have the same width when n slits S5 are formed in the power generation region. A reverse voltage is applied to the photoelectric conversion element array 221 in order to improve the output. By applying the reverse voltage, defects such as defects or pinholes included in the photoelectric conversion layer 14 or leaked portions in the photoelectric conversion device 200 can be removed.
特開平11-186573号公報JP 11-186573 A
 従来の光電変換装置200では、透明基板10の周囲から水分が侵入した場合、発電領域の最端部に位置するスリットS5にまで水分が侵入し易くなり、スリットS5で露出した光電変換層14と裏面電極16などの界面に水分が侵入し、膜が剥離する問題が発生していた。 In the conventional photoelectric conversion device 200, when moisture enters from the periphery of the transparent substrate 10, the moisture easily enters the slit S5 located at the end of the power generation region, and the photoelectric conversion layer 14 exposed through the slit S5 There has been a problem that moisture enters the interface such as the back electrode 16 and the film peels off.
 本発明は、上記に記載された従来の光電変換装置に比べ、耐候性を向上させた光電変換装置を提供することを目的とする。 An object of the present invention is to provide a photoelectric conversion device having improved weather resistance as compared with the conventional photoelectric conversion device described above.
 上記目的を達成するために、この発明の一の局面における光電変換装置は、基板上に第1の電極、光電変換層、第2の電極を順に積層した構造を含む発電領域を形成し、この発電領域をn本(nは2以上)のスリットによりn+1の発電領域に分割した光電変換装置であって、発電領域を等分に分割した時の各光電領域の幅に比べ、基板端部に位置する光電変換領域の幅を広くなるように設定する。 In order to achieve the above object, a photoelectric conversion device according to one aspect of the present invention forms a power generation region including a structure in which a first electrode, a photoelectric conversion layer, and a second electrode are sequentially stacked on a substrate. A photoelectric conversion device in which a power generation region is divided into n + 1 power generation regions by n slits (n is 2 or more), and compared to the width of each photoelectric region when the power generation region is divided equally, at the end of the substrate The width of the photoelectric conversion region located is set to be wide.
 本発明によれば、耐候性を向上させた光電変換装置を提供することができる。 According to the present invention, a photoelectric conversion device with improved weather resistance can be provided.
本発明の実施形態における光電変換装置の製造工程を示す上面図および断面図である。It is the top view and sectional drawing which show the manufacturing process of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施形態における光電変換装置の製造工程を示す上面図および断面図である。It is the top view and sectional drawing which show the manufacturing process of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施形態における光電変換装置の製造工程を示す上面図および断面図である。It is the top view and sectional drawing which show the manufacturing process of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施形態における光電変換装置の製造工程を示す上面図および断面図である。It is the top view and sectional drawing which show the manufacturing process of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施形態における光電変換装置の製造工程を示す上面図および断面図である。It is the top view and sectional drawing which show the manufacturing process of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施形態における光電変換装置の製造工程を示す上面図および断面図である。It is the top view and sectional drawing which show the manufacturing process of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施形態における光電変換装置の製造工程を示す上面図および断面図である。It is the top view and sectional drawing which show the manufacturing process of the photoelectric conversion apparatus in embodiment of this invention. 本発明の他の実施形態における光電変換装置を示す上面図および断面図である。It is the top view and sectional drawing which show the photoelectric conversion apparatus in other embodiment of this invention. 従来技術に係る光電変換装置を示す上面図および断面図である。It is the top view and sectional drawing which show the photoelectric conversion apparatus which concerns on a prior art.
 本実施形態における光電変換装置100の製造工程を図1~図7に示す。図1~図7においては、光電変換装置100の製造工程の各ステップにおける上面図および断面図を模式的に示している。 1 to 7 show a manufacturing process of the photoelectric conversion device 100 in the present embodiment. 1 to 7 schematically show a top view and a cross-sectional view in each step of the manufacturing process of the photoelectric conversion device 100. FIG.
 ステップS10では、図1に示すように、透明基板10上に透明電極12を形成する。透明基板10は、光電変換装置が光電変換に利用する波長の光を透過し、且つ絶縁表面を有する。例えば、透明基板10として、ガラス、プラスチック等を用いることができる。透明電極12は、光電変換装置が光電変換に利用する波長の光を透過し、且つ導電性を有する。例えば、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)を用いることができる。 In step S10, the transparent electrode 12 is formed on the transparent substrate 10 as shown in FIG. The transparent substrate 10 transmits light having a wavelength used for photoelectric conversion by the photoelectric conversion device and has an insulating surface. For example, glass, plastic, or the like can be used as the transparent substrate 10. The transparent electrode 12 transmits light having a wavelength that the photoelectric conversion device uses for photoelectric conversion, and has conductivity. For example, transparent conductivity obtained by doping tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. An oxide (TCO) can be used.
 透明基板10上に形成された透明電極12をレーザを用いて除去することにより、X方向に延在するスリットS1、およびY方向に延在するスリットS2を形成する。すなわち、このスリットS1により、透明電極12を短冊状に形成するとともに、スリットS2を5本形成することにより、透明電極12を6つの領域に分割する。この時、スリットS2をX方向に5本等間隔に設けて形成した6つの透明電極領域212の幅hに比べ、基板端部に位置する透明電極領域12a(12f)の幅Haは広くなるように、また基板中央部に位置する透明電極領域12c(12d)の幅Hcは狭くなるように分割される。つまり、透明電極領域の幅がHa>h>Hcとなるよう設定する。なお、スリットS1,S2は、透明基板10の表面までの深さとなるように形成する。 By removing the transparent electrode 12 formed on the transparent substrate 10 using a laser, a slit S1 extending in the X direction and a slit S2 extending in the Y direction are formed. That is, the transparent electrode 12 is formed in a strip shape by the slit S1, and the five slits S2 are formed to divide the transparent electrode 12 into six regions. At this time, the width Ha of the transparent electrode region 12a (12f) located at the edge of the substrate is larger than the width h of the six transparent electrode regions 212 formed by providing five slits S2 at equal intervals in the X direction. In addition, the transparent electrode region 12c (12d) located at the center of the substrate is divided so that the width Hc is narrow. That is, the width of the transparent electrode region is set such that Ha> h> Hc. The slits S1 and S2 are formed to have a depth up to the surface of the transparent substrate 10.
 スリットS1,S2を形成するためのレーザ装置は、波長1064nmのYAGレーザ(基本波)を用いることが好適である。レーザ装置から出射されるレーザビームのパワーを調整して透明電極12の透明基板10と隣接する面に対向する面側から透明電極12の表面に焦点されるように照射し、走査することによって形成することができる。 It is preferable to use a YAG laser (fundamental wave) having a wavelength of 1064 nm as the laser device for forming the slits S1 and S2. Formed by adjusting the power of the laser beam emitted from the laser device and irradiating the surface of the transparent electrode 12 opposite to the surface adjacent to the transparent substrate 10 so as to be focused on the surface of the transparent electrode 12 and scanning. can do.
 ステップS12では、図2に示すように、透明電極12を被うように光電変換層14を成膜する。光電変換層14は、特に限定されるものではないが、例えば、アモルファスシリコン(a-Si)光電変換層、微結晶(μc-Si)光電変換層又はそれらのタンデム構造が挙げられる。光電変換層14は、プラズマCVD等を用いて形成することができる。 In step S12, the photoelectric conversion layer 14 is formed so as to cover the transparent electrode 12, as shown in FIG. The photoelectric conversion layer 14 is not particularly limited, and examples thereof include an amorphous silicon (a-Si) photoelectric conversion layer, a microcrystalline (μc-Si) photoelectric conversion layer, and a tandem structure thereof. The photoelectric conversion layer 14 can be formed using plasma CVD or the like.
 ステップS14では、図3に示すように、光電変換層14をレーザを用いて除去することにより、X方向に延在するスリットS3を形成する。このスリットS3は、光電変換層14を分割するように透明電極12の表面までの深さとなるように形成する。 In step S14, as shown in FIG. 3, the photoelectric conversion layer 14 is removed using a laser to form a slit S3 extending in the X direction. The slit S3 is formed to have a depth up to the surface of the transparent electrode 12 so as to divide the photoelectric conversion layer 14.
 スリットS3を形成するためのレーザ装置は、波長532nmのYAGレーザ(2倍波)を用いることが好適である。レーザ装置から出射されるレーザビームのパワーを調整して透明基板10側から照射し、走査することによってスリットS3を形成することができる。 It is preferable to use a YAG laser (double wave) with a wavelength of 532 nm as the laser device for forming the slit S3. The slit S3 can be formed by adjusting the power of the laser beam emitted from the laser device, irradiating from the transparent substrate 10 side, and scanning.
 ステップS16では、図4に示すように、光電変換層14を覆うように裏面電極16を形成する。裏面電極16は、反射性金属とすることが好適である。また、反射性金属と透明導電性酸化物(TCO)との積層構造とすることも好適である。例えば、反射性金属としては、銀(Ag)、アルミニウム(Al)等を用いることができる。また、透明導電性酸化膜(TCO)としては、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等を用いることができる。 In step S <b> 16, as shown in FIG. 4, the back electrode 16 is formed so as to cover the photoelectric conversion layer 14. The back electrode 16 is preferably a reflective metal. In addition, a stacked structure of a reflective metal and a transparent conductive oxide (TCO) is also preferable. For example, silver (Ag), aluminum (Al), or the like can be used as the reflective metal. Further, as the transparent conductive oxide film (TCO), tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or the like can be used.
 ステップS18では、図5に示すように、光電変換層14および裏面電極16をレーザを用いて除去することにより、X方向に延在するスリットS4を形成する。このスリットS4は、スリットS3を基準とした場合、Y方向においてスリットS1と反対側に設ける。なお、スリットS4は、光電変換層14および裏面電極16を分割するように透明電極12との界面までの深さとなるように形成する。これにより、透明電極12、光電変換層14、および裏面電極16からなる光電変換素子20・・・が複数直列に接続された形状となる。 In step S18, as shown in FIG. 5, the photoelectric conversion layer 14 and the back electrode 16 are removed using a laser to form a slit S4 extending in the X direction. The slit S4 is provided on the opposite side of the slit S1 in the Y direction when the slit S3 is used as a reference. The slit S4 is formed to have a depth up to the interface with the transparent electrode 12 so as to divide the photoelectric conversion layer 14 and the back electrode 16. Thereby, it becomes the shape where multiple photoelectric conversion elements 20 ... which consist of the transparent electrode 12, the photoelectric converting layer 14, and the back surface electrode 16 were connected in series.
 スリットS4を形成するためのレーザ装置は、波長532nmのYAGレーザ(2倍波)を用いることが好適である。レーザ装置から出射されるレーザビームのパワーを調整して透明基板10側から照射し、走査することによってスリットS4を形成することができる。 It is preferable to use a YAG laser (double wave) with a wavelength of 532 nm as the laser device for forming the slit S4. The slit S4 can be formed by adjusting the power of the laser beam emitted from the laser device, irradiating from the transparent substrate 10 side, and scanning.
 ステップS20では、図6に示すように、光電変換層14および裏面電極16をレーザを用いて除去することにより、Y方向に延在する5本のスリットS5を形成する。すなわち、透明電極12、光電変換層14および裏面電極16からなる光電変換素子20・・・を直列に接続した発電領域を複数の領域21a~21fに分割するようにスリットS2と重畳するスリットS5を形成する。スリットS5は、光電変換層14と透明基板10との界面までの深さとなるように形成する。なおスリットS5は、スリットS2と重畳しているため、Ha>h>Hcとなる透明電極領域の幅の大小関係は変わらない。 In step S20, as shown in FIG. 6, five slits S5 extending in the Y direction are formed by removing the photoelectric conversion layer 14 and the back electrode 16 using a laser. That is, the slit S5 that overlaps the slit S2 so as to divide the power generation region in which the photoelectric conversion elements 20 formed of the transparent electrode 12, the photoelectric conversion layer 14, and the back electrode 16 are connected in series into a plurality of regions 21a to 21f. Form. The slit S5 is formed to have a depth up to the interface between the photoelectric conversion layer 14 and the transparent substrate 10. Since the slit S5 overlaps the slit S2, the width relationship of the transparent electrode region where Ha> h> Hc is not changed.
 スリットS5を形成するためのレーザ装置は、波長1064nmのYAGレーザ(基本波)を用いることが好適である。レーザ装置から出射されるレーザビームのパワーを調整して透明基板10側から透明電極12の表面に焦点されるように照射し、スリットS5を走査することによって形成することができる。 It is preferable to use a YAG laser (fundamental wave) with a wavelength of 1064 nm as the laser device for forming the slit S5. It can be formed by adjusting the power of the laser beam emitted from the laser device so as to be focused on the surface of the transparent electrode 12 from the transparent substrate 10 side and scanning the slit S5.
 このようにして、発電領域からなる光電変換素子列21a~21fが並設され、並列に接続された光電変換装置100が構成される。 In this way, the photoelectric conversion device arrays 21a to 21f including the power generation region are arranged in parallel, and the photoelectric conversion device 100 connected in parallel is configured.
 ステップS22では、図7に示すように、光電変換素子列21の隣り合う光電変換素子20・・・間に、各光電変換層14において発生される光起電力とは逆向きの逆電圧をプローブ30により印加する。このとき、印加される電圧は、6V程度とする。この逆電圧の印加により、光電変換層14に含まれる欠陥やピンホール等の低抵抗部、又は光電変換装置100中のリーク箇所を蒸発させて、除去することができる。 In step S22, as shown in FIG. 7, a reverse voltage opposite to the photovoltaic force generated in each photoelectric conversion layer 14 is probed between adjacent photoelectric conversion elements 20. Apply by 30. At this time, the applied voltage is about 6V. By applying this reverse voltage, a low resistance portion such as a defect or a pinhole included in the photoelectric conversion layer 14 or a leaked portion in the photoelectric conversion device 100 can be evaporated and removed.
 以上の構成に基づく本実施形態の効果を以下に列記する。 The effects of this embodiment based on the above configuration are listed below.
 (1)光電変換装置100においては、透明電極の幅をHa>hとして、従来技術の光電変換素子列21の幅に比べ、基板端部に位置する光電変換素子列21a(21f)の幅が広くなるように設定する。つまり、発電領域にスリットS5がX方向に等間隔に形成された場合に比べ、透明基板10端部から複数の光電変換素子列21からなる発電領域の最端部に位置するスリットS5までの距離が長くなる。これにより、透明基板10の周囲から水分が侵入した場合であっても、発電領域の最端部に位置するスリットS5にまで水分が侵入し難くなる。 (1) In the photoelectric conversion device 100, the width of the transparent electrode is Ha> h, and the width of the photoelectric conversion element array 21a (21f) located at the end of the substrate is larger than the width of the photoelectric conversion element array 21 of the prior art. Set to widen. That is, as compared with the case where the slits S5 are formed in the power generation region at equal intervals in the X direction, the distance from the end of the transparent substrate 10 to the slit S5 located at the end of the power generation region composed of the plurality of photoelectric conversion element arrays 21. Becomes longer. Thereby, even if moisture enters from the periphery of the transparent substrate 10, it becomes difficult for moisture to enter the slit S5 located at the end of the power generation region.
 したがって、光電変換層14と裏面電極16の層間に水分が侵入して生じる膜の剥離を従来よりも抑制することができる。その結果、光電変換装置100の耐候性が向上し、変換効率の低下を抑制することができる。なお、ここでの層間とは、光電変換層14と裏面電極16との層間、もしくは複数の層からなる裏面電極16にあっては、裏面電極16を構成する層、例えばAg層と透光性導電膜との層間のことを意味する。 Therefore, it is possible to suppress the peeling of the film caused by moisture entering between the photoelectric conversion layer 14 and the back electrode 16 as compared with the conventional case. As a result, the weather resistance of the photoelectric conversion device 100 can be improved, and a decrease in conversion efficiency can be suppressed. The term “interlayer” as used herein refers to an interlayer between the photoelectric conversion layer 14 and the back electrode 16 or a back electrode 16 composed of a plurality of layers. It means the layer between the conductive film.
 (2)従来技術の光電変換素子列221の幅に比べ、基板中央部に位置する光電変換素子列21c(21d)の幅が狭くなるように、透明電極の幅をHc<hとして設定する。つまり、光電変換素子列221と光電変換素子列21cに同じ大きさの逆電圧を印加した場合、光電変換素子列221に比べて幅の狭い光電変換素子列21c(21d)の方が単位面積あたりに印加される電流が大きくなる。これにより、光電変換層14に含まれる欠陥やピンホール等の低抵抗部、又は光電変換装置100中のリーク箇所などの不良部分に、より大きい電流が流れる。この結果、欠陥やピンホール等の低抵抗部、又はリーク箇所などの不良部分での発熱量が大きくなり、不良部分を蒸発させてより良く除去することが可能となる。 (2) The width of the transparent electrode is set as Hc <h so that the width of the photoelectric conversion element array 21c (21d) located at the center of the substrate is narrower than the width of the photoelectric conversion element array 221 of the prior art. That is, when reverse voltages of the same magnitude are applied to the photoelectric conversion element array 221 and the photoelectric conversion element array 21c, the photoelectric conversion element array 21c (21d) having a narrower width than the photoelectric conversion element array 221 is per unit area. The current applied to is increased. As a result, a larger current flows through a low resistance portion such as a defect or a pinhole included in the photoelectric conversion layer 14 or a defective portion such as a leak portion in the photoelectric conversion device 100. As a result, the amount of heat generated in a low resistance portion such as a defect or a pinhole, or a defective portion such as a leak portion increases, and the defective portion can be evaporated and better removed.
 つまり、基板端部に位置する光電変換素子列21a(21f)においては、基板中央部に比べて電流が集中し難いので、光電変換装置100の出力に大きな影響を与える不良部分を除去する一方、光電変換装置100の出力に対する影響が少ない不良部分の除去が行われない。これにより、逆電圧を印加して不良部分を蒸発させたことにより形成される穴が基板端部に位置する光電変換素子列21a(21f)にできることを抑制する。したがって、この穴より水分が侵入することを抑制し、光電変換層14と裏面電極16の層間に水分が侵入して生じる膜の剥離を抑制することができる。その結果、光電変換装置100の耐候性が向上し、変換効率の低下を抑制することができる。 In other words, in the photoelectric conversion element array 21a (21f) located at the edge of the substrate, current is less likely to concentrate than in the central portion of the substrate, so that a defective portion that greatly affects the output of the photoelectric conversion device 100 is removed, Removal of a defective portion having little influence on the output of the photoelectric conversion device 100 is not performed. This suppresses the formation of holes formed in the photoelectric conversion element array 21a (21f) located at the edge of the substrate by applying a reverse voltage to evaporate the defective portion. Therefore, it is possible to suppress moisture from entering from the hole and to suppress peeling of the film caused by moisture entering between the photoelectric conversion layer 14 and the back electrode 16. As a result, the weather resistance of the photoelectric conversion device 100 can be improved, and a decrease in conversion efficiency can be suppressed.
 上記各実施形態は一例に過ぎず、ステップS12においては、複数のアモルファスシリコン(a-Si)光電変換層や微結晶(μc-Si)光電変換層からなるタンデム構造の場合、中間層を有する構造としてもよい。中間層としては、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)を用いてもよい。 Each of the above embodiments is merely an example. In step S12, in the case of a tandem structure including a plurality of amorphous silicon (a-Si) photoelectric conversion layers and microcrystalline (μc-Si) photoelectric conversion layers, a structure having an intermediate layer It is good. As the intermediate layer, tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO) or the like is doped with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), or the like. A transparent conductive oxide (TCO) may be used.
 さらに、ステップS20の後に、光電変換装置100の外周部分を除去する工程等を設けてもよい。 Furthermore, after step S20, a step of removing the outer peripheral portion of the photoelectric conversion device 100 may be provided.
 加えて、ステップS22の後に、光電変換装置100の表面を保護するためのバックシートや樹脂層を形成する工程を設けてもよい。 In addition, a step of forming a back sheet or a resin layer for protecting the surface of the photoelectric conversion device 100 may be provided after step S22.
 また、図7に記載した光電変換装置100のように、X方向のC-C断面における幅がスリットS2に比べてスリットS5の方が狭く、スリットS2内にスリットS5が形成されているものに限らない。例えば図8に記載したように、X方向のC-C断面における幅がスリットS2に比べてスリットS5の方が広くなるようして、スリットS5内にスリットS2を形成してもよい。 In addition, as in the photoelectric conversion device 100 described in FIG. 7, the width in the CC cross section in the X direction is narrower in the slit S5 than in the slit S2, and the slit S5 is formed in the slit S2. Not exclusively. For example, as shown in FIG. 8, the slit S2 may be formed in the slit S5 such that the width in the cross section CC in the X direction is wider than the slit S2.
 この場合、上記実施形態の(1),(2),(3)同様の効果が得られる他、透明基板10の周囲から水分が侵入した場合であっても、発電領域の最端部に位置するスリットS5にまで水分が侵入し難くなるため、スリットS5内で露出した透光性導電物(TCO)からなる透明電極12を水分が還元することを抑制することができる。つまり、スリットS5において透光性導電物(TCO)からなる透明電極12が露出すると、還元されて透光性が低下して光電変換層14に入射する光量が減少し、光電変換装置100の変換効率が低下する問題がある。しかし、透明電極の幅をHa>hとして、従来技術の光電変換素子列の幅に比べて基板端部に位置する光電変換素子列21a(21f)の幅を広くなるように設定することにより、この点についても抑制することができる。なお、本実施形態では、(1)の効果が得られる層間としては、上記実施形態での層間に加え、透明電極12と光電変換層14との層間も含む。 In this case, the same effects as in the above embodiments (1), (2), (3) can be obtained, and even when moisture enters from the periphery of the transparent substrate 10, it is positioned at the end of the power generation region. Since it becomes difficult for moisture to penetrate into the slit S5, it is possible to prevent moisture from being reduced in the transparent electrode 12 made of the translucent conductive material (TCO) exposed in the slit S5. That is, when the transparent electrode 12 made of a light-transmitting conductive material (TCO) is exposed in the slit S5, it is reduced and the light-transmitting property is reduced, and the amount of light incident on the photoelectric conversion layer 14 is reduced. There is a problem that efficiency decreases. However, by setting the width of the transparent electrode as Ha> h and setting the width of the photoelectric conversion element array 21a (21f) located at the edge of the substrate to be wider than the width of the photoelectric conversion element array of the prior art, This can also be suppressed. In the present embodiment, the interlayer that can obtain the effect (1) includes the interlayer between the transparent electrode 12 and the photoelectric conversion layer 14 in addition to the interlayer in the above embodiment.
 10 透明基板、12,212 透明電極、14 光電変換層、16 裏面電極、20 光電変換素子、21,221 光電変換素子列、100,200 光電変換装置。 10 transparent substrate, 12, 212 transparent electrode, 14 photoelectric conversion layer, 16 back electrode, 20 photoelectric conversion element, 21, 221 photoelectric conversion element array, 100, 200 photoelectric conversion device.
 本発明は、光電変換装置に利用可能である。 The present invention can be used for a photoelectric conversion device.

Claims (2)

  1.  基板上に第1の電極、光電変換層、第2の電極を順に積層した構造を含む発電領域を形成し、この発電領域をn本(nは2以上)のスリットによりn+1の光電変換素子に分割した光電変換装置であって、
     前記発電領域を等分に分割した時の各光電変換素子の幅に比べ、前記基板端部に位置する光電変換素子の幅を広くなるように設定したことを特徴とする光電変換装置。
    A power generation region including a structure in which a first electrode, a photoelectric conversion layer, and a second electrode are sequentially stacked on a substrate is formed, and this power generation region is formed into n + 1 photoelectric conversion elements by n (n is 2 or more) slits. A divided photoelectric conversion device,
    A photoelectric conversion device characterized in that a width of a photoelectric conversion element located at an end of the substrate is set wider than a width of each photoelectric conversion element when the power generation region is divided equally.
  2.  請求項1に記載の光電変換装置であって、
     前記発電領域を等分に分割した時の各光電変換素子の幅に比べ、前記基板中央部に位置する光電変換素子の幅を狭くなるように設定したことを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1,
    The photoelectric conversion device, wherein the width of the photoelectric conversion element located at the center of the substrate is set to be narrower than the width of each photoelectric conversion element when the power generation region is divided equally.
PCT/JP2011/051780 2010-02-26 2011-01-28 Photoelectric conversion device WO2011105169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010041483A JP2011181543A (en) 2010-02-26 2010-02-26 Photoelectric conversion device
JP2010-041483 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105169A1 true WO2011105169A1 (en) 2011-09-01

Family

ID=44506590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051780 WO2011105169A1 (en) 2010-02-26 2011-01-28 Photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP2011181543A (en)
WO (1) WO2011105169A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3435424A1 (en) * 2017-07-27 2019-01-30 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A photovoltaic panel and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984478A (en) * 1982-11-04 1984-05-16 Matsushita Electric Ind Co Ltd Solar battery module
JPS6190474A (en) * 1984-10-09 1986-05-08 Sanyo Electric Co Ltd Photovoltaic device
JPS63112357U (en) * 1987-01-16 1988-07-19
JP2000349326A (en) * 1999-06-07 2000-12-15 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2002373997A (en) * 2001-04-10 2002-12-26 Kanegafuchi Chem Ind Co Ltd Integrated hybrid thin-film photoelectric conversion module
WO2007004501A1 (en) * 2005-07-01 2007-01-11 Honda Motor Co., Ltd. Solar cell module
WO2010079769A1 (en) * 2009-01-09 2010-07-15 シャープ株式会社 Thin-film solar cell module and thin-film solar cell array
WO2011030729A1 (en) * 2009-09-08 2011-03-17 株式会社アルバック Solar cell module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984478A (en) * 1982-11-04 1984-05-16 Matsushita Electric Ind Co Ltd Solar battery module
JPS6190474A (en) * 1984-10-09 1986-05-08 Sanyo Electric Co Ltd Photovoltaic device
JPS63112357U (en) * 1987-01-16 1988-07-19
JP2000349326A (en) * 1999-06-07 2000-12-15 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2002373997A (en) * 2001-04-10 2002-12-26 Kanegafuchi Chem Ind Co Ltd Integrated hybrid thin-film photoelectric conversion module
WO2007004501A1 (en) * 2005-07-01 2007-01-11 Honda Motor Co., Ltd. Solar cell module
WO2010079769A1 (en) * 2009-01-09 2010-07-15 シャープ株式会社 Thin-film solar cell module and thin-film solar cell array
WO2011030729A1 (en) * 2009-09-08 2011-03-17 株式会社アルバック Solar cell module

Also Published As

Publication number Publication date
JP2011181543A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5400946B2 (en) Integrated thin film photoelectric conversion device and manufacturing method thereof
US8294021B2 (en) Photovoltaic device and method for manufacturing the same
KR101031246B1 (en) Thin film type Solar Cell and method of manufacturing the smae, and Thin film type solar cell module and Power generation system using the same
US20060266409A1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
JP4791098B2 (en) Integrated thin film solar cell module
JP2003037280A (en) Integrated thin-film photoelectric conversion module
JP2010251667A (en) Solar cell
WO2010064549A1 (en) Method for manufacturing thin-film photoelectric conversion device
JP5820265B2 (en) Back electrode type solar cell and manufacturing method thereof
US20110030758A1 (en) Photovoltaic device and manufacturing method thereof
WO2012035780A1 (en) Photoelectric converter
US9087953B2 (en) Solar cell module and method for manufacturing the same
WO2011105169A1 (en) Photoelectric conversion device
WO2012043539A1 (en) Thin-film solar cell and method for manufacturing thin-film solar cell
JP7089473B2 (en) Photoelectric conversion element and photoelectric conversion device
JP2009295943A (en) Thin-film photoelectric converter, and manufacturing method thereof
WO2011125922A1 (en) Photoelectric conversion device
JP2011077112A (en) Method of manufacturing photoelectric conversion device
JP2013219143A (en) Thin-film solar cell module and thin-film solar cell module manufacturing method
US20100297806A1 (en) Method of manufacturing solar cell module
JP5134075B2 (en) Method for manufacturing thin film solar cell
JP6971749B2 (en) Manufacturing method of solar cell module and solar cell module
JP2012074407A (en) Photoelectric conversion device and method of manufacturing the same
JP2009231499A (en) Photoelectric conversion device
JP2011040501A (en) Photoelectric conversion device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747133

Country of ref document: EP

Kind code of ref document: A1