JP2001168369A - Power generation device using globular semiconductor element and light emitting device using globular semiconductor element - Google Patents

Power generation device using globular semiconductor element and light emitting device using globular semiconductor element

Info

Publication number
JP2001168369A
JP2001168369A JP35032099A JP35032099A JP2001168369A JP 2001168369 A JP2001168369 A JP 2001168369A JP 35032099 A JP35032099 A JP 35032099A JP 35032099 A JP35032099 A JP 35032099A JP 2001168369 A JP2001168369 A JP 2001168369A
Authority
JP
Japan
Prior art keywords
case member
semiconductor element
light
spherical
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35032099A
Other languages
Japanese (ja)
Other versions
JP4276758B2 (en
Inventor
Joyu Nakada
仗祐 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35032099A priority Critical patent/JP4276758B2/en
Publication of JP2001168369A publication Critical patent/JP2001168369A/en
Application granted granted Critical
Publication of JP4276758B2 publication Critical patent/JP4276758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To increase the photoelectric transfer efficiency of a photoelectric transfer type power generation device by increasing a quantity of light received by a semiconductor element array of the device and also increase the light emitting efficiency by reflecting the light generated at the rear side of the device towards the front side. SOLUTION: A solar battery array which is a plurality of serially connected solar battery cells 10, each having a photoelectromotive force generating section, is housed in a translucent case member 2. A reflector 5 is tightly installed on the rear side of the case member 2 and therefore the solar battery array can recieve not only the solar light 25 incident on the front side of the case member 2 but also the light reflected on the globular reflection surface 5a, and thus a quantity of light received by the solar battery array is increased and hence is the photoelectromotive force by the solar battery cells 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、複数の球状半導
体素子で受光する受光量を反射光により増加させて光電
変換効率を高めるようにした発電装置、複数の球状半導
体素子で発生した光を表面側だけに集中させて発光効率
を高めるようにした発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation device in which the amount of light received by a plurality of spherical semiconductor elements is increased by reflected light to enhance photoelectric conversion efficiency. The present invention relates to a light emitting device in which light emission efficiency is enhanced by being concentrated only on the side.

【0002】[0002]

【従来の技術】 太陽光エネルギーを電気エネルギーに
変換する半導体を利用した種々の太陽電池が普及してい
る。この種の半導体太陽電池では、一般的に、シリコン
単結晶、シリコン多結晶、アモルファスSi等の半導体
が主として用いられているが、光電変換効率が低く、配
線や組付け作業を含む製造工程が複雑化し、そのために
高価になり、しかも小型化できないという問題がある。
また、この種の半導体太陽電池では半導体基板が平面状
であり、受光面とその内部に形成されたpn接合も概ね
平面の形を成している為、光の入射角が大きくなると反
射光が増えて光電変換効率が低下するという問題があ
る。
2. Description of the Related Art Various types of solar cells using semiconductors that convert sunlight energy into electric energy have become widespread. In this type of semiconductor solar cell, semiconductors such as silicon single crystal, silicon polycrystal, and amorphous Si are generally mainly used. However, the photoelectric conversion efficiency is low, and the manufacturing process including wiring and assembly is complicated. Therefore, there is a problem that it is expensive and cannot be downsized.
In addition, in this type of semiconductor solar cell, the semiconductor substrate is planar, and the light receiving surface and the pn junction formed therein are also substantially planar, so that when the incident angle of light increases, reflected light increases. There is a problem that the photoelectric conversion efficiency increases and the photoelectric conversion efficiency decreases.

【0003】そこで、本願の発明者は国際公開公報WO98
/15983号において、受光素子(光電変換素子)や発光素
子(電光変換素子)や光触媒素子としての球状半導体素
子を用いて、種々の用途に適用でき、小型軽量化、発電
電圧の向上、低コスト化が図れる新規な半導体装置を提
案した。即ち、光電変換型の半導体装置として、基本的
に半導体の球状結晶の表面に拡散層及びpn接合と1対
の電極を形成した太陽電池セルを1列状に並べて直列接
続した太陽電池アレイを形成し、この太陽電池アレイを
光透過性のケース内に収容した円柱状の太陽電池装置を
提案するとともに、これら複数の太陽電池アレイを光透
過性のケース内に収容したパネル状の太陽電池装置を提
案した。
Accordingly, the inventor of the present application has published International Publication WO98
/ 15983, it can be applied to various uses by using a spherical semiconductor element as a light receiving element (photoelectric conversion element), a light emitting element (electric light conversion element) and a photocatalyst element, making it possible to reduce the size and weight, improve the power generation voltage, and reduce the cost. A new semiconductor device that can be realized is proposed. That is, as a photoelectric conversion type semiconductor device, a solar cell array is basically formed in which solar cells having a diffusion layer and a pn junction and a pair of electrodes formed on the surface of a spherical semiconductor crystal are arranged in a line and connected in series. In addition, a columnar solar cell device in which the solar cell array is housed in a light-transmitting case is proposed, and a panel-shaped solar cell device in which the plurality of solar cell arrays are housed in a light-transmitting case is provided. Proposed.

【0004】これら何れの太陽電池装置においても、光
透過性のケースの上主面と下主面が幾何学的に対称構造
であり、表裏何れの方向からでも太陽光を受光でき、光
を太陽電池セルに直接照射して光起電力が発生するよう
になっている。しかも、これら両主面には広い角度で受
光できるように部分円筒面状の曲面が形成されており、
太陽光のように入射方向が変動する光に対する受光性能
を向上させている。更に、基本的に太陽電池セルと同様
に構成された発光ダイオードを用いた電光変換型の半導
体装置として、この発光ダイオードの1対の電極に電圧
を印加することで、表裏両面側に向けて発光可能な円柱
状又はパネル状の発光装置を提案した。
In any of these solar cell devices, the upper and lower main surfaces of the light-transmitting case have a geometrically symmetric structure, so that sunlight can be received from both front and back directions, and The photovoltaic power is generated by directly irradiating the battery cells. Moreover, a curved surface having a partially cylindrical shape is formed on each of these main surfaces so that light can be received at a wide angle.
The light receiving performance for light whose incident direction fluctuates, such as sunlight, is improved. Furthermore, as a light-to-light conversion type semiconductor device using a light emitting diode basically configured in the same manner as a solar cell, by applying a voltage to a pair of electrodes of the light emitting diode, light is emitted toward both front and back sides. A possible columnar or panel light emitting device was proposed.

【0005】[0005]

【発明が解決しようとする課題】 本願の発明者が国際
公開公報WO98/15983号において提案した円柱状又はパネ
ル状の光電変換型半導体装置においては、太陽電池アレ
イを複数列平行に並べてケース内に収容しているため、
ケースの表面のうち、太陽電池セルを設けた部分円筒面
状の曲面部同士間の太陽光の透過により光電変換に何ら
寄与されない光電変換無効面積が大きいため、光起電力
の変換効率が低下するという問題がある。
In a cylindrical or panel-shaped photoelectric conversion type semiconductor device proposed by the inventor of the present application in International Publication WO98 / 15983, a plurality of solar cell arrays are arranged in parallel in a case. Because it contains
Of the surface of the case, the photoelectric conversion ineffective area which does not contribute to the photoelectric conversion at all due to the transmission of sunlight between the partial cylindrical curved surfaces provided with the solar cells is large, so that the photovoltaic conversion efficiency is reduced. There is a problem.

【0006】また、これら光電変換型半導体装置におい
ては、光電変換に寄与されないでケースを透過してしま
う透過光が多くなり、その透過光のためる光電変換効率
が更に低下するという問題がある。特に、光電変換型半
導体装置の片側(例えば表側)から入射する光を受光す
るケースが多いが、この半導体装置の裏側は光電変換に
寄与していない。
Further, in these photoelectric conversion type semiconductor devices, there is a problem that transmitted light which does not contribute to photoelectric conversion and passes through the case increases, and the photoelectric conversion efficiency due to the transmitted light further decreases. In particular, in many cases, light incident from one side (for example, the front side) of a photoelectric conversion type semiconductor device is received, but the back side of this semiconductor device does not contribute to photoelectric conversion.

【0007】更に、電光変換型の半導体装置において
は、発光ダイオードで発生した光が半導体装置の表側と
裏側とに向けて同時に出射されるため、特に表側に向け
て集中的に発光させる場合には、半導体装置の裏側に出
射する光が無駄になってしまうという問題がある。本発
明の目的は、光電変換型発電装置の半導体素子アレイへ
の受光量を増加させて光電変換効率を高めること、電光
変換型発電装置で裏面側に発生した光を表面側から出射
させることで発光効率を高めること、等である。
Further, in an electro-optical conversion type semiconductor device, light generated by a light emitting diode is simultaneously emitted toward the front side and the back side of the semiconductor device. In addition, there is a problem that light emitted to the back side of the semiconductor device is wasted. An object of the present invention is to increase the amount of light received by the semiconductor element array of the photoelectric conversion type power generation device to increase the photoelectric conversion efficiency, and to emit light generated on the back side by the electro-optical conversion type power generation device from the front side. Increasing luminous efficiency, and the like.

【0008】[0008]

【課題を解決するための手段】 請求項1の球状半導体
素子を用いた発電装置は、半導体の球状結晶に光起電力
発生部を形成するとともに両端部に1対の電極を形成し
てなる球状半導体素子を複数個直列接続した半導体素子
アレイと、この半導体素子アレイを収容する光透過性の
ケース部材とを備えた発電装置において、ケース部材の
裏面側に密着状に設けられ且つケース部材の表面側から
入射しケース部材を透過した光を半導体素子アレイの方
へ反射可能な反射部材を設けたものである。
According to a first aspect of the present invention, there is provided a power generating device using a spherical semiconductor element, wherein a photovoltaic power generation section is formed on a spherical semiconductor crystal and a pair of electrodes are formed at both ends. In a power generating apparatus including a semiconductor element array in which a plurality of semiconductor elements are connected in series, and a light-transmissive case member for accommodating the semiconductor element array, the power supply apparatus is provided in close contact with the back side of the case member, and There is provided a reflecting member capable of reflecting light incident from the side and transmitted through the case member toward the semiconductor element array.

【0009】光起電力発生部を有する球状半導体素子を
複数個直列接続した半導体素子アレイが光透過性のケー
ス部材内に収容されており、ケース部材の裏面側に反射
部材を密着状に設けたので、各球状半導体素子は、ケー
ス部材を介して半導体素子アレイに直接照射される光に
より光起電力を発生するだけでなく、表面側から入射し
ケース部材を透過して反射部材で反射された反射光も受
光して光起電力を発生する。即ち、半導体素子アレイは
ケース部材に入射する直達光だけでなく反射光も受光で
きるため、受光量が増大し、球状半導体素子による光起
電力を増大させ、光電変換効率を大幅に高めることがで
きる。
A semiconductor element array in which a plurality of spherical semiconductor elements having a photovoltaic power generation section are connected in series is accommodated in a light-transmissive case member, and a reflection member is provided on the back side of the case member in close contact. Therefore, each spherical semiconductor element not only generates a photovoltaic force by light directly applied to the semiconductor element array via the case member, but also enters from the surface side, passes through the case member, and is reflected by the reflection member. The reflected light is also received to generate photovoltaic power. That is, since the semiconductor element array can receive not only the direct light incident on the case member but also the reflected light, the amount of received light increases, the photoelectromotive force of the spherical semiconductor element increases, and the photoelectric conversion efficiency can be greatly increased. .

【0010】請求項2の球状半導体素子を用いた発電装
置は、半導体の球状結晶に光起電力発生部を形成すると
ともに両端部に1対の電極を形成してなる球状半導体素
子を複数個直列接続した半導体素子アレイを複数列平行
に並べた半導体素子モジュールと、この半導体素子モジ
ュールを収容する光透過性のケース部材とを備えた発電
装置において、ケース部材の裏面側に密着状に設けられ
且つケース部材の表面側から入射しケース部材を透過し
た光を半導体素子アレイの方へ反射可能な反射部材を設
けたものである。
According to a second aspect of the present invention, there is provided a power generating apparatus using a spherical semiconductor element, wherein a plurality of spherical semiconductor elements each having a pair of electrodes formed at both ends by forming a photovoltaic generator on a semiconductor spherical crystal. In a power generation apparatus including a semiconductor element module in which a plurality of connected semiconductor element arrays are arranged in parallel and a light-transmissive case member that accommodates the semiconductor element module, the power supply apparatus is provided in close contact with the back side of the case member and There is provided a reflecting member capable of reflecting light incident on the front side of the case member and transmitted through the case member toward the semiconductor element array.

【0011】この場合、請求項1とほぼ同様に作用する
が、半導体素子アレイを複数列平行に並べた半導体素子
モジュールが光透過性のケース部材内に収容されている
ため、半導体素子モジュールはケース部材に入射する直
達光だけでなく、反射部材で反射した反射光も受光でき
るため、受光量が増大し、球状半導体素子による光起電
力をより増大させ、光電変換効率を大幅に高めることが
できる。
In this case, the semiconductor device module operates in substantially the same manner as in claim 1, but the semiconductor device module in which a plurality of semiconductor device arrays are arranged in parallel is accommodated in a light-transmissive case member. Since not only the direct light incident on the member but also the reflected light reflected by the reflecting member can be received, the amount of received light increases, the photovoltaic power of the spherical semiconductor element can be further increased, and the photoelectric conversion efficiency can be greatly increased. .

【0012】ここで、前記反射部材が、ケース部材の裏
面に密着させた反射膜からなる場合(請求項1又は2に
従属の請求項3)には、金属膜等の種々の反射膜を用い
ることで、反射部材を小型で安価にできる上、反射効率
を確保できる。また、前記反射部材が、ケース部材の裏
面に密着させた合成樹脂製の板状反射体からなる場合
(請求項1又は2に従属の請求項4)には、白色散乱反
射型ポリカーボネイト等の板状反射体を用いることで、
反射効率を確保でき、しかもケース部材を補強すること
ができる。
Here, when the reflecting member is made of a reflecting film adhered to the back surface of the case member (claim 3 or 3), various reflecting films such as metal films are used. This makes it possible to reduce the size and cost of the reflection member, and to ensure reflection efficiency. In the case where the reflection member is made of a synthetic resin plate-like reflector adhered to the back surface of the case member (claim 4 depending on claim 1 or 2), a plate such as white scattering reflection type polycarbonate is used. By using a shape reflector,
The reflection efficiency can be ensured, and the case member can be reinforced.

【0013】請求項5の球状半導体素子を用いた発光装
置は、半導体の球状結晶に電光変換部を形成するととも
に両端部に1対の電極を形成してなる球状半導体素子を
複数個直列接続した半導体素子アレイと、この半導体素
子アレイを収容する光透過性のケース部材とを備えた発
光装置において、ケース部材の裏面側に密着状に設けら
れ且つ半導体素子アレイで発生しケース部材の裏面側に
透過した光をケース部材の表面側へ反射可能な反射部材
を設けたものである。
According to a fifth aspect of the present invention, there is provided a light emitting device using a spherical semiconductor element, wherein a plurality of spherical semiconductor elements each having an electro-optical converter formed on a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series. In a light emitting device including a semiconductor element array and a light transmissive case member for accommodating the semiconductor element array, the light emitting device is provided in close contact with the back side of the case member and is generated in the semiconductor element array and is formed on the back side of the case member. A reflection member capable of reflecting the transmitted light toward the surface of the case member is provided.

【0014】電光変換部を有する球状半導体素子を複数
個直列接続した半導体素子アレイが光透過性のケース部
材内に収容されており、ケース部材の裏面側に反射部材
を密着状に設けたので、1対の電極に電圧が印加されて
半導体素子アレイで発生した光は、ケース部材の表面側
と裏面側の両側に夫々出射される。このとき、ケース部
材の裏面側に透過した光は反射部材により表面側へ反射
される。即ち、半導体素子アレイで発生した光はケース
部材の表裏両面側に出射されるが、裏面側の光は反射部
材で反射して表面側へ出射するため、半導体素子アレイ
で発生した全ての光をケース部材の表面側に効率良く出
射させることができる。
A semiconductor element array in which a plurality of spherical semiconductor elements having an electro-optical converter are connected in series is accommodated in a light-transmissive case member, and a reflecting member is provided in close contact with the back side of the case member. Light generated in the semiconductor element array by applying a voltage to the pair of electrodes is emitted to both the front side and the back side of the case member. At this time, the light transmitted to the back side of the case member is reflected to the front side by the reflecting member. That is, the light generated in the semiconductor element array is emitted to both front and back sides of the case member, but the light on the back side is reflected by the reflection member and emitted to the front side, so that all the light generated in the semiconductor element array is emitted. The light can be efficiently emitted to the surface side of the case member.

【0015】請求項6の球状半導体素子を用いた発光装
置は、半導体の球状結晶に電光変換部を形成するととも
に両端部に1対の電極を形成してなる球状半導体素子を
複数個直列接続した半導体素子アレイを複数列平行に並
べた半導体素子モジュールと、この半導体素子モジュー
ルを収容する光透過性のケース部材とを備えた発光装置
において、ケース部材の裏面側に密着状に設けられ且つ
半導体素子アレイで発生しケース部材の裏面側に透過し
た光をケース部材の表面側へ反射可能な反射部材を設け
たものである。
According to a sixth aspect of the present invention, there is provided a light emitting device using a spherical semiconductor element, wherein a plurality of spherical semiconductor elements each having an electro-optical conversion section formed on a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series. In a light emitting device comprising a semiconductor element module in which a plurality of semiconductor element arrays are arranged in parallel and a light-transmissive case member for accommodating the semiconductor element module, a semiconductor element provided in close contact with the back side of the case member There is provided a reflecting member capable of reflecting light generated in the array and transmitted to the back side of the case member to the front side of the case member.

【0016】この場合には、請求項5とほぼ同様に作用
するが、半導体素子アレイを複数列平行に並べた半導体
素子モジュールが光透過性のケース部材内に収容されて
いるため、半導体素子モジュールで発生した光がケース
部材の表裏両面側に出射されるが、裏面側の光は反射部
材で反射して表面側へ出射するため、半導体素子モジュ
ールで発生した全ての光をケース部材の表面側に効率良
く出射させることができる。
In this case, the semiconductor device module operates in substantially the same manner as in claim 5, except that a semiconductor device module in which a plurality of semiconductor device arrays are arranged in parallel is accommodated in a light-transmissive case member. The light generated in the above is emitted to both the front and back sides of the case member, but the light on the back side is reflected by the reflection member and emitted to the front side, so that all the light generated in the semiconductor element module is emitted to the front side of the case member. Can be efficiently emitted.

【0017】ここで、前記反射部材は、ケース部材の裏
面に密着させた反射膜からなる場合(請求項5又は6に
従属の請求項7)には、金属膜等の種々の反射膜を用い
ることで、反射部材を小型で安価にできる上、反射効率
を確保できる。また、前記反射部材は、ケース部材の裏
面に密着させた合成樹脂製の板状反射体からなる場合
(請求項5又は6に従属の請求項8)には、白色散乱反
射型ポリカーボネイト等の板状反射体を用いることで、
反射効率を確保でき、しかもケース部材を補強すること
ができる。
Here, when the reflecting member is formed of a reflecting film adhered to the back surface of the case member (claim 5 or 6 depending on claim 6), various reflecting films such as metal films are used. This makes it possible to reduce the size and cost of the reflection member, and to ensure reflection efficiency. In the case where the reflection member is made of a synthetic resin plate-like reflector adhered to the back surface of the case member (claim 8 depending on claim 5 or 6), a plate such as white scattering reflection type polycarbonate is used. By using a shape reflector,
The reflection efficiency can be ensured, and the case member can be reinforced.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基いて説明する。本実施形態は、複数の太陽電
池セル10を電気的に直列接続した太陽電池アレイ19
(半導体素子アレイ)を、光透過性のケース部材2内に
複数列平行に並べた太陽電池モジュール19A(半導体
素子モジュールに相当する)を用いたパネル状の太陽電
池装置1(球状半導体素子を用いた発電装置に相当す
る)に本発明を適用した場合の一例である。
Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, a solar cell array 19 in which a plurality of solar cells 10 are electrically connected in series is provided.
(Semiconductor element array) A panel-shaped solar cell device 1 (using a spherical semiconductor element) using a solar cell module 19A (corresponding to a semiconductor element module) in which a plurality of rows are arranged in parallel in a light-transmissive case member 2. This is an example of a case in which the present invention is applied to a power generation device that has been used.

【0019】先ず、太陽電池アレイ19について説明す
る。図1〜図2に示すように、この太陽電池アレイ19
は、複数(例えば、5個)の太陽電池セル10を直列接
続した構成であり、この場合、この太陽電池アレイ19
に1つの整流ダイオード20が追加接続されている。太
陽電池セル10について図3に基づいて説明する。
First, the solar cell array 19 will be described. As shown in FIG. 1 and FIG.
Is a configuration in which a plurality of (for example, five) solar cells 10 are connected in series. In this case, the solar cell array 19
One rectifier diode 20 is additionally connected. The solar cell 10 will be described with reference to FIG.

【0020】球状太陽電池セル10は、例えば直径が1.
5mm で、抵抗率が1Ωcm程度のp型シリコン半導体製
の球状結晶11を図示外の半導体球状結晶製造装置によ
り製作したものである。即ち、発明者が国際公開公報WO
98/15983号で出願したように、球状結晶11の表面近傍
にn型拡散層12とpn接合13を形成し、更に球状結
晶11の表面に表面保護と反射防止の為の光透過性の絶
縁被膜14が形成されている。p型シリコンに電気的に
接続された正電極15と、n型拡散層12に電気的に接
続された負電極16とが形成されている。
The spherical solar cell 10 has, for example, a diameter of 1.
A spherical crystal 11 of 5 mm and made of a p-type silicon semiconductor having a resistivity of about 1 Ωcm was manufactured by a semiconductor spherical crystal manufacturing apparatus (not shown). That is, the inventor has published WO
As filed in Japanese Patent Application No. 98/15983, an n-type diffusion layer 12 and a pn junction 13 are formed in the vicinity of the surface of the spherical crystal 11, and a light-transmitting insulation is provided on the surface of the spherical crystal 11 to protect the surface and prevent reflection. A coating 14 is formed. A positive electrode 15 electrically connected to p-type silicon and a negative electrode 16 electrically connected to n-type diffusion layer 12 are formed.

【0021】更に、正電極15の表面が厚さ約20μmの
Alペースト膜17で被覆され、負電極16の表面が厚
さ約20μmのAgペースト膜18で被覆されている。太
陽電池セル10を直列接続して太陽電池アレイ19を構
成するため、太陽電池セル10の両電極15, 16は、
対向する両端部に設けられている。ここで、球状結晶1
1と表面部のn型拡散層12とpn接合13などで光起
電力発生部が構成されている。
Further, the surface of the positive electrode 15 is covered with an Al paste film 17 having a thickness of about 20 μm, and the surface of the negative electrode 16 is covered with an Ag paste film 18 having a thickness of about 20 μm. To form the solar cell array 19 by connecting the solar cells 10 in series, both electrodes 15 and 16 of the solar cells 10
They are provided at opposite ends. Here, the spherical crystal 1
A photovoltaic power generation unit is constituted by 1, the n-type diffusion layer 12 on the surface, the pn junction 13, and the like.

【0022】図1,図2に示すように、光透過性の合成
樹脂(例えば、ポリカーボネイト樹脂等)製で矩形板状
のケース部材2の表面(手前側の面)と裏面(奥側の
面)とには、外側に膨らんだ部分円筒面状の曲面2aが
4列状に形成され、整流ダイオード20を付随した太陽
電池アレイ19を4列に並設した太陽電池モジュール1
9Aが両曲面2aに対応してケース部材2の内部に埋設
状に収容されている。この整流ダイオード20は、複数
の太陽電池アレイ19を並列接続して出力を大きくした
場合に、太陽電池アレイ19間の光起電力に差異が生
じ、起電力の高い方の太陽電池アレイ19から低い方の
太陽電池アレイ19に逆電流が流れ、太陽電池アレイ1
9が加熱するのを防止する為である。
As shown in FIGS. 1 and 2, the front surface (front surface) and the rear surface (rear surface) of a rectangular plate-shaped case member 2 made of a light-transmitting synthetic resin (for example, polycarbonate resin). ), The solar cell module 1 in which the curved surface 2a having a partially cylindrical surface bulging outward is formed in four rows, and the solar cell array 19 with the rectifier diode 20 is arranged in four rows.
9A is buried and accommodated inside the case member 2 corresponding to the two curved surfaces 2a. The rectifier diode 20 has a difference in the photovoltaic power between the solar cell arrays 19 when the plurality of solar cell arrays 19 are connected in parallel to increase the output, and the rectifier diode 20 has a lower photovoltaic power from the higher solar cell array 19. A reverse current flows through one of the solar cell arrays 19 and the solar cell array 1
This is to prevent 9 from heating.

【0023】ここで、整流ダイオード20について簡単
に説明しておくと、図4に示すように、n型シリコン半
導体製の球状結晶21に、p型不純物を拡散したp型拡
散層22及びpn接合23が形成され、前記同様のTi
2 の絶縁被膜14と負電極15a 、正電極16a 、ペ
ースト膜17, 18が形成されている。そして、正電極
リードピン3と手前側の太陽電池セル10のAlペース
ト膜17とが接続され、負電極リードピン4と整流ダイ
オード20のAgペースト膜18とが接続され、これら
リードピン3, 4は外部回路に接続されている。
Here, the rectifier diode 20 will be briefly described. As shown in FIG. 4, a p-type diffusion layer 22 in which a p-type impurity is diffused and a pn junction are formed in a spherical crystal 21 made of an n-type silicon semiconductor. 23 are formed, and the same Ti
O 2 of the insulating coating 14 and the negative electrode 15a, the positive electrode 16a, paste film 17, 18 are formed. The positive electrode lead pin 3 is connected to the Al paste film 17 of the solar cell 10 on the front side, the negative electrode lead pin 4 is connected to the Ag paste film 18 of the rectifier diode 20, and these lead pins 3 and 4 are connected to an external circuit. It is connected to the.

【0024】ケース部材2の裏面側(図2の奥側)に、
散乱反射型合成樹脂(例えば、白色散乱反射型ポリカー
ボネイト)からなる反射板5(これが反射部材に相当す
る)が密着状に接着されている。即ち、反射板5は不透
明で反射型である為、反射板5のケース部材2の曲面2
aの下側に接触する接触面が半球状反射面5aとして作
用し、各太陽電池セル10に対応して設けられた複数の
半球状反射面5aが連続して形成されている。このた
め、ケース部材2の表面側から入射しケース部材2を透
過した太陽光25は何れかの半球状反射面5aにより太
陽電池アレイ19の方へ確実に反射する。
On the back side of the case member 2 (the back side in FIG. 2),
A reflecting plate 5 (corresponding to a reflecting member) made of a scatter reflection type synthetic resin (for example, white scatter reflection type polycarbonate) is adhered in close contact. That is, since the reflection plate 5 is opaque and reflective, the curved surface 2 of the case member 2 of the reflection plate 5 is used.
The contact surface that contacts the lower side of “a” acts as a hemispherical reflecting surface 5a, and a plurality of hemispherical reflecting surfaces 5a provided corresponding to the respective solar cells 10 are continuously formed. Therefore, the sunlight 25 incident from the front side of the case member 2 and transmitted through the case member 2 is surely reflected toward the solar cell array 19 by any of the hemispherical reflecting surfaces 5a.

【0025】次に、この反射板5による太陽光25の反
射作用について、図5に基づいて説明する。太陽電池装
置1に太陽光25が照射されると、曲面2aを介して太
陽電池セル10に直接照射される太陽光25により、p
n接合13は光励起されたキャリア(電子と正孔)を分
離して光起電力を発生する。
Next, the reflection of sunlight 25 by the reflector 5 will be described with reference to FIG. When the solar cell device 1 is irradiated with the solar light 25, the solar light 25 directly applied to the solar cell 10 via the curved surface 2a causes p
The n-junction 13 separates photo-excited carriers (electrons and holes) to generate photovoltaic power.

【0026】ところで、これら曲面2a同士間のケース
部材2に種々の方向から照射された太陽光25は、太陽
電池セル10に入射することなくケース部材2を透過す
るが、反射板5の上側の半球状反射面5aにより反射し
て太陽電池セル10の方へ強制的に方向変換されるた
め、pn接合13はこの反射した太陽光25により、よ
り大きな電流が発生する。ここで、太陽電池セル10は
受光した太陽光25により最大約0 .6Vを発生すること
ができる。尚、ケース部材2の両曲面2aに対応する内
部に円筒状の収容穴を4列状に形成し、これら収容穴に
太陽電池アレイ19を収容させるようにしてもよい。
The sunlight 25 applied to the case member 2 between the curved surfaces 2a from various directions is transmitted through the case member 2 without being incident on the solar battery cell 10, but on the upper side of the reflection plate 5. Since the light is reflected by the hemispherical reflecting surface 5a and is forcibly changed in direction toward the solar cell 10, a larger current is generated in the pn junction 13 by the reflected sunlight 25. Here, the solar cell 10 can generate a maximum of about 0.6 V by the received sunlight 25. Incidentally, four rows of cylindrical accommodation holes may be formed inside the case member 2 corresponding to the two curved surfaces 2a, and the solar cell array 19 may be accommodated in these accommodation holes.

【0027】ここで、図6に示すように、前記太陽電池
装置1を部分的に変更した太陽電池装置1Aを構成して
もよい。即ち、反射板5Aとケース部材2Aが接触する
半球状反射面5aが夫々微小な凹凸状(ギザギザ状)に
形成されている。この場合、曲面2a同士間においてケ
ース部材5Aに照射された太陽光25が何れの照射方向
から入射しても、ケース部材5Aを透過することなく、
凹凸状の半球状反射面5aにより乱反射されて太陽電池
セル10の方へ強制的に方向変換されるため、太陽電池
セル10による発電効率を更に向上させることができ
る。
Here, as shown in FIG. 6, a solar cell device 1A in which the solar cell device 1 is partially modified may be configured. That is, the hemispherical reflecting surfaces 5a where the reflecting plate 5A and the case member 2A are in contact with each other are formed in minute unevenness (jagged shape). In this case, even if the sunlight 25 irradiated to the case member 5A between the curved surfaces 2a is incident from any irradiation direction, the sunlight 25 does not pass through the case member 5A,
Since the light is irregularly reflected by the uneven hemispherical reflecting surface 5a and forcibly changed its direction toward the solar cell 10, the power generation efficiency of the solar cell 10 can be further improved.

【0028】更に、太陽電池装置1Bを図7に示すよう
に構成してもよい。即ち、ケース部材2Bを光透過性の
ポリカーボネイト等の合成樹脂製でチューブ状に形成
し、このケース部材2Bの内部に1組の整流ダイオード
20と太陽電池アレイ19を収容し、これら複数のケー
ス部材2Bを相互に隣接させた状態で、それらケース部
材2Bの各々の下半分が反射板5Bに埋没状かつ密着状
に固定されている。この場合にも、太陽電池セル10に
入射することなくケース部材2Bを透過した太陽光25
は半球状反射面5aで確実に反射して太陽電池セル10
に照射されるため、太陽電池セル10による発電効率を
更に向上させることができる。
Further, the solar cell device 1B may be configured as shown in FIG. That is, the case member 2B is formed in a tube shape from a synthetic resin such as light-transmitting polycarbonate, and a set of the rectifying diode 20 and the solar cell array 19 are accommodated inside the case member 2B. With the two members 2B adjacent to each other, the lower half of each of the case members 2B is buried and fixed to the reflector 5B. Also in this case, the sunlight 25 transmitted through the case member 2B without being incident on the solar cell 10
Are reliably reflected by the hemispherical reflecting surface 5a and
Therefore, the power generation efficiency of the solar cell 10 can be further improved.

【0029】前述したパネル状の太陽電池装置1を基板
上に、図8に示すように、マトリックス状に配設し、各
太陽電池装置1のリードピン3,4をターミナル26を
介して外部回路に直接接続及び/又は並列接続した大型
パネル状太陽電池装置1Cを構成してもよい。この場合
には、太陽光25の受光面積を拡大することで、太陽電
池としての高電圧化及び/又は高電流化が可能になる。
例えば、各段毎に設けた複数の太陽電池装置1を並列接
続して太陽電池装置組とすることで、格段毎の太陽電池
装置組から例えば3Vが夫々発生する。2段又は3段の
太陽電池装置組を直列接続することで6V、9Vが発生
する。
The above-mentioned panel-shaped solar cell device 1 is arranged on a substrate in a matrix as shown in FIG. 8, and the lead pins 3 and 4 of each solar cell device 1 are connected to an external circuit via a terminal 26. The large panel-shaped solar cell device 1C which is directly connected and / or connected in parallel may be configured. In this case, by increasing the light receiving area of the sunlight 25, it is possible to increase the voltage and / or the current of the solar cell.
For example, by connecting a plurality of solar cell devices 1 provided for each stage in parallel to form a solar cell device group, for example, 3V is generated from each of the solar cell device groups. 6V and 9V are generated by connecting two or three stages of solar cell device sets in series.

【0030】また、図9に示すように、多数(例えば、
50〜100個)の太陽電池セル10を直列接続して太
陽電池アレイ19を構成し、これら多数の太陽電池アレ
イ19をターミナル26を介して外部回路に並列接続し
たパネル状太陽電池装置1Dを構成してもよい。この場
合にも同様に、太陽光25の受光面積を拡大すること
で、太陽電池としての高電圧化及び/又は高電流化が可
能になる。即ち、太陽電池アレイ19に設ける太陽電池
セル10の数に応じて発電電圧を変更でき、並列接続す
る太陽電池アレイ19の数に応じて発電電流を変更でき
る。
As shown in FIG. 9, a large number (for example,
(50 to 100) solar cells 10 are connected in series to form a solar cell array 19, and a panel-shaped solar cell device 1 </ b> D in which many of these solar cell arrays 19 are connected in parallel to an external circuit via a terminal 26 is formed. May be. In this case, similarly, by increasing the light receiving area of the sunlight 25, it is possible to increase the voltage and / or the current of the solar cell. That is, the generated voltage can be changed according to the number of the solar cells 10 provided in the solar cell array 19, and the generated current can be changed according to the number of the solar cell arrays 19 connected in parallel.

【0031】更に、図10に示すように、半球状のドー
ム型芯材28の表面全体に前述したパネル状太陽電池装
置1をマトリックス状に配設し、各太陽電池装置1のリ
ードピンをターミナル(図示略)を介して外部回路に直
接接続及び/又は並列接続した半球状太陽電池装置1E
を構成してもよい。この場合には、受光面積を拡大でき
るだけでなく、太陽光25の照射方向が変化しても、常
に同様の受光条件で太陽光25を受光でき、太陽電池と
しての高電圧化及び/又は高電流化が可能になる。
Further, as shown in FIG. 10, the panel-shaped solar cell devices 1 are arranged in a matrix on the entire surface of the hemispherical dome-shaped core material 28, and the lead pins of each solar cell device 1 are connected to terminals ( Hemispherical solar cell device 1E directly connected to an external circuit and / or connected in parallel via an unillustrated)
May be configured. In this case, not only can the light receiving area be enlarged, but even when the irradiation direction of the sunlight 25 changes, the sunlight 25 can always be received under the same light receiving conditions, and a higher voltage and / or a higher current as a solar cell can be obtained. Becomes possible.

【0032】第2実施例・・・(図11、図12) この円柱状の太陽電池装置30は、光透過性のポリカー
ボネイト等の合成樹脂製のチューブ状に形成したケース
部材31の内部に前述した太陽電池アレイ19を埋設状
に収容し、このケース部材31の裏面側(図11の奥
側)に、白色散乱反射型ポリカーボネイト等の合成樹脂
からなる反射板34を密着状に接着したものである。但
し、整流ダイオード20は不要であり取り外されてい
る。この場合にも、図12に示すように、前記実施形態
と同様に、ケース部材31を介して太陽電池セル10に
直接入射される太陽光25により、pn接合13は光励
起されたキャリア(電子と正孔)を分離して光起電力を
発生する。
Second Embodiment (FIGS. 11 and 12) The columnar solar cell device 30 is provided inside a case member 31 formed of a tube made of synthetic resin such as light-transmitting polycarbonate. The solar cell array 19 is housed in a buried state, and a reflection plate 34 made of a synthetic resin such as white scattering reflection type polycarbonate is adhered to the back side of this case member 31 (the back side in FIG. 11) in an intimate manner. is there. However, the rectifier diode 20 is unnecessary and has been removed. Also in this case, as shown in FIG. 12, similarly to the above-described embodiment, the pn junction 13 causes the photoexcited carriers (electrons and electrons) by the sunlight 25 directly incident on the solar cell 10 via the case member 31. Holes) to generate photovoltaics.

【0033】更に、太陽電池セル10に入射することな
くケース部材31に照射される何れの太陽光25も反射
板34の半球状反射面34aで確実に反射して太陽電池
セル10に照射されるため、太陽電池セル10による発
電効率を向上させることができる。ここで、前記実施形
態と同様に、ケース部材31の内部に円筒状の収容穴を
形成し、この収容穴に太陽電池アレイ19を収容させる
ようにしてもよい。
Further, any sunlight 25 irradiated on the case member 31 without being incident on the solar cell 10 is surely reflected on the hemispherical reflecting surface 34a of the reflector 34 and irradiated on the solar cell 10. Therefore, the power generation efficiency of the solar cell 10 can be improved. Here, similarly to the above-described embodiment, a cylindrical housing hole may be formed inside the case member 31, and the solar cell array 19 may be housed in the housing hole.

【0034】ところで、図13に示すように、図11に
示す太陽電池アレイ19をケース部材31に収容した複
数本(例えば、7本)の円柱状太陽電池アレイ19を相
互に密着させて環状の太陽電池モジュール19Bに構成
し、この太陽電池モジュール19Bの中央部に白色散乱
反射型ポリカーボネイト等からなる合成樹脂性の反射部
材41を太陽電池モジュールに密着状に充填して太陽電
池装置40を構成してもよい。
As shown in FIG. 13, a plurality of (for example, seven) cylindrical solar cell arrays 19 containing the solar cell array 19 shown in FIG. The solar cell module 19B is configured, and a solar cell module 40 is formed by filling a central portion of the solar cell module 19B with a synthetic resin reflecting member 41 made of white scattering reflection type polycarbonate or the like in close contact with the solar cell module. You may.

【0035】この場合、太陽電池装置40は、種々の方
向からの太陽光25を受光できるため、太陽光25の受
光方向が制約されることなく、何れの方向からの太陽光
25により効率よく光起電力を発生することができる。
更に、図14に示すように、図11に示す太陽電池アレ
イ19を複数列並設し、光透過性の合成樹脂(例えば、
ポリカーボネイト)からなる平板状のケース部材51に
収容した6枚の平板状太陽電池パネルを平面視にて六角
形に構成し、各太陽電池パネルの内部側面に反射膜52
を夫々設けて太陽電池装置50を構成してもよい。
In this case, since the solar cell device 40 can receive the sunlight 25 from various directions, the light receiving direction of the sunlight 25 is not restricted, and the solar cell device 40 can efficiently receive the sunlight 25 from any direction. An electromotive force can be generated.
Further, as shown in FIG. 14, a plurality of solar cell arrays 19 shown in FIG.
Six flat solar cell panels housed in a flat case member 51 made of polycarbonate are formed in a hexagonal shape in plan view, and a reflective film 52 is formed on the inner side surface of each solar cell panel.
May be provided to configure the solar cell device 50.

【0036】この場合、太陽電池装置50は、種々の方
向から入射する太陽光25を反射膜52により反射させ
て受光できるため、太陽光25の受光方向が制約される
ことなく、何れの方向からの太陽光25も受光して効率
よく光起電力を発生することができる。更に、太陽電池
装置50の空洞内部53を通風可能な為、太陽電池装置
50の発電作用による温度上昇を防止できる。
In this case, since the solar cell device 50 can reflect the sunlight 25 incident from various directions by the reflection film 52 and receive it, the light receiving direction of the sunlight 25 is not restricted, and the solar light device 50 can be received from any direction. , And the photovoltaic power can be generated efficiently. Furthermore, since the inside of the cavity 53 of the solar cell device 50 can be ventilated, a rise in temperature due to the power generation action of the solar cell device 50 can be prevented.

【0037】ところで、前述した太陽電池セル10に代
えて電光変換部や電極等を有する電光変換型の各種の発
光ダイオードを用いた発光装置を構成し、この発光装置
に各種の反射部材を設けて発光効率を高めるようにして
もよい。ここで、この発光装置に用いる球状発光ダイオ
ードとして、例えば発明者が出願した国際公開公報WO99
/10935号に記載された球状青色発光ダイオード60につ
いて、図15に基づいて簡単に説明しておく。
By the way, instead of the above-described solar battery cell 10, a light emitting device using various light-to-light conversion type light-emitting diodes having a light-to-light conversion part and an electrode is constituted, and this light-emitting device is provided with various reflection members. The luminous efficiency may be increased. Here, as a spherical light emitting diode used in this light emitting device, for example, International Publication WO99 filed by the inventor
The spherical blue light emitting diode 60 described in U.S. Pat. No. 10,935 will be briefly described with reference to FIG.

【0038】この球状青色発光ダイオード60は、真球
状の単結晶のサファイアからなる直径約1.5mm の芯材6
1の表面に、GaNバッファ層(厚さ約30nm) 62、n
型GaN層(厚さ約3000nm) 63、In0.4Ga0.6N 活性層
(厚さ約3nm)64、p型Al0. 2Ga0.8N 層(厚さ約400nm)
65、p型GaN層(厚さ約500nm)66を順々に形成
し、n型GaN層63に達する直径約600 μm程度の窓
67を開けて陰極68を設け、陰極68と反対側の表面
に、p型GaN 層66の表面に接触する陽極69を形成し
たものである。陽極69から陰極68に外部から電圧を
印加し順電流を流せば、発光ダイオード60は青色光を
発光する。
This spherical blue light emitting diode 60 is made of a core material 6 having a diameter of about 1.5 mm and made of true spherical single crystal sapphire.
GaN buffer layer (about 30 nm thick) 62, n
-Type GaN layer (thickness of about 3000nm) 63, In 0.4 Ga 0.6 N active layer (thickness of about 3 nm) 64, p-type Al 0. 2 Ga 0.8 N layer (thickness: about 400 nm)
65, a p-type GaN layer (thickness: about 500 nm) 66 is formed in order, a window 67 having a diameter of about 600 μm reaching the n-type GaN layer 63 is opened, and a cathode 68 is provided. In addition, an anode 69 that contacts the surface of the p-type GaN layer 66 is formed. When a voltage is externally applied from the anode 69 to the cathode 68 and a forward current flows, the light emitting diode 60 emits blue light.

【0039】即ち、図1に示すパネル状の太陽電池装置
1において、整流ダイオード20を省略し且つ太陽電池
モジュール19Aに代えて、これら複数の発光ダイオー
ド60を直列接続した発光ダイオードアレイを複数列並
列平行に並べた発光ダイオードモジュールを適用してパ
ネル状発光装置を構成する。この場合、発光ダイオード
モジュールで発生した光がケース部材5の表裏両面側に
出射されるが、反射板5により裏面側の光も表面側に反
射するため、発光ダイオードモジュールで発生した全て
の光をケース部材5の表面側に効率良く出射させること
ができ、発光効率を格段に高めることができる。更に、
前述した種々の太陽電池装置1A〜1Eについても同様
に、整流ダイオード20を省略し且つ太陽電池モジュー
ル19に代えて発光ダイオードモジュールを適用し、種
々の発光装置を構成するようにしてもよい。
That is, in the panel-shaped solar cell device 1 shown in FIG. 1, the rectifier diode 20 is omitted, and instead of the solar cell module 19A, a plurality of light emitting diode arrays in which a plurality of light emitting diodes 60 are connected in series are arranged in parallel. A panel-shaped light emitting device is configured by applying light emitting diode modules arranged in parallel. In this case, the light generated by the light emitting diode module is emitted to both the front and back surfaces of the case member 5, but the light on the rear surface is also reflected by the reflector 5 to the front surface. The light can be efficiently emitted to the front surface side of the case member 5, and the luminous efficiency can be significantly increased. Furthermore,
Similarly, with respect to the various solar cell devices 1A to 1E described above, the rectifier diode 20 may be omitted and a light emitting diode module may be used instead of the solar cell module 19 to configure various light emitting devices.

【0040】また、図11に示す円柱状の太陽電池装置
30の太陽電池アレイ19に代えて、複数の発光ダイオ
ード60を直列接続した発光ダイオードアレイを適用し
て円柱状発光装置を構成する。この場合、発光ダイオー
ドアレイで発生した光はケース部材31の表裏両面側に
出射されるが、裏面側の光が表面側に反射するため、発
光ダイオードアレイで発生した全ての光を反射板34に
よりケース部材31の表面側に効率良く反射させること
ができ、発光効率を高めることができる。更に、前述し
た種々の太陽電池装置40,50についても同様に、太
陽電池モジュールに代えて発光ダイオードモジュールを
適用し、種々の発光装置を構成するようにしてもよい。
Further, a columnar light emitting device is constructed by applying a light emitting diode array in which a plurality of light emitting diodes 60 are connected in series, instead of the solar cell array 19 of the cylindrical solar cell device 30 shown in FIG. In this case, the light generated by the light emitting diode array is emitted to both the front and back sides of the case member 31, but the light on the back side is reflected to the front side, so that all the light generated by the light emitting diode array is reflected by the reflector 34. The light can be efficiently reflected on the front surface side of the case member 31, and the luminous efficiency can be increased. Furthermore, similarly to the above-described various solar cell devices 40 and 50, a light-emitting diode module may be applied instead of the solar cell module, and various light-emitting devices may be configured.

【0041】前記実施形態の変更形態について説明す
る。 1〕前述した太陽電池装置1,1A〜1E,30,40
の各々について、反射板に代えて反射膜を設けるように
してもよい。 2〕反射板5,5A,5B,34は、白色散乱反射型ポ
リカーボネイト以外に、不透明で耐熱性を有し、光を反
射可能な種々の合成樹脂材料で構成してもよい。 3〕反射板5,5A,5B,34のケース部材との接触
面である反射面を細かい波状に形成したり、この波の周
期や高さを不規則に変更してもよい。
A modification of the above embodiment will be described. 1] The aforementioned solar cell devices 1, 1A to 1E, 30, 40
For each of the above, a reflection film may be provided instead of the reflection plate. 2] The reflectors 5, 5A, 5B, 34 may be made of various synthetic resin materials that are opaque, have heat resistance, and can reflect light, in addition to the white scattering reflection type polycarbonate. 3] The reflecting surfaces of the reflecting plates 5, 5A, 5B and 34, which are the contact surfaces with the case member, may be formed in a fine wave shape, or the period and height of the waves may be changed irregularly.

【0042】4〕本発明は、以上説明した実施形態に限
定されるものではなく、本発明の趣旨を逸脱しない範囲
で種々変更を付加し、各種の球状半導体素子を用いた発
電装置や発光装置に適用することが可能である。
4) The present invention is not limited to the above-described embodiment, and various modifications are added without departing from the spirit of the present invention, and a power generating device or a light emitting device using various spherical semiconductor elements. It is possible to apply to.

【0043】[0043]

【発明の効果】 請求項1の発明によれば、半導体素子
アレイと光透過性のケース部材とを備え、ケース部材の
裏面側に密着状に設けられ且つケース部材の表面側から
入射しケース部材を透過した光を半導体素子アレイの方
へ反射可能な反射部材を設けたので、半導体素子アレイ
はケース部材に入射する直達光だけでなく、反射部材で
反射した反射光も受光できるため、受光量が増大し、球
状半導体素子による光起電力を増大させ、光電変換効率
を格段に高めることができる。
According to the first aspect of the present invention, the case member includes the semiconductor element array and the light-transmissive case member, is provided in close contact with the back surface of the case member, and enters from the front surface side of the case member. Is provided with a reflecting member that can reflect light transmitted through the semiconductor element array toward the semiconductor element array, so that the semiconductor element array can receive not only direct light incident on the case member but also reflected light reflected by the reflecting member. , The photovoltaic power of the spherical semiconductor element is increased, and the photoelectric conversion efficiency can be significantly increased.

【0044】請求項2の発明によれば、球状半導体素子
を複数個直列接続した半導体素子アレイを複数列平行に
並べた半導体素子モジュールと光透過性のケース部材と
を備え、ケース部材の裏面側に密着状に設けられ且つケ
ース部材の表面側から入射しケース部材を透過した光を
半導体素子アレイの方へ反射可能な反射部材を設けたの
で、半導体素子モジュールはケース部材に入射する直達
光だけでなく、反射部材で反射した反射光も受光できる
ため、受光量が増大し、球状半導体素子による光起電力
をより増大させ、光電変換効率を格段に高めることがで
きる。
According to the second aspect of the present invention, there is provided a semiconductor element module in which a plurality of semiconductor element arrays in which a plurality of spherical semiconductor elements are connected in series are arranged in parallel in a plurality of rows, and a light-transmissive case member. The semiconductor element module is provided with a reflecting member which is provided in close contact with the surface of the case member and can reflect light incident on the surface side of the case member and transmitted through the case member toward the semiconductor element array. In addition, since the light reflected by the reflecting member can be received, the amount of received light increases, the photovoltaic power generated by the spherical semiconductor element can be further increased, and the photoelectric conversion efficiency can be significantly increased.

【0045】請求項3の発明によれば、前記反射部材
は、ケース部材の裏面に密着させた反射膜からなるの
で、金属膜等の種々の反射膜を用いることで、反射部材
を小型で安価にできる上、反射効率を確保できる。その
他請求項1又は2と同様の効果を奏する。請求項4の発
明によれば、前記反射部材は、ケース部材の裏面に密着
させた合成樹脂製の板状反射体からなるので、白色散乱
反射型ポリカーボネイト等の板状反射体を用いること
で、反射効率を確保でき、しかもケース部材を補強する
ことができる。その他請求項1又は2と同様の効果を奏
する。
According to the third aspect of the present invention, since the reflection member is formed of a reflection film adhered to the back surface of the case member, the reflection member can be made small and inexpensive by using various reflection films such as a metal film. And the reflection efficiency can be secured. The other effects are the same as those of the first or second aspect. According to the invention of claim 4, since the reflecting member is made of a synthetic resin plate-like reflector adhered to the back surface of the case member, by using a plate-like reflector such as white scattering reflection type polycarbonate, The reflection efficiency can be ensured, and the case member can be reinforced. The other effects are the same as those of the first or second aspect.

【0046】請求項5の発明によれば、球状半導体素子
を複数個直列接続した半導体素子アレイと光透過性のケ
ース部材とを備え、ケース部材の裏面側に密着状に設け
られ且つ半導体素子アレイで発生しケース部材の裏面側
に透過した光をケース部材の表面側へ反射可能な反射部
材を設けたので、半導体素子アレイで発生した光はケー
ス部材の表裏両面側に出射されるが、裏面側の光は反射
部材で反射して表面側へ出射するため、半導体素子アレ
イで発生した全ての光をケース部材の表面側に効率良く
反射させることができ、発光効率を高めることができ
る。
According to the fifth aspect of the present invention, there is provided a semiconductor element array in which a plurality of spherical semiconductor elements are connected in series and a light-transmissive case member. Since a reflecting member capable of reflecting the light generated in the above and transmitted on the back side of the case member to the front side of the case member is provided, the light generated in the semiconductor element array is emitted to both the front and back surfaces of the case member. Since the light on the side is reflected by the reflecting member and emitted to the front side, all the light generated in the semiconductor element array can be efficiently reflected to the front side of the case member, and the luminous efficiency can be increased.

【0047】請求項6の発明によれば、球状半導体素子
を複数個直列接続した半導体素子アレイを複数列平行に
並べた半導体素子モジュールと光透過性のケース部材と
を備え、ケース部材の裏面側に密着状に設けられ且つ半
導体素子アレイで発生しケース部材の裏面側に透過した
光をケース部材の表面側へ反射可能な反射部材を設けた
ので、半導体素子モジュールで発生した光がケース部材
の表裏両面側に出射されるが、裏面側の光は反射部材で
反射して表面側へ出射するため、半導体素子モジュール
で発生した全ての光をケース部材の表面側に効率良く出
射させることができ、発光効率を格段に高めることがで
きる。
According to the sixth aspect of the present invention, there is provided a semiconductor element module in which a plurality of semiconductor element arrays in which a plurality of spherical semiconductor elements are connected in series are arranged in parallel in a plurality of rows, and a light-transmissive case member, and a back side of the case member. Since a reflecting member is provided which is capable of reflecting light generated at the semiconductor element array and transmitted on the back side of the case member to the front side of the case member, light generated at the semiconductor element module is provided on the case member. Although the light is emitted to both the front and back surfaces, the light on the back surface is reflected by the reflection member and emitted to the front surface, so that all the light generated in the semiconductor element module can be efficiently emitted to the front surface of the case member. As a result, the luminous efficiency can be significantly improved.

【0048】請求項7の発明によれば、前記反射部材
は、ケース部材の裏面に密着させた反射膜からなるの
で、請求項3と同様の効果が得られる。その他請求項5
又は6と同様の効果を奏する。請求項8の発明によれ
ば、前記反射部材は、ケース部材の裏面に密着させた合
成樹脂製の板状反射体からなるので、請求項4と同様の
効果が得られる。その他請求項5又は6と同様の効果を
奏する。
According to the seventh aspect of the present invention, since the reflection member is made of the reflection film adhered to the back surface of the case member, the same effect as in the third aspect can be obtained. Other claim 5
Or, the same effect as 6 can be obtained. According to the invention of claim 8, since the reflecting member is made of a synthetic resin plate-shaped reflector closely attached to the back surface of the case member, the same effect as in claim 4 is obtained. Other effects similar to those of the fifth or sixth aspect are exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る太陽電池装置の斜視図
である。
FIG. 1 is a perspective view of a solar cell device according to an embodiment of the present invention.

【図2】太陽電池装置の断面図である。FIG. 2 is a sectional view of a solar cell device.

【図3】太陽電池セルの断面図である。FIG. 3 is a sectional view of a solar battery cell.

【図4】整流ダイオードの断面図である。FIG. 4 is a sectional view of a rectifier diode.

【図5】図2のE−E線縦断正面図である。FIG. 5 is a vertical sectional front view taken along line EE of FIG. 2;

【図6】変更形態に係る図5の部分拡大縦断正面図であ
る。
FIG. 6 is a partially enlarged longitudinal sectional front view of FIG. 5 according to a modified embodiment.

【図7】変更形態に係る図5相当図である。FIG. 7 is a diagram corresponding to FIG. 5 according to a modified embodiment.

【図8】複数枚のパネルからなる太陽電池装置の平面図
である。
FIG. 8 is a plan view of a solar cell device including a plurality of panels.

【図9】多数の太陽電池アレイを並設した太陽電池装置
の平面図である。
FIG. 9 is a plan view of a solar cell device in which a number of solar cell arrays are arranged in parallel.

【図10】半球状太陽電池装置の斜視図である。FIG. 10 is a perspective view of a hemispherical solar cell device.

【図11】第2実施形態に係る太陽電池装置の断面図で
ある。
FIG. 11 is a sectional view of a solar cell device according to a second embodiment.

【図12】図11のL−L線縦断正面図である。12 is a vertical sectional front view taken along line LL of FIG. 11;

【図13】複数本の円柱状太陽電池モジュールからなる
太陽電池装置の斜視図である。
FIG. 13 is a perspective view of a solar cell device including a plurality of columnar solar cell modules.

【図14】複数枚の太陽電池パネルを組み合わせた太陽
電池装置の斜視図である。
FIG. 14 is a perspective view of a solar cell device in which a plurality of solar cell panels are combined.

【図15】球状青色発光ダイオードの断面図である。FIG. 15 is a sectional view of a spherical blue light emitting diode.

【符号の説明】[Explanation of symbols]

1 パネル状太陽電池装置 1A〜1E 太陽電池装置 2 ケース部材 5 反射板 5A、5B 反射板 5a 半球状反射面 10 太陽電池セル 15 正電極 16 負電極 19 太陽電池アレイ 19A 太陽電池モジュール 19B 太陽電池モジュール 25 太陽光 30 円柱状太陽電池装置 34 反射板 40 太陽電池装置 50 太陽電池装置 60 球状青色発光ダイオード DESCRIPTION OF SYMBOLS 1 Panel-shaped solar cell device 1A-1E Solar cell device 2 Case member 5 Reflector 5A, 5B Reflector 5a Hemispherical reflective surface 10 Solar cell 15 Positive electrode 16 Negative electrode 19 Solar cell array 19A Solar cell module 19B Solar cell module Reference Signs List 25 solar light 30 cylindrical solar cell device 34 reflector 40 solar cell device 50 solar cell device 60 spherical blue light emitting diode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体の球状結晶に光起電力発生部を形
成するとともに両端部に1対の電極を形成してなる球状
半導体素子を複数個直列接続した半導体素子アレイと、
この半導体素子アレイを収容する光透過性のケース部材
とを備えた発電装置において、 前記ケース部材の裏面側に密着状に設けられ且つケース
部材の表面側から入射しケース部材を透過した光を半導
体素子アレイの方へ反射可能な反射部材を設けたことを
特徴とする球状半導体素子を用いた発電装置。
A semiconductor element array in which a plurality of spherical semiconductor elements each having a photovoltaic power generation section formed on a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series;
In a power generating apparatus including a light-transmissive case member for accommodating the semiconductor element array, a semiconductor device is provided in close contact with the back surface side of the case member, and transmits light incident from the front surface side of the case member and transmitted through the case member to a semiconductor. A power generating apparatus using a spherical semiconductor element, comprising a reflecting member capable of reflecting light toward an element array.
【請求項2】 半導体の球状結晶に光起電力発生部を形
成するとともに両端部に1対の電極を形成してなる球状
半導体素子を複数個直列接続した半導体素子アレイを複
数列平行に並べた半導体素子モジュールと、この半導体
素子モジュールを収容する光透過性のケース部材とを備
えた発電装置において、 前記ケース部材の裏面側に密着状に設けられ且つケース
部材の表面側から入射しケース部材を透過した光を半導
体素子アレイの方へ反射可能な反射部材を設けたことを
特徴とする球状半導体素子を用いた発電装置。
2. A plurality of semiconductor element arrays in which a plurality of spherical semiconductor elements each having a photovoltaic power generation section formed on a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series are arranged in parallel. In a power generating apparatus including a semiconductor element module and a light-transmissive case member for housing the semiconductor element module, the case member is provided in close contact with the back side of the case member, and enters the case member from the front side of the case member. A power generating apparatus using a spherical semiconductor element, comprising a reflecting member capable of reflecting transmitted light toward a semiconductor element array.
【請求項3】 前記反射部材は、ケース部材の裏面に密
着させた反射膜からなることを特徴とする請求項1又は
2に記載の球状半導体素子を用いた発電装置。
3. The power generation device using a spherical semiconductor element according to claim 1, wherein the reflection member is formed of a reflection film adhered to a back surface of a case member.
【請求項4】 前記反射部材は、ケース部材の裏面に密
着させた合成樹脂製の板状反射体からなることを特徴と
する請求項1又は2に記載の球状半導体素子を用いた発
電装置。
4. The power generator according to claim 1, wherein the reflection member is made of a synthetic resin plate-shaped reflector that is in close contact with the back surface of the case member.
【請求項5】 半導体の球状結晶に電光変換部を形成す
るとともに両端部に1対の電極を形成してなる球状半導
体素子を複数個直列接続した半導体素子アレイと、この
半導体素子アレイを収容する光透過性のケース部材とを
備えた発光装置において、 前記ケース部材の裏面側に密着状に設けられ且つ半導体
素子アレイで発生しケース部材の裏面側に透過した光を
ケース部材の表面側へ反射可能な反射部材を設けたこと
を特徴とする球状半導体素子を用いた発光装置。
5. A semiconductor element array in which a plurality of spherical semiconductor elements formed by forming an electro-optical converter on a semiconductor spherical crystal and forming a pair of electrodes at both ends are connected in series, and the semiconductor element array is accommodated. A light-transmitting case member provided with a light-transmissive case member, wherein light generated in the semiconductor element array and transmitted through the back surface side of the case member is reflected to the front surface side of the case member. A light emitting device using a spherical semiconductor element, wherein a light reflecting member is provided.
【請求項6】 半導体の球状結晶に電光変換部を形成す
るとともに両端部に1対の電極を形成してなる球状半導
体素子を複数個直列接続した半導体素子アレイを複数列
平行に並べた半導体素子モジュールと、この半導体素子
モジュールを収容する光透過性のケース部材とを備えた
発光装置において、 前記ケース部材の裏面側に密着状に設けられ且つ半導体
素子アレイで発生しケース部材の裏面側に透過した光を
ケース部材の表面側へ反射可能な反射部材を設けたこと
を特徴とする球状半導体素子を用いた発光装置。
6. A semiconductor element in which a plurality of semiconductor element arrays in which a plurality of spherical semiconductor elements each having an electro-optical conversion portion formed on a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series are arranged in parallel. A light emitting device comprising a module and a light-transmissive case member for accommodating the semiconductor element module, wherein the light-emitting device is provided in close contact with the back side of the case member and is generated in the semiconductor element array and transmitted to the back side of the case member. A light emitting device using a spherical semiconductor element, wherein a reflecting member capable of reflecting the generated light to the surface side of the case member is provided.
【請求項7】 前記反射部材は、ケース部材の裏面に密
着させた反射膜からなることを特徴とする請求項5又は
6に記載の球状半導体素子を用いた発光装置。
7. The light emitting device using a spherical semiconductor element according to claim 5, wherein the reflection member is made of a reflection film adhered to a back surface of a case member.
【請求項8】 前記反射部材は、ケース部材の裏面に密
着させた合成樹脂製の板状反射体からなることを特徴と
する請求項5又は6に記載の球状半導体素子を用いた発
光装置。
8. The light emitting device using a spherical semiconductor element according to claim 5, wherein the reflection member is made of a synthetic resin plate-like reflector that is adhered to the back surface of the case member.
JP35032099A 1999-12-09 1999-12-09 Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element Expired - Lifetime JP4276758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35032099A JP4276758B2 (en) 1999-12-09 1999-12-09 Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35032099A JP4276758B2 (en) 1999-12-09 1999-12-09 Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element

Publications (2)

Publication Number Publication Date
JP2001168369A true JP2001168369A (en) 2001-06-22
JP4276758B2 JP4276758B2 (en) 2009-06-10

Family

ID=18409695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35032099A Expired - Lifetime JP4276758B2 (en) 1999-12-09 1999-12-09 Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element

Country Status (1)

Country Link
JP (1) JP4276758B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217427A (en) * 2001-01-12 2002-08-02 Kyocera Corp Photoelectric conversion device
WO2003017382A1 (en) * 2001-08-13 2003-02-27 Josuke Nakata Light-emitting or light-receiving semiconductor module and method of its manufacture
WO2003017383A1 (en) * 2001-08-13 2003-02-27 Josuke Nakata Semiconductor device and method of its manufacture
WO2003036731A1 (en) * 2001-10-19 2003-05-01 Josuke Nakata Light emitting or light receiving semiconductor module and method for manufacturing the same
US6563041B2 (en) * 2000-11-29 2003-05-13 Kyocera Corporation Photoelectric conversion device
WO2003056633A1 (en) * 2001-12-25 2003-07-10 Josuke Nakata Light receiving or emitting semiconductor apparatus
WO2003094248A1 (en) * 2002-05-02 2003-11-13 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
WO2004001858A1 (en) * 2002-06-21 2003-12-31 Josuke Nakata Light-receiving or light-emitting device and itsd production method
JP2004070179A (en) * 2002-08-08 2004-03-04 Shinya Ishida Chain-like led display system
WO2004095590A1 (en) * 2003-04-21 2004-11-04 Kyosemi Corporation Selfluminous device
WO2005041312A1 (en) * 2003-10-24 2005-05-06 Kyosemi Corporation Light receiving or light emitting modular sheet and process for producing the same
WO2005088733A1 (en) * 2004-03-12 2005-09-22 Kyosemi Corporation Multilayer solar cell
US7079453B2 (en) 2002-07-09 2006-07-18 Casio Computer Co., Ltd. Timepiece and electronic apparatus with bulb-shaped semiconductor element
WO2007091294A1 (en) * 2006-02-06 2007-08-16 Kyosemi Corporation Light receiving or emitting semiconductor module
JP2007273199A (en) * 2006-03-31 2007-10-18 Sekisui Jushi Co Ltd Dye-sensitized solar cell
JP2008004415A (en) * 2006-06-23 2008-01-10 Ccs Inc Three dimensional light source body
WO2008004304A1 (en) 2006-07-07 2008-01-10 Kyosemi Corporation Panel-shaped semiconductor module
WO2008004277A1 (en) 2006-07-04 2008-01-10 Kyosemi Corporation Panel-shaped semiconductor module
US7378757B2 (en) 2003-06-09 2008-05-27 Kyosemi Corporation Power generation system
JP2008251876A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Light-emitting element and manufacturing method thereof
JP2008544502A (en) * 2005-06-17 2008-12-04 ジ・オーストラリアン・ナショナル・ユニバーシティー Solar cell interconnect process
JP2009123779A (en) * 2007-11-12 2009-06-04 Taichi Tsuboi Dome-shaped solar photovoltaic power generation device, dome-shaped solar thermal power generation device, dome-shaped solar photovoltaic power generation system, and dome-shaped solar thermal power generation system
JP2010529641A (en) * 2006-11-15 2010-08-26 ソルインドラ,インコーポレーテッド Apparatus and method for connecting multiple photovoltaic modules
JP2012001379A (en) * 2010-06-15 2012-01-05 Sharp Corp Solar cell module, method for producing silicon ribbon, and method for producing spherical silicon
JP2013115121A (en) * 2011-11-25 2013-06-10 Kyocera Corp Component for concentrating solar cell device and concentrating solar cell device
JP2014049736A (en) * 2012-09-04 2014-03-17 Asahi Kasei Corp Solar cell and solar cell system
WO2018128811A1 (en) * 2017-01-03 2018-07-12 Saudi Arabian Oil Company Maintaining a solar power module
US10374546B2 (en) 2017-01-03 2019-08-06 Saudi Arabian Oil Company Maintaining a solar power module
US10396708B2 (en) 2017-01-03 2019-08-27 Saudi Arabian Oil Company Maintaining a solar power module

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563041B2 (en) * 2000-11-29 2003-05-13 Kyocera Corporation Photoelectric conversion device
JP2002217427A (en) * 2001-01-12 2002-08-02 Kyocera Corp Photoelectric conversion device
JP4570255B2 (en) * 2001-01-12 2010-10-27 京セラ株式会社 Photoelectric conversion device
US7238968B2 (en) 2001-08-13 2007-07-03 Josuke Nakata Semiconductor device and method of making the same
WO2003017382A1 (en) * 2001-08-13 2003-02-27 Josuke Nakata Light-emitting or light-receiving semiconductor module and method of its manufacture
WO2003017383A1 (en) * 2001-08-13 2003-02-27 Josuke Nakata Semiconductor device and method of its manufacture
US7244998B2 (en) 2001-08-13 2007-07-17 Josuke Nakata Light-emitting or light-receiving semiconductor module and method of its manufacture
US7602035B2 (en) 2001-10-19 2009-10-13 Josuke Nakata Light emitting or light receiving semiconductor module and method for manufacturing same
AU2001295987B2 (en) * 2001-10-19 2005-10-20 Sphelar Power Corporation Light emitting or light receiving semiconductor module and method for manufacturing the same
WO2003036731A1 (en) * 2001-10-19 2003-05-01 Josuke Nakata Light emitting or light receiving semiconductor module and method for manufacturing the same
US7109528B2 (en) 2001-12-25 2006-09-19 Josuke Nakata Light receiving or emitting semiconductor apparatus
AU2002217500B2 (en) * 2001-12-25 2005-10-06 Sphelar Power Corporation Light receiving or emitting semiconductor apparatus
WO2003056633A1 (en) * 2001-12-25 2003-07-10 Josuke Nakata Light receiving or emitting semiconductor apparatus
CN100426530C (en) * 2002-05-02 2008-10-15 中田仗祐 Panel for light receiving or light-emitting and its manufacturing method
US7238966B2 (en) 2002-05-02 2007-07-03 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
WO2003094248A1 (en) * 2002-05-02 2003-11-13 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
AU2002255303B2 (en) * 2002-05-02 2006-07-06 Sphelar Power Corporation Light-Receiving panel or light-emitting panel, and manufacturing method thereof
CN100380685C (en) * 2002-06-21 2008-04-09 中田仗祐 Light-emitting device and its prodn. method
AU2002313256B8 (en) * 2002-06-21 2006-11-02 Sphelar Power Corporation Light-receiving or light-emitting device and its production method
AU2002313256B2 (en) * 2002-06-21 2006-07-06 Sphelar Power Corporation Light-receiving or light-emitting device and its production method
US7220997B2 (en) 2002-06-21 2007-05-22 Josuke Nakata Light receiving or light emitting device and itsd production method
WO2004001858A1 (en) * 2002-06-21 2003-12-31 Josuke Nakata Light-receiving or light-emitting device and itsd production method
US7079453B2 (en) 2002-07-09 2006-07-18 Casio Computer Co., Ltd. Timepiece and electronic apparatus with bulb-shaped semiconductor element
JP2004070179A (en) * 2002-08-08 2004-03-04 Shinya Ishida Chain-like led display system
AU2004231849B2 (en) * 2003-04-21 2007-05-24 Sphelar Power Corporation Selfluminous device
EP2259333A2 (en) 2003-04-21 2010-12-08 Kyosemi Corporation Self light - emitting device
US7387400B2 (en) 2003-04-21 2008-06-17 Kyosemi Corporation Light-emitting device with spherical photoelectric converting element
WO2004095590A1 (en) * 2003-04-21 2004-11-04 Kyosemi Corporation Selfluminous device
US7378757B2 (en) 2003-06-09 2008-05-27 Kyosemi Corporation Power generation system
US7214557B2 (en) 2003-10-24 2007-05-08 Kyosemi Corporation Light receiving or light emitting modular sheet and process for producing the same
WO2005041312A1 (en) * 2003-10-24 2005-05-06 Kyosemi Corporation Light receiving or light emitting modular sheet and process for producing the same
US9159856B2 (en) 2004-03-12 2015-10-13 Kyosemi Corporation Laminated solar battery
US8237045B2 (en) 2004-03-12 2012-08-07 Kyosemi Corporation Laminated solar battery
WO2005088733A1 (en) * 2004-03-12 2005-09-22 Kyosemi Corporation Multilayer solar cell
JP2008544502A (en) * 2005-06-17 2008-12-04 ジ・オーストラリアン・ナショナル・ユニバーシティー Solar cell interconnect process
AU2006337843B2 (en) * 2006-02-06 2011-06-23 Sphelar Power Corporation Light receiving or emitting semiconductor module
US7947894B2 (en) 2006-02-06 2011-05-24 Kyosemi Corporation Light receiving or light emitting semiconductor module
WO2007091294A1 (en) * 2006-02-06 2007-08-16 Kyosemi Corporation Light receiving or emitting semiconductor module
JP4861343B2 (en) * 2006-02-06 2012-01-25 京セミ株式会社 Light receiving or light emitting semiconductor module
JP2007273199A (en) * 2006-03-31 2007-10-18 Sekisui Jushi Co Ltd Dye-sensitized solar cell
JP2008004415A (en) * 2006-06-23 2008-01-10 Ccs Inc Three dimensional light source body
US7910947B2 (en) 2006-07-04 2011-03-22 Kyosemi Corporation Panel-shaped semiconductor module
WO2008004277A1 (en) 2006-07-04 2008-01-10 Kyosemi Corporation Panel-shaped semiconductor module
WO2008004304A1 (en) 2006-07-07 2008-01-10 Kyosemi Corporation Panel-shaped semiconductor module
US8053663B2 (en) 2006-07-07 2011-11-08 Kyosemi Corporation Panel-shaped semiconductor module
JP2010529641A (en) * 2006-11-15 2010-08-26 ソルインドラ,インコーポレーテッド Apparatus and method for connecting multiple photovoltaic modules
JP2008251876A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Light-emitting element and manufacturing method thereof
JP2009123779A (en) * 2007-11-12 2009-06-04 Taichi Tsuboi Dome-shaped solar photovoltaic power generation device, dome-shaped solar thermal power generation device, dome-shaped solar photovoltaic power generation system, and dome-shaped solar thermal power generation system
JP2012001379A (en) * 2010-06-15 2012-01-05 Sharp Corp Solar cell module, method for producing silicon ribbon, and method for producing spherical silicon
JP2013115121A (en) * 2011-11-25 2013-06-10 Kyocera Corp Component for concentrating solar cell device and concentrating solar cell device
JP2014049736A (en) * 2012-09-04 2014-03-17 Asahi Kasei Corp Solar cell and solar cell system
WO2018128811A1 (en) * 2017-01-03 2018-07-12 Saudi Arabian Oil Company Maintaining a solar power module
US10374546B2 (en) 2017-01-03 2019-08-06 Saudi Arabian Oil Company Maintaining a solar power module
US10396708B2 (en) 2017-01-03 2019-08-27 Saudi Arabian Oil Company Maintaining a solar power module
US10469027B2 (en) 2017-01-03 2019-11-05 Saudi Arabian Oil Company Maintaining a solar power module
US10658970B2 (en) 2017-01-03 2020-05-19 Saudi Arabian Oil Company Maintaining a solar power module
US10771009B2 (en) 2017-01-03 2020-09-08 Saudi Arabian Oil Company Maintaining a solar power module
US10892706B2 (en) 2017-01-03 2021-01-12 Saudi Arabian Oil Company Maintaining a solar power module

Also Published As

Publication number Publication date
JP4276758B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP2001168369A (en) Power generation device using globular semiconductor element and light emitting device using globular semiconductor element
JP3904559B2 (en) Light emitting or receiving semiconductor module and method for manufacturing the same
JP4021441B2 (en) Light receiving or light emitting device and manufacturing method thereof
JP3902210B2 (en) Light receiving or light emitting panel and manufacturing method thereof
JP3899073B2 (en) Light receiving or light emitting semiconductor device
KR20080097392A (en) Light receiving or emitting semiconductor module
WO2008018116A1 (en) Semiconductor module for power generation or light emission
JP3157502B2 (en) Solar cell module
US20090262523A1 (en) Light emitting diode device
JP4444937B2 (en) Light emitting or receiving semiconductor module
JP2005217357A (en) Three-dimensional configuration solar cell and three-dimensional configuration solar cell module
KR20190074166A (en) Information display device using flexible solar cell
US20110220173A1 (en) Active solar concentrator with multi-junction devices
MX2009000780A (en) Semiconductor module for power generation or light emission.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4276758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term