JP4276758B2 - Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element - Google Patents

Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element Download PDF

Info

Publication number
JP4276758B2
JP4276758B2 JP35032099A JP35032099A JP4276758B2 JP 4276758 B2 JP4276758 B2 JP 4276758B2 JP 35032099 A JP35032099 A JP 35032099A JP 35032099 A JP35032099 A JP 35032099A JP 4276758 B2 JP4276758 B2 JP 4276758B2
Authority
JP
Japan
Prior art keywords
case member
semiconductor element
light
back surface
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35032099A
Other languages
Japanese (ja)
Other versions
JP2001168369A (en
Inventor
仗祐 中田
Original Assignee
仗祐 中田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 仗祐 中田 filed Critical 仗祐 中田
Priority to JP35032099A priority Critical patent/JP4276758B2/en
Publication of JP2001168369A publication Critical patent/JP2001168369A/en
Application granted granted Critical
Publication of JP4276758B2 publication Critical patent/JP4276758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の球状半導体素子で受光する受光量を反射光により増加させて光電変換効率を高めるようにした発電装置、複数の球状半導体素子で発生した光を表面側だけに集中させて発光効率を高めるようにした発光装置に関する。
【0002】
【従来の技術】
太陽光エネルギーを電気エネルギーに変換する半導体を利用した種々の太陽電池が普及している。この種の半導体太陽電池では、一般的に、シリコン単結晶、シリコン多結晶、アモルファスSi等の半導体が主として用いられているが、光電変換効率が低く、配線や組付け作業を含む製造工程が複雑化し、そのために高価になり、しかも小型化できないという問題がある。また、この種の半導体太陽電池では半導体基板が平面状であり、受光面とその内部に形成されたpn接合も概ね平面の形を成している為、光の入射角が大きくなると反射光が増えて光電変換効率が低下するという問題がある。
【0003】
そこで、本願の発明者は国際公開公報WO98/15983号において、受光素子(光電変換素子)や発光素子(電光変換素子)や光触媒素子としての球状半導体素子を用いて、種々の用途に適用でき、小型軽量化、発電電圧の向上、低コスト化が図れる新規な半導体装置を提案した。即ち、光電変換型の半導体装置として、基本的に半導体の球状結晶の表面に拡散層及びpn接合と1対の電極を形成した太陽電池セルを1列状に並べて直列接続した太陽電池アレイを形成し、この太陽電池アレイを光透過性のケース内に収容した円柱状の太陽電池装置を提案するとともに、これら複数の太陽電池アレイを光透過性のケース内に収容したパネル状の太陽電池装置を提案した。
【0004】
これら何れの太陽電池装置においても、光透過性のケースの上主面と下主面が幾何学的に対称構造であり、表裏何れの方向からでも太陽光を受光でき、光を太陽電池セルに直接照射して光起電力が発生するようになっている。しかも、これら両主面には広い角度で受光できるように部分円筒面状の曲面が形成されており、太陽光のように入射方向が変動する光に対する受光性能を向上させている。更に、基本的に太陽電池セルと同様に構成された発光ダイオードを用いた電光変換型の半導体装置として、この発光ダイオードの1対の電極に電圧を印加することで、表裏両面側に向けて発光可能な円柱状又はパネル状の発光装置を提案した。
【0005】
【発明が解決しようとする課題】
本願の発明者が国際公開公報WO98/15983号において提案した円柱状又はパネル状の光電変換型半導体装置においては、太陽電池アレイを複数列平行に並べてケース内に収容しているため、ケースの表面のうち、太陽電池セルを設けた部分円筒面状の曲面部同士間の太陽光の透過により光電変換に何ら寄与されない光電変換無効面積が大きいため、光起電力の変換効率が低下するという問題がある。
【0006】
また、これら光電変換型半導体装置においては、光電変換に寄与されないでケースを透過してしまう透過光が多くなり、その透過光のためる光電変換効率が更に低下するという問題がある。特に、光電変換型半導体装置の片側(例えば表側)から入射する光を受光するケースが多いが、この半導体装置の裏側は光電変換に寄与していない。
【0007】
更に、電光変換型の半導体装置においては、発光ダイオードで発生した光が半導体装置の表側と裏側とに向けて同時に出射されるため、特に表側に向けて集中的に発光させる場合には、半導体装置の裏側に出射する光が無駄になってしまうという問題がある。
本発明の目的は、光電変換型発電装置の半導体素子アレイへの受光量を増加させて光電変換効率を高めること、電光変換型発電装置で裏面側に発生した光を表面側から出射させることで発光効率を高めること、等である。
【0008】
【課題を解決するための手段】
請求項1の球状半導体素子を用いた発電装置は、半導体の球状結晶に光起電力発生部を形成するとともに両端部に1対の電極を形成してなる球状半導体素子を複数個直列接続した半導体素子アレイと、この半導体素子アレイを収容する光透過性のケース部材とを備えた発電装置において、前記ケース部材の光入射側の表面とこの表面の反対側の裏面には前記半導体素子アレイに対応する外側へ凸の部分円筒面が夫々形成され、前記ケース部材の裏面側に密着状に設けられ且つケース部材の表面側から入射しケース部材を透過した光を半導体素子アレイの方へ反射可能な散乱反射型合成樹脂製の反射部材を設け、前記反射部材は、前記ケース部材の裏面の部分円筒面に密着する部分円筒状の反射面を有するものである。
【0009】
光起電力発生部を有する球状半導体素子を複数個直列接続した半導体素子アレイが光透過性のケース部材内に収容されており、ケース部材の裏面側に反射部材を密着状に設けたので、各球状半導体素子は、ケース部材を介して半導体素子アレイに直接照射される光により光起電力を発生するだけでなく、表面側から入射しケース部材を透過して反射部材で反射された反射光も受光して光起電力を発生する。即ち、半導体素子アレイはケース部材に入射する直達光だけでなく反射光も受光できるため、受光量が増大し、球状半導体素子による光起電力を増大させ、光電変換効率を大幅に高めることができる。
【0010】
請求項2の球状半導体素子を用いた発電装置は、半導体の球状結晶に光起電力発生部を形成するとともに両端部に1対の電極を形成してなる球状半導体素子を複数個直列接続した半導体素子アレイを複数列平行に並べた半導体素子モジュールと、この半導体素子モジュールを収容する光透過性のケース部材とを備えた発電装置において、前記ケース部材の光入射側の表面とこの表面の反対側の裏面には前記複数列の半導体素子アレイに対応する外側へ凸の複数の部分円筒面が夫々形成され、前記ケース部材の裏面側に密着状に設けられ且つケース部材の表面側から入射しケース部材を透過した光を半導体素子アレイの方へ反射可能な散乱反射型合成樹脂製の反射部材を設け、前記反射部材は、前記ケース部材の裏面の複数の部分円筒面に密着する部分円筒状の複数の反射面を有するものである。
【0011】
この場合、請求項1とほぼ同様に作用するが、半導体素子アレイを複数列平行に並べた半導体素子モジュールが光透過性のケース部材内に収容されているため、半導体素子モジュールはケース部材に入射する直達光だけでなく、反射部材で反射した反射光も受光できるため、受光量が増大し、球状半導体素子による光起電力をより増大させ、光電変換効率を大幅に高めることができる。
【0012】
ここで、前記反射部材が、ケース部材の裏面に密着させた合成樹脂製の板状反射体からなる場合(請求項1又は2に従属の請求項)には、白色散乱反射型ポリカーボネイト等の板状反射体を用いることで、反射効率を確保でき、しかもケース部材を補強することができる。
【0013】
請求項の球状半導体素子を用いた発光装置は、半導体の球状結晶に電光変換部を形成するとともに両端部に1対の電極を形成してなる球状半導体素子を複数個直列接続した半導体素子アレイと、この半導体素子アレイを収容する光透過性のケース部材とを備えた発光装置において、前記ケース部材の光出射側の表面とこの表面の反対側の裏面には前記半導体素子アレイに対応する外側へ凸の部分円筒面が夫々形成され、前記ケース部材の裏面側に密着状に設けられ且つ半導体素子アレイで発生しケース部材の裏面側に透過した光をケース部材の表面側へ反射可能な散乱反射型合成樹脂製の反射部材を設け、前記反射部材は、前記ケース部材の裏面の部分円筒面に密着する部分円筒状の反射面を有するものである。
【0014】
電光変換部を有する球状半導体素子を複数個直列接続した半導体素子アレイが光透過性のケース部材内に収容されており、ケース部材の裏面側に反射部材を密着状に設けたので、1対の電極に電圧が印加されて半導体素子アレイで発生した光は、ケース部材の表面側と裏面側の両側に夫々出射される。このとき、ケース部材の裏面側に透過した光は反射部材により表面側へ反射される。即ち、半導体素子アレイで発生した光はケース部材の表裏両面側に出射されるが、裏面側の光は反射部材で反射して表面側へ出射するため、半導体素子アレイで発生した全ての光をケース部材の表面側に効率良く出射させることができる。
【0015】
請求項の球状半導体素子を用いた発光装置は、半導体の球状結晶に電光変換部を形成するとともに両端部に1対の電極を形成してなる球状半導体素子を複数個直列接続した半導体素子アレイを複数列平行に並べた半導体素子モジュールと、この半導体素子モジュールを収容する光透過性のケース部材とを備えた発光装置において、前記ケース部材の光入射側の表面とこの表面の反対側の裏面には前記複数列の半導体素子アレイに対応する外側へ凸の複数の部分円筒面が夫々形成され、前記ケース部材の裏面側に密着状に設けられ且つ半導体素子アレイで発生しケース部材の裏面側に透過した光をケース部材の表面側へ反射可能な散乱反射型合成樹脂製の反射部材を設け、前記反射部材は、前記ケース部材の裏面の複数の部分円筒面に密着する部分円筒状の複数の反射面を有するものである。
【0016】
この場合には、請求項とほぼ同様に作用するが、半導体素子アレイを複数列平行に並べた半導体素子モジュールが光透過性のケース部材内に収容されているため、半導体素子モジュールで発生した光がケース部材の表裏両面側に出射されるが、裏面側の光は反射部材で反射して表面側へ出射するため、半導体素子モジュールで発生した全ての光をケース部材の表面側に効率良く出射させることができる。
【0017】
ここで、前記反射部材は、ケース部材の裏面に密着させた合成樹脂製の板状反射体からなる場合(請求項4又は5に従属の請求項)には、白色散乱反射型ポリカーボネイト等の板状反射体を用いることで、反射効率を確保でき、しかもケース部材を補強することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について図面に基いて説明する。本実施形態は、複数の太陽電池セル10を電気的に直列接続した太陽電池アレイ19(半導体素子アレイ)を、光透過性のケース部材2内に複数列平行に並べた太陽電池モジュール19A(半導体素子モジュールに相当する)を用いたパネル状の太陽電池装置1(球状半導体素子を用いた発電装置に相当する)に本発明を適用した場合の一例である。
【0019】
先ず、太陽電池アレイ19について説明する。図1〜図2に示すように、この太陽電池アレイ19は、複数(例えば、5個)の太陽電池セル10を直列接続した構成であり、この場合、この太陽電池アレイ19に1つの整流ダイオード20が追加接続されている。太陽電池セル10について図3に基づいて説明する。
【0020】
球状太陽電池セル10は、例えば直径が1.5mm で、抵抗率が1Ωcm程度のp型シリコン半導体製の球状結晶11を図示外の半導体球状結晶製造装置により製作したものである。即ち、発明者が国際公開公報WO98/15983号で出願したように、球状結晶11の表面近傍にn型拡散層12とpn接合13を形成し、更に球状結晶11の表面に表面保護と反射防止の為の光透過性の絶縁被膜14が形成されている。p型シリコンに電気的に接続された正電極15と、n型拡散層12に電気的に接続された負電極16とが形成されている。
【0021】
更に、正電極15の表面が厚さ約20μmのAlペースト膜17で被覆され、負電極16の表面が厚さ約20μmのAgペースト膜18で被覆されている。太陽電池セル10を直列接続して太陽電池アレイ19を構成するため、太陽電池セル10の両電極15, 16は、対向する両端部に設けられている。ここで、球状結晶11と表面部のn型拡散層12とpn接合13などで光起電力発生部が構成されている。
【0022】
図1,図2に示すように、光透過性の合成樹脂(例えば、ポリカーボネイト樹脂等)製で矩形板状のケース部材2の表面(手前側の面)と裏面(奥側の面)とには、外側に膨らんだ部分円筒面状の曲面2aが4列状に形成され、整流ダイオード20を付随した太陽電池アレイ19を4列に並設した太陽電池モジュール19Aが両曲面2aに対応してケース部材2の内部に埋設状に収容されている。この整流ダイオード20は、複数の太陽電池アレイ19を並列接続して出力を大きくした場合に、太陽電池アレイ19間の光起電力に差異が生じ、起電力の高い方の太陽電池アレイ19から低い方の太陽電池アレイ19に逆電流が流れ、太陽電池アレイ19が加熱するのを防止する為である。
【0023】
ここで、整流ダイオード20について簡単に説明しておくと、図4に示すように、n型シリコン半導体製の球状結晶21に、p型不純物を拡散したp型拡散層22及びpn接合23が形成され、前記同様のTiO2 の絶縁被膜14と負電極15a 、正電極16a 、ペースト膜17, 18が形成されている。そして、正電極リードピン3と手前側の太陽電池セル10のAlペースト膜17とが接続され、負電極リードピン4と整流ダイオード20のAgペースト膜18とが接続され、これらリードピン3, 4は外部回路に接続されている。
【0024】
ケース部材2の裏面側(図2の奥側)に、散乱反射型合成樹脂(例えば、白色散乱反射型ポリカーボネイト)からなる反射板5(これが反射部材に相当する)が密着状に接着されている。即ち、反射板5は不透明で反射型である為、反射板5のケース部材2の曲面2aの下側に接触する接触面が部分円筒状の反射面5aとして作用し、各太陽電池セル10に対応して設けられた複数の反射面5a(部分円筒面)が連続して形成されている。このため、ケース部材2の表面側から入射しケース部材2を透過した太陽光25は何れかの反射面5aにより太陽電池アレイ19の方へ確実に反射する。
【0025】
次に、この反射板5による太陽光25の反射作用について、図5に基づいて説明する。太陽電池装置1に太陽光25が照射されると、曲面2aを介して太陽電池セル10に直接照射される太陽光25により、pn接合13は光励起されたキャリア(電子と正孔)を分離して光起電力を発生する。
【0026】
ところで、これら曲面2a同士間のケース部材2に種々の方向から照射された太陽光25は、太陽電池セル10に入射することなくケース部材2を透過するが、反射板5の上側の反射面5aにより反射して太陽電池セル10の方へ強制的に方向変換されるため、pn接合13はこの反射した太陽光25により、より大きな電流が発生する。ここで、太陽電池セル10は受光した太陽光25により最大約0 .6Vを発生することができる。尚、ケース部材2の両曲面2aに対応する内部に円筒状の収容穴を4列状に形成し、これら収容穴に太陽電池アレイ19を収容させるようにしてもよい。
【0027】
ここで、図6に示すように、前記太陽電池装置1を部分的に変更した太陽電池装置1Aを構成してもよい。即ち、反射板5Aとケース部材2Aが接触する部分円筒状の反射面5aが夫々微小な凹凸状(ギザギザ状)に形成されている。この場合、曲面2a同士間においてケース部材5Aに照射された太陽光25が何れの照射方向から入射しても、ケース部材5Aを透過することなく、凹凸状の反射面5aにより乱反射されて太陽電池セル10の方へ強制的に方向変換されるため、太陽電池セル10による発電効率を更に向上させることができる。
【0028】
更に、太陽電池装置1Bを図7に示すように構成してもよい。即ち、ケース部材2Bを光透過性のポリカーボネイト等の合成樹脂製でチューブ状に形成し、このケース部材2Bの内部に1組の整流ダイオード20と太陽電池アレイ19を収容し、これら複数のケース部材2Bを相互に隣接させた状態で、それらケース部材2Bの各々の下半分が反射板5Bに埋没状かつ密着状に固定されている。この場合にも、太陽電池セル10に入射することなくケース部材2Bを透過した太陽光25は部分円筒状の状反射面5aで確実に反射して太陽電池セル10に照射されるため、太陽電池セル10による発電効率を更に向上させることができる。
【0029】
前述したパネル状の太陽電池装置1を基板上に、図8に示すように、マトリックス状に配設し、各太陽電池装置1のリードピン3,4をターミナル26を介して外部回路に直接接続及び/又は並列接続した大型パネル状太陽電池装置1Cを構成してもよい。この場合には、太陽光25の受光面積を拡大することで、太陽電池としての高電圧化及び/又は高電流化が可能になる。例えば、各段毎に設けた複数の太陽電池装置1を並列接続して太陽電池装置組とすることで、格段毎の太陽電池装置組から例えば3Vが夫々発生する。2段又は3段の太陽電池装置組を直列接続することで6V、9Vが発生する。
【0030】
また、図9に示すように、多数(例えば、50〜100個)の太陽電池セル10を直列接続して太陽電池アレイ19を構成し、これら多数の太陽電池アレイ19をターミナル26を介して外部回路に並列接続したパネル状太陽電池装置1Dを構成してもよい。この場合にも同様に、太陽光25の受光面積を拡大することで、太陽電池としての高電圧化及び/又は高電流化が可能になる。即ち、太陽電池アレイ19に設ける太陽電池セル10の数に応じて発電電圧を変更でき、並列接続する太陽電池アレイ19の数に応じて発電電流を変更できる。
【0031】
更に、図10に示すように、半球状のドーム型芯材28の表面全体に前述したパネル状太陽電池装置1をマトリックス状に配設し、各太陽電池装置1のリードピンをターミナル(図示略)を介して外部回路に直接接続及び/又は並列接続した半球状太陽電池装置1Eを構成してもよい。この場合には、受光面積を拡大できるだけでなく、太陽光25の照射方向が変化しても、常に同様の受光条件で太陽光25を受光でき、太陽電池としての高電圧化及び/又は高電流化が可能になる。
【0032】
第2実施例・・・(図11、図12)
この円柱状の太陽電池装置30は、光透過性のポリカーボネイト等の合成樹脂製のチューブ状に形成したケース部材31の内部に前述した太陽電池アレイ19を埋設状に収容し、このケース部材31の裏面側(図11の奥側)に、白色散乱反射型ポリカーボネイト等の合成樹脂からなる反射板34を密着状に接着したものである。但し、整流ダイオード20は不要であり取り外されている。この場合にも、図12に示すように、前記実施形態と同様に、ケース部材31を介して太陽電池セル10に直接入射される太陽光25により、pn接合13は光励起されたキャリア(電子と正孔)を分離して光起電力を発生する。
【0033】
更に、太陽電池セル10に入射することなくケース部材31に照射される何れの太陽光25も反射板34の半球状反射面34aで確実に反射して太陽電池セル10に照射されるため、太陽電池セル10による発電効率を向上させることができる。ここで、前記実施形態と同様に、ケース部材31の内部に円筒状の収容穴を形成し、この収容穴に太陽電池アレイ19を収容させるようにしてもよい。
【0034】
ところで、図13に示すように、図11に示す太陽電池アレイ19をケース部材31に収容した複数本(例えば、7本)の円柱状太陽電池アレイ19を相互に密着させて環状の太陽電池モジュール19Bに構成し、この太陽電池モジュール19Bの中央部に白色散乱反射型ポリカーボネイト等からなる合成樹脂性の反射部材41を太陽電池モジュールに密着状に充填して太陽電池装置40を構成してもよい。
【0035】
この場合、太陽電池装置40は、種々の方向からの太陽光25を受光できるため、太陽光25の受光方向が制約されることなく、何れの方向からの太陽光25により効率よく光起電力を発生することができる
【0036】
【0037】
ところで、前述した太陽電池セル10に代えて電光変換部や電極等を有する電光変換型の各種の発光ダイオードを用いた発光装置を構成し、この発光装置に各種の反射部材を設けて発光効率を高めるようにしてもよい。ここで、この発光装置に用いる球状発光ダイオードとして、例えば発明者が出願した国際公開公報WO99/10935号に記載された球状青色発光ダイオード60について、図14に基づいて簡単に説明しておく。
【0038】
この球状青色発光ダイオード60は、真球状の単結晶のサファイアからなる直径約1.5mm の芯材61の表面に、GaNバッファ層(厚さ約30nm) 62、n型GaN層(厚さ約3000nm) 63、In0.4Ga0.6N 活性層(厚さ約3nm)64、p型Al0.2Ga0.8N 層(厚さ約400nm)65、p型GaN層(厚さ約500nm)66を順々に形成し、n型GaN層63に達する直径約600 μm程度の窓67を開けて陰極68を設け、陰極68と反対側の表面に、p型GaN 層66の表面に接触する陽極69を形成したものである。陽極69から陰極68に外部から電圧を印加し順電流を流せば、発光ダイオード60は青色光を発光する。
【0039】
即ち、図1に示すパネル状の太陽電池装置1において、整流ダイオード20を省略し且つ太陽電池モジュール19Aに代えて、これら複数の発光ダイオード60を直列接続した発光ダイオードアレイを複数列並列平行に並べた発光ダイオードモジュールを適用してパネル状発光装置を構成する。この場合、発光ダイオードモジュールで発生した光がケース部材5の表裏両面側に出射されるが、反射板5により裏面側の光も表面側に反射するため、発光ダイオードモジュールで発生した全ての光をケース部材5の表面側に効率良く出射させることができ、発光効率を格段に高めることができる。更に、前述した種々の太陽電池装置1A〜1Eについても同様に、整流ダイオード20を省略し且つ太陽電池モジュール19に代えて発光ダイオードモジュールを適用し、種々の発光装置を構成するようにしてもよい。
【0040】
また、図11に示す円柱状の太陽電池装置30の太陽電池アレイ19に代えて、複数の発光ダイオード60を直列接続した発光ダイオードアレイを適用して円柱状発光装置を構成する。この場合、発光ダイオードアレイで発生した光はケース部材31の表裏両面側に出射されるが、裏面側の光が表面側に反射するため、発光ダイオードアレイで発生した全ての光を反射板34によりケース部材31の表面側に効率良く反射させることができ、発光効率を高めることができる。更に、前述した種々の太陽電池装置40についても同様に、太陽電池モジュールに代えて発光ダイオードモジュールを適用し、種々の発光装置を構成するようにしてもよい。
【0041】
前記実施形態の変更形態について説明する。
1〕前述した太陽電池装置1,1A〜1E,30,40の各々について、反射板に代えて反射膜を設けるようにしてもよい。
2〕反射板5,5A,5B,34は、白色散乱反射型ポリカーボネイト以外に、不透明で耐熱性を有し、光を反射可能な種々の合成樹脂材料で構成してもよい。
3〕反射板5,5A,5B,34のケース部材との接触面である反射面を細かい波状に形成したり、この波の周期や高さを不規則に変更してもよい。
【0042】
4〕本発明は、以上説明した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更を付加し、各種の球状半導体素子を用いた発電装置や発光装置に適用することが可能である。
【0043】
【発明の効果】
請求項1の発明によれば、半導体素子アレイと光透過性のケース部材とを備え、ケース部材の裏面側に密着状に設けられ且つケース部材の表面側から入射しケース部材を透過した光を半導体素子アレイの方へ反射可能な反射部材を設けたので、半導体素子アレイはケース部材に入射する直達光だけでなく、反射部材で反射した反射光も受光できるため、受光量が増大し、球状半導体素子による光起電力を増大させ、光電変換効率を格段に高めることができる。
【0044】
請求項2の発明によれば、球状半導体素子を複数個直列接続した半導体素子アレイを複数列平行に並べた半導体素子モジュールと光透過性のケース部材とを備え、ケース部材の裏面側に密着状に設けられ且つケース部材の表面側から入射しケース部材を透過した光を半導体素子アレイの方へ反射可能な反射部材を設けたので、半導体素子モジュールはケース部材に入射する直達光だけでなく、反射部材で反射した反射光も受光できるため、受光量が増大し、球状半導体素子による光起電力をより増大させ、光電変換効率を格段に高めることができる。
【0045】
求項の発明によれば、前記反射部材は、ケース部材の裏面に密着させた合成樹脂製の板状反射体からなるので、白色散乱反射型ポリカーボネイト等の板状反射体を用いることで、反射効率を確保でき、しかもケース部材を補強することができる。その他請求項1又は2と同様の効果を奏する。
【0046】
請求項の発明によれば、球状半導体素子を複数個直列接続した半導体素子アレイと光透過性のケース部材とを備え、ケース部材の裏面側に密着状に設けられ且つ半導体素子アレイで発生しケース部材の裏面側に透過した光をケース部材の表面側へ反射可能な反射部材を設けたので、半導体素子アレイで発生した光はケース部材の表裏両面側に出射されるが、裏面側の光は反射部材で反射して表面側へ出射するため、半導体素子アレイで発生した全ての光をケース部材の表面側に効率良く反射させることができ、発光効率を高めることができる。
【0047】
請求項の発明によれば、球状半導体素子を複数個直列接続した半導体素子アレイを複数列平行に並べた半導体素子モジュールと光透過性のケース部材とを備え、ケース部材の裏面側に密着状に設けられ且つ半導体素子アレイで発生しケース部材の裏面側に透過した光をケース部材の表面側へ反射可能な反射部材を設けたので、半導体素子モジュールで発生した光がケース部材の表裏両面側に出射されるが、裏面側の光は反射部材で反射して表面側へ出射するため、半導体素子モジュールで発生した全ての光をケース部材の表面側に効率良く出射させることができ、発光効率を格段に高めることができる。
【0048】
請求項の発明によれば、前記反射部材は、ケース部材の裏面に密着させた合成樹脂製の板状反射体からなるので、請求項と同様の効果が得られる。その他請求項4又は5と同様の効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施形態に係る太陽電池装置の斜視図である。
【図2】太陽電池装置の断面図である。
【図3】太陽電池セルの断面図である。
【図4】整流ダイオードの断面図である。
【図5】図2のE−E線縦断正面図である。
【図6】変更形態に係る図5の部分拡大縦断正面図である。
【図7】変更形態に係る図5相当図である。
【図8】複数枚のパネルからなる太陽電池装置の平面図である。
【図9】多数の太陽電池アレイを並設した太陽電池装置の平面図である。
【図10】半球状太陽電池装置の斜視図である。
【図11】第2実施形態に係る太陽電池装置の断面図である。
【図12】図11のL−L線縦断正面図である。
【図13】複数本の円柱状太陽電池モジュールからなる太陽電池装置の斜視図である。
【図14】球状青色発光ダイオードの断面図である。
【符号の説明】
1パネル状太陽電池装置
1A〜1E太陽電池装置
2ケース部材
5反射板
5A、5B反射板
5a半球状反射面
10太陽電池セル
15正電極
16負電極
19太陽電池アレイ
19A太陽電池モジュール
19B太陽電池モジュール
25太陽光
30円柱状太陽電池装置
34反射板
40太陽電池装
0球状青色発光ダイオード
[0001]
BACKGROUND OF THE INVENTION
  The present invention is a power generation device that increases the amount of light received by a plurality of spherical semiconductor elements by reflected light to increase the photoelectric conversion efficiency, and the light generated by the plurality of spherical semiconductor elements is concentrated only on the surface side to emit light. The present invention relates to a light-emitting device that increases efficiency.
[0002]
[Prior art]
  Various solar cells using semiconductors that convert solar energy into electrical energy have become widespread. In this type of semiconductor solar cell, semiconductors such as silicon single crystal, silicon polycrystal, and amorphous Si are generally used, but the photoelectric conversion efficiency is low and the manufacturing process including wiring and assembly work is complicated. For this reason, there is a problem that it becomes expensive and cannot be downsized. Further, in this type of semiconductor solar cell, the semiconductor substrate is planar, and the light receiving surface and the pn junction formed inside thereof are also substantially planar, so that when the incident angle of light increases, the reflected light is reflected. There is a problem that the photoelectric conversion efficiency increases and the photoelectric conversion efficiency decreases.
[0003]
  Therefore, the inventor of the present application can be applied to various applications using a light-receiving element (photoelectric conversion element), a light-emitting element (electro-optical conversion element) and a spherical semiconductor element as a photocatalytic element in International Publication No. WO98 / 15983, We proposed a new semiconductor device that can be reduced in size, weight, power generation voltage, and cost. That is, as a photoelectric conversion type semiconductor device, a solar cell array in which solar cells having a diffusion layer, a pn junction, and a pair of electrodes are basically arranged in a line on the surface of a semiconductor spherical crystal is connected in series. A cylindrical solar cell device in which this solar cell array is housed in a light transmissive case is proposed, and a panel-shaped solar cell device in which the plurality of solar cell arrays are housed in a light transmissive case is provided. Proposed.
[0004]
  In any of these solar cell devices, the upper main surface and the lower main surface of the light-transmitting case have a geometrically symmetrical structure, so that sunlight can be received from either the front or back side, and the light is transmitted to the solar cells. Photoelectromotive force is generated by direct irradiation. In addition, these two main surfaces are formed with partially cylindrical curved surfaces so that light can be received at a wide angle, thereby improving the light receiving performance with respect to light whose incident direction varies like sunlight. Furthermore, as an electro-optic conversion type semiconductor device using light emitting diodes configured basically in the same manner as solar cells, light is emitted toward both the front and back sides by applying a voltage to a pair of electrodes of the light emitting diodes. A possible columnar or panel light emitting device was proposed.
[0005]
[Problems to be solved by the invention]
  In the columnar or panel photoelectric conversion semiconductor device proposed by the inventor of the present application in International Publication No. WO98 / 15983, the solar cell array is accommodated in the case in parallel in a plurality of rows, so that the surface of the case Among them, there is a problem that the conversion efficiency of the photovoltaic power is lowered because the photoelectric conversion invalid area that does not contribute to photoelectric conversion at all by the transmission of sunlight between the curved surfaces of the partial cylindrical surfaces provided with the solar cells is large. is there.
[0006]
  Further, in these photoelectric conversion type semiconductor devices, there is a problem that the amount of transmitted light that passes through the case without contributing to the photoelectric conversion increases, and the photoelectric conversion efficiency due to the transmitted light further decreases. In particular, in many cases, light incident from one side (for example, the front side) of the photoelectric conversion type semiconductor device is received, but the back side of the semiconductor device does not contribute to photoelectric conversion.
[0007]
  Further, in the electro-optic conversion type semiconductor device, the light generated by the light emitting diode is emitted simultaneously toward the front side and the back side of the semiconductor device. There is a problem that the light emitted to the back side of the substrate is wasted.
  An object of the present invention is to increase the amount of light received by the semiconductor element array of the photoelectric conversion type power generation device to increase the photoelectric conversion efficiency, and to emit light generated on the back surface side from the front side of the electroluminescence conversion type power generation device. Such as increasing luminous efficiency.
[0008]
[Means for Solving the Problems]
  The power generator using the spherical semiconductor element according to claim 1 is a semiconductor in which a plurality of spherical semiconductor elements each having a photovoltaic power generation part formed in a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series. In a power generation device including an element array and a light-transmissive case member that accommodates the semiconductor element array,On the light incident side surface of the case member and on the back surface on the opposite side of the surface, a partially cylindrical surface projecting outward corresponding to the semiconductor element array is formed, respectively.Light that is provided in close contact with the back side of the case member and is incident from the front side of the case member and transmitted through the case member can be reflected toward the semiconductor element array.Made of scattering reflection type synthetic resinProvide a reflective memberThe reflective member has a partial cylindrical reflective surface that is in close contact with the partial cylindrical surface on the back surface of the case member.Is.
[0009]
  A semiconductor element array in which a plurality of spherical semiconductor elements each having a photovoltaic power generation unit are connected in series is housed in a light transmissive case member, and a reflective member is provided in close contact with the back side of the case member. The spherical semiconductor element not only generates a photovoltaic power by light directly irradiated to the semiconductor element array via the case member, but also reflects reflected light that is incident from the surface side and transmitted through the case member and reflected by the reflecting member. Light is received to generate photovoltaic power. That is, since the semiconductor element array can receive not only the direct light incident on the case member but also the reflected light, the amount of received light can be increased, the photovoltaic power generated by the spherical semiconductor element can be increased, and the photoelectric conversion efficiency can be greatly increased. .
[0010]
  A power generation apparatus using a spherical semiconductor element according to claim 2 is a semiconductor in which a plurality of spherical semiconductor elements each having a photovoltaic generation portion formed in a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series. In a power generation device including a semiconductor element module in which element arrays are arranged in parallel in a plurality of columns, and a light-transmissive case member that accommodates the semiconductor element module,A plurality of outwardly projecting partial cylindrical surfaces corresponding to the plurality of rows of semiconductor element arrays are respectively formed on the light incident side surface of the case member and the back surface opposite to the surface.Light that is provided in close contact with the back side of the case member and is incident from the front side of the case member and transmitted through the case member can be reflected toward the semiconductor element array.Made of scattering reflection type synthetic resinProvide a reflective memberThe reflective member has a plurality of partial cylindrical reflective surfaces that are in close contact with the plurality of partial cylindrical surfaces on the back surface of the case member.Is.
[0011]
  In this case, the semiconductor element module operates in substantially the same manner as in the first aspect, but the semiconductor element module in which a plurality of semiconductor element arrays are arranged in parallel is housed in the light-transmitting case member, so that the semiconductor element module is incident on the case member. Since not only the direct light that is reflected but also the reflected light reflected by the reflecting member can be received, the amount of received light is increased, the photovoltaic power generated by the spherical semiconductor element is further increased, and the photoelectric conversion efficiency can be greatly increased.
[0012]
  here,in frontWhen the reflecting member is made of a synthetic resin plate-like reflector adhered to the back surface of the case member (claims dependent on claim 1 or 2)3), By using a plate-like reflector such as white scattering reflection type polycarbonate, the reflection efficiency can be ensured and the case member can be reinforced.
[0013]
  Claim4A light emitting device using a spherical semiconductor element includes a semiconductor element array in which a plurality of spherical semiconductor elements each having an electro-optic conversion portion formed in a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series. In a light emitting device including a light transmissive case member that houses a semiconductor element array,On the light emitting side surface of the case member and on the back surface on the opposite side of the surface, a partially cylindrical surface projecting outward corresponding to the semiconductor element array is formed, respectively.Light that is provided in close contact with the back side of the case member and that is generated in the semiconductor element array and transmitted to the back side of the case member can be reflected to the front side of the case member.Made of scattering reflection type synthetic resinProvide a reflective memberThe reflective member has a partial cylindrical reflective surface that is in close contact with the partial cylindrical surface on the back surface of the case member.Is.
[0014]
  A semiconductor element array in which a plurality of spherical semiconductor elements each having an electro-optic conversion unit are connected in series is housed in a light-transmitting case member, and a reflective member is provided in close contact with the back side of the case member. Light generated in the semiconductor element array by applying a voltage to the electrodes is emitted to both the front side and the back side of the case member. At this time, the light transmitted to the back surface side of the case member is reflected to the front surface side by the reflecting member. That is, the light generated in the semiconductor element array is emitted to both the front and back sides of the case member, but the light on the back side is reflected by the reflecting member and emitted to the front side. Therefore, all the light generated in the semiconductor element array is emitted. It can be efficiently emitted to the surface side of the case member.
[0015]
  Claim5The light-emitting device using the spherical semiconductor element includes a plurality of semiconductor element arrays in which a plurality of spherical semiconductor elements each having an electro-optic conversion portion formed in a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series. In a light emitting device including semiconductor element modules arranged in parallel and a light-transmitting case member that accommodates the semiconductor element modules,A plurality of outwardly projecting partial cylindrical surfaces corresponding to the plurality of rows of semiconductor element arrays are respectively formed on the light incident side surface of the case member and the back surface opposite to the surface.Light that is provided in close contact with the back side of the case member and that is generated in the semiconductor element array and transmitted to the back side of the case member can be reflected to the front side of the case member.Made of scattering reflection type synthetic resinProvide a reflective memberThe reflective member has a plurality of partial cylindrical reflective surfaces that are in close contact with the plurality of partial cylindrical surfaces on the back surface of the case member.Is.
[0016]
  In this case, the claim4However, since the semiconductor element module in which the semiconductor element arrays are arranged in parallel is housed in the light transmissive case member, the light generated by the semiconductor element module is on both the front and back sides of the case member. However, since the light on the back surface side is reflected by the reflecting member and emitted to the front surface side, all the light generated by the semiconductor element module can be efficiently emitted to the front surface side of the case member.
[0017]
  here,in frontThe reflective member is made of a synthetic resin plate-like reflector adhered to the back surface of the case member (claims)4 or 5Claims dependent on6), By using a plate-like reflector such as white scattering reflection type polycarbonate, the reflection efficiency can be ensured and the case member can be reinforced.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a solar battery module 19A (semiconductor) in which a solar battery array 19 (semiconductor element array) in which a plurality of solar battery cells 10 are electrically connected in series is arranged in parallel in a plurality of rows in a light transmissive case member 2. This is an example when the present invention is applied to a panel-like solar cell device 1 (corresponding to an element module) (corresponding to a power generation device using a spherical semiconductor element).
[0019]
  First, the solar cell array 19 will be described. As shown in FIGS. 1 to 2, the solar cell array 19 has a configuration in which a plurality of (for example, five) solar cells 10 are connected in series. In this case, one rectifier diode is provided in the solar cell array 19. 20 is additionally connected. The solar battery cell 10 is demonstrated based on FIG.
[0020]
  The spherical solar battery cell 10 is produced by, for example, manufacturing a spherical crystal 11 made of p-type silicon semiconductor having a diameter of 1.5 mm and a resistivity of about 1 Ωcm using a semiconductor spherical crystal manufacturing apparatus (not shown). That is, as the inventor filed in WO98 / 15983, an n-type diffusion layer 12 and a pn junction 13 are formed in the vicinity of the surface of the spherical crystal 11, and surface protection and antireflection are further formed on the surface of the spherical crystal 11. For this purpose, a light-transmissive insulating film 14 is formed. A positive electrode 15 electrically connected to the p-type silicon and a negative electrode 16 electrically connected to the n-type diffusion layer 12 are formed.
[0021]
  Further, the surface of the positive electrode 15 is covered with an Al paste film 17 having a thickness of about 20 μm, and the surface of the negative electrode 16 is covered with an Ag paste film 18 having a thickness of about 20 μm. In order to configure the solar battery array 19 by connecting the solar battery cells 10 in series, both electrodes 15 and 16 of the solar battery cell 10 are provided at opposite ends. Here, a photovoltaic power generation unit is configured by the spherical crystal 11, the n-type diffusion layer 12 on the surface, the pn junction 13, and the like.
[0022]
  As shown in FIG. 1 and FIG. 2, on the front surface (front surface) and back surface (rear surface) of a rectangular plate-shaped case member 2 made of light-transmitting synthetic resin (for example, polycarbonate resin). The solar cell module 19A in which the partial cylindrical surface-shaped curved surfaces 2a bulging outward are formed in four rows, and the solar cell arrays 19 accompanied by the rectifier diodes 20 are arranged in four rows correspond to both curved surfaces 2a. The case member 2 is housed in an embedded state. When the output is increased by connecting a plurality of solar cell arrays 19 in parallel, the rectifier diode 20 has a difference in photovoltaic power between the solar cell arrays 19 and is lower than the solar cell array 19 with higher electromotive force. This is because a reverse current flows through the solar cell array 19 to prevent the solar cell array 19 from being heated.
[0023]
  Here, the rectifier diode 20 will be briefly described. As shown in FIG. 4, a p-type diffusion layer 22 and a pn junction 23 in which a p-type impurity is diffused are formed in a spherical crystal 21 made of an n-type silicon semiconductor. Then, the same TiO2 insulating film 14, negative electrode 15a, positive electrode 16a, and paste films 17 and 18 are formed. The positive electrode lead pin 3 and the Al paste film 17 of the solar cell 10 on the near side are connected, the negative electrode lead pin 4 and the Ag paste film 18 of the rectifier diode 20 are connected, and these lead pins 3 and 4 are connected to an external circuit. It is connected to the.
[0024]
  A reflective plate 5 (which corresponds to a reflective member) made of a scattering reflection type synthetic resin (for example, white scattering reflection type polycarbonate) is adhered to the back surface side (the back side in FIG. 2) of the case member 2 in a close contact state. . That is, since the reflecting plate 5 is opaque and reflective, the contact surface that contacts the lower surface of the curved surface 2a of the case member 2 of the reflecting plate 5 isPartial cylindricalA plurality of solar cells 10 corresponding to each of the solar cells 10 acting as the reflecting surface 5aThe opposite ofShooting surface 5a(Partial cylindrical surface)Are formed continuously. For this reason, which sunlight 25 is incident from the surface side of the case member 2 and transmitted through the case member 2 is anyThe opposite ofThe reflecting surface 5a reliably reflects toward the solar cell array 19.
[0025]
  Next, the reflecting action of the sunlight 25 by the reflecting plate 5 will be described with reference to FIG. When the solar cell device 1 is irradiated with sunlight 25, the pn junction 13 separates photoexcited carriers (electrons and holes) by the sunlight 25 directly irradiated to the solar cell 10 through the curved surface 2a. To generate photovoltaic power.
[0026]
  By the way, the sunlight 25 irradiated to the case member 2 between the curved surfaces 2a from various directions passes through the case member 2 without being incident on the solar battery cell 10, but the upper side of the reflector 5The opposite ofSince the light is reflected by the incident surface 5a and is forcibly redirected toward the solar battery cell 10, the pn junction 13 generates a larger current due to the reflected sunlight 25. Here, the solar cell 10 can generate a maximum of about 0.6 V by the received sunlight 25. It should be noted that cylindrical housing holes may be formed in four rows inside the case member 2 corresponding to both curved surfaces 2a, and the solar cell array 19 may be housed in these housing holes.
[0027]
  Here, as shown in FIG. 6, you may comprise 1 A of solar cell apparatuses which changed the said solar cell apparatus 1 partially. That is, the reflector 5A and the case member 2A are in contact with each other.Partial cylindricalEach of the reflection surfaces 5a is formed in a minute uneven shape (a jagged shape). In this case, the sun light 25 irradiated to the case member 5A between the curved surfaces 2a does not transmit through the case member 5A regardless of the irradiation direction, and is uneven.The opposite ofSince it is irregularly reflected by the incident surface 5a and is forced to change the direction toward the solar battery cell 10, the power generation efficiency by the solar battery cell 10 can be further improved.
[0028]
  Furthermore, you may comprise the solar cell apparatus 1B as shown in FIG. That is, the case member 2B is made of a synthetic resin such as light-transmitting polycarbonate and is formed in a tube shape, and a pair of rectifier diodes 20 and the solar cell array 19 are accommodated in the case member 2B. With the 2Bs adjacent to each other, the lower half of each of the case members 2B is fixed to the reflecting plate 5B in an embedded and close contact state. Also in this case, the sunlight 25 that has passed through the case member 2B without being incident on the solar battery cell 10 isPartial cylindricalThe solar cell 10 is reliably reflected by the reflective surface 5a and irradiated to the solar cell 10, so that the power generation efficiency by the solar cell 10 can be further improved.
[0029]
  The panel-shaped solar cell device 1 described above is arranged in a matrix as shown in FIG. 8 on the substrate, and the lead pins 3 and 4 of each solar cell device 1 are directly connected to an external circuit via a terminal 26. A large panel solar cell device 1C connected in parallel may be configured. In this case, by increasing the light receiving area of the sunlight 25, it becomes possible to increase the voltage and / or current of the solar cell. For example, by connecting a plurality of solar cell devices 1 provided for each stage in parallel to form a solar cell device set, for example, 3 V is generated from each solar cell device set. 6V and 9V are generated by connecting two or three-stage solar cell device sets in series.
[0030]
  Further, as shown in FIG. 9, a large number (for example, 50 to 100) of solar cells 10 are connected in series to form a solar cell array 19, and the large number of solar cell arrays 19 are externally connected via a terminal 26. You may comprise panel-shaped solar cell apparatus 1D connected in parallel with the circuit. In this case as well, by increasing the light receiving area of the sunlight 25, it is possible to increase the voltage and / or current of the solar cell. That is, the generated voltage can be changed according to the number of solar cells 10 provided in the solar cell array 19, and the generated current can be changed according to the number of solar cell arrays 19 connected in parallel.
[0031]
  Further, as shown in FIG. 10, the above-described panel-like solar cell device 1 is arranged in a matrix on the entire surface of the hemispherical dome-shaped core member 28, and lead pins of each solar cell device 1 are connected to terminals (not shown). A hemispherical solar cell device 1E that is directly connected to an external circuit and / or connected in parallel may be configured. In this case, not only can the light receiving area be expanded, but even if the irradiation direction of the sunlight 25 changes, the sunlight 25 can always be received under the same light receiving conditions, and a higher voltage and / or higher current as a solar cell can be obtained. Can be realized.
[0032]
Second embodiment (FIGS. 11 and 12)
  This cylindrical solar cell device 30 accommodates the above-described solar cell array 19 embedded in a case member 31 formed in a tube shape made of a synthetic resin such as a light-transmitting polycarbonate. A reflecting plate 34 made of a synthetic resin such as white scattering reflection type polycarbonate is adhered to the back side (the back side in FIG. 11) in a close contact state. However, the rectifier diode 20 is unnecessary and has been removed. Also in this case, as shown in FIG. 12, the pn junction 13 is photoexcited carriers (electrons and electrons) by sunlight 25 that is directly incident on the solar battery cell 10 through the case member 31 as in the above embodiment. To generate photovoltaic power.
[0033]
  Furthermore, since any sunlight 25 irradiated to the case member 31 without entering the solar battery cell 10 is reliably reflected by the hemispherical reflecting surface 34a of the reflector plate 34 and irradiated to the solar battery cell 10, The power generation efficiency by the battery cell 10 can be improved. Here, similarly to the above embodiment, a cylindrical accommodation hole may be formed inside the case member 31, and the solar cell array 19 may be accommodated in the accommodation hole.
[0034]
  By the way, as shown in FIG. 13, a plurality of (for example, seven) cylindrical solar cell arrays 19 in which the solar cell array 19 shown in FIG. The solar cell module 40 may be configured by closely filling the solar cell module with a synthetic resin reflective member 41 made of white scattering reflection type polycarbonate or the like at the center of the solar cell module 19B. .
[0035]
  In this case, since the solar cell device 40 can receive the sunlight 25 from various directions, the light receiving direction of the sunlight 25 is not restricted, and the photovoltaic power is efficiently generated by the sunlight 25 from any direction. Can be generated.
[0036]
[0037]
  By the way, instead of the solar cell 10 described above, a light emitting device using various light emitting diodes of an electro-optic conversion type having an electro-optic conversion portion, an electrode, etc. is configured, and various light reflecting diodes are provided on the light emitting device to improve luminous efficiency. You may make it raise. Here, as a spherical light emitting diode used in this light emitting device, for example, a spherical blue light emitting diode 60 described in International Publication No. WO99 / 10935 filed by the inventor is illustrated.14A brief explanation based on the above.
[0038]
  The spherical blue light-emitting diode 60 has a GaN buffer layer (thickness of about 30 nm) 62 and an n-type GaN layer (thickness of about 3000 nm) on the surface of a core material 61 made of true spherical single crystal sapphire and having a diameter of about 1.5 mm. 63, In0.4Ga0.6N active layer (thickness of about 3 nm) 64, p-type Al0.2Ga0.8N layer (thickness of about 400 nm) 65, p-type GaN layer (thickness of about 500 nm) 66 are sequentially formed. A cathode 67 is formed by opening a window 67 having a diameter of about 600 μm reaching the n-type GaN layer 63, and an anode 69 in contact with the surface of the p-type GaN layer 66 is formed on the surface opposite to the cathode 68. is there. When a forward current is applied by applying a voltage from the anode 69 to the cathode 68 from the outside, the light emitting diode 60 emits blue light.
[0039]
  That is, in the panel-shaped solar cell device 1 shown in FIG. 1, a rectifier diode 20 is omitted, and instead of the solar cell module 19A, a plurality of light-emitting diode arrays in which a plurality of light-emitting diodes 60 are connected in series are arranged in parallel. A panel light emitting device is configured by applying the light emitting diode module. In this case, the light generated in the light emitting diode module is emitted to both the front and back sides of the case member 5, but the light on the back side is also reflected on the front side by the reflector 5, so that all the light generated in the light emitting diode module is reflected. It can be made to emit efficiently to the surface side of case member 5, and luminous efficiency can be raised greatly. Further, in the various solar cell devices 1A to 1E described above, similarly, the rectifier diode 20 may be omitted, and a light emitting diode module may be applied instead of the solar cell module 19 to constitute various light emitting devices. .
[0040]
  Moreover, it replaces with the solar cell array 19 of the cylindrical solar cell apparatus 30 shown in FIG. 11, and applies the light emitting diode array which connected the some light emitting diode 60 in series, and comprises a cylindrical light-emitting device. In this case, the light generated in the light emitting diode array is emitted to both the front and back sides of the case member 31, but the light on the back side is reflected on the front side, so that all the light generated in the light emitting diode array is reflected by the reflecting plate 34. The light can be efficiently reflected on the surface side of the case member 31, and the light emission efficiency can be increased. Furthermore, the various solar cell devices 4 described above.To zeroSimilarly, various light emitting devices may be configured by applying a light emitting diode module instead of the solar cell module.
[0041]
  A modification of the embodiment will be described.
1] For each of the solar cell devices 1, 1A to 1E, 30, 40 described above, a reflective film may be provided instead of the reflective plate.
2] The reflection plates 5, 5A, 5B, and 34 may be made of various synthetic resin materials that are opaque, heat resistant, and capable of reflecting light, in addition to the white scattering reflection type polycarbonate.
3] The reflection surface, which is the contact surface of the reflection plates 5, 5A, 5B, and 34, with the case member may be formed in a fine wave shape, or the period and height of this wave may be changed irregularly.
[0042]
4] The present invention is not limited to the embodiment described above, and various modifications are made without departing from the spirit of the present invention, and the present invention is applied to a power generation device and a light emitting device using various spherical semiconductor elements. It is possible.
[0043]
【The invention's effect】
  According to the first aspect of the present invention, the semiconductor device array and the light transmissive case member are provided, and the light which is provided in close contact with the back surface side of the case member and is incident from the front surface side of the case member and transmitted through the case member. Since a reflecting member that can be reflected toward the semiconductor element array is provided, the semiconductor element array can receive not only the direct light incident on the case member but also the reflected light reflected by the reflecting member. The photovoltaic power generated by the semiconductor element can be increased, and the photoelectric conversion efficiency can be significantly increased.
[0044]
  According to the second aspect of the present invention, the semiconductor device module includes a semiconductor element module in which a plurality of semiconductor element arrays in which a plurality of spherical semiconductor elements are connected in series are arranged in parallel, and a light transmissive case member. And a reflection member that can reflect the light incident from the surface side of the case member and transmitted through the case member toward the semiconductor element array, so that the semiconductor element module is not only the direct light incident on the case member, Since the reflected light reflected by the reflecting member can also be received, the amount of received light is increased, the photovoltaic power generated by the spherical semiconductor element is further increased, and the photoelectric conversion efficiency can be remarkably increased.
[0045]
  ContractClaim3According to the invention, since the reflecting member is made of a synthetic resin plate-like reflector closely adhered to the back surface of the case member, the reflection efficiency can be improved by using a plate-like reflector such as a white scattering reflection type polycarbonate. The case member can be reinforced. Other effects similar to those of the first or second aspect are achieved.
[0046]
  Claim4According to the invention, a semiconductor element array in which a plurality of spherical semiconductor elements are connected in series and a light transmissive case member are provided, and are provided in close contact with the back side of the case member and generated in the semiconductor element array. Since the reflection member that can reflect the light transmitted to the back side to the front side of the case member is provided, the light generated by the semiconductor element array is emitted to both the front and back sides of the case member, but the light on the back side is reflected by the reflection member Therefore, all the light generated in the semiconductor element array can be efficiently reflected on the surface side of the case member, and the light emission efficiency can be increased.
[0047]
  Claim5According to the invention, a semiconductor element module in which a plurality of semiconductor element arrays in which a plurality of spherical semiconductor elements are connected in series are arranged in parallel to each other and a light-transmissive case member are provided, and are provided in close contact with the back surface side of the case member. In addition, since the reflection member capable of reflecting the light generated in the semiconductor element array and transmitted to the back side of the case member to the front side of the case member is provided, the light generated in the semiconductor element module is emitted to both the front and back sides of the case member. However, since the light on the back side is reflected by the reflecting member and emitted to the front side, all the light generated by the semiconductor element module can be efficiently emitted to the front side of the case member, and the luminous efficiency is markedly improved. Can be increased.
[0048]
  Claim6According to the invention, the reflection member is made of a synthetic resin plate-like reflector closely adhered to the back surface of the case member.3The same effect can be obtained. Other claims4 or 5Has the same effect as.
[Brief description of the drawings]
FIG. 1 is a perspective view of a solar cell device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a solar cell device.
FIG. 3 is a cross-sectional view of a solar battery cell.
FIG. 4 is a cross-sectional view of a rectifier diode.
FIG. 5 is a longitudinal front view taken along the line EE of FIG. 2;
6 is a partially enlarged vertical front view of FIG. 5 according to a modified embodiment.
FIG. 7 is a view corresponding to FIG. 5 according to a modified embodiment.
FIG. 8 is a plan view of a solar cell device including a plurality of panels.
FIG. 9 is a plan view of a solar cell device in which a large number of solar cell arrays are arranged in parallel.
FIG. 10 is a perspective view of a hemispherical solar cell device.
FIG. 11 is a cross-sectional view of a solar cell device according to a second embodiment.
12 is a front elevational view taken along line LL in FIG. 11. FIG.
FIG. 13 is a perspective view of a solar cell device including a plurality of cylindrical solar cell modules.
FIG. 14It is sectional drawing of a spherical blue light emitting diode.
[Explanation of symbols]
One-panel solar cell device
1A-1E solar cell device
Two case members
5 reflectors
5A, 5B reflector
5a hemispherical reflective surface
10 solar cells
15 positive electrodes
16 negative electrode
19 solar cell array
19A solar cell module
19B solar cell module
25 sunlight
30 cylindrical solar cell device
34 reflector
40 solar cell equipmentPlace
60 spherical blue light emitting diode

Claims (6)

半導体の球状結晶に光起電力発生部を形成するとともに両端部に1対の電極を形成してなる球状半導体素子を複数個直列接続した半導体素子アレイと、この半導体素子アレイを収容する光透過性のケース部材とを備えた発電装置において、
前記ケース部材の光入射側の表面とこの表面の反対側の裏面には前記半導体素子アレイに対応する外側へ凸の部分円筒面が夫々形成され、
前記ケース部材の裏面側に密着状に設けられ且つケース部材の表面側から入射しケース部材を透過した光を半導体素子アレイの方へ反射可能な散乱反射型合成樹脂製の反射部材を設け
前記反射部材は、前記ケース部材の裏面の部分円筒面に密着する部分円筒状の反射面を有することを特徴とする球状半導体素子を用いた発電装置。
A semiconductor element array in which a plurality of spherical semiconductor elements each having a photovoltaic generation portion formed in a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series, and a light transmitting property for accommodating the semiconductor element array In the power generation device comprising the case member,
On the light incident side surface of the case member and on the back surface on the opposite side of the surface, a partially cylindrical surface projecting outward corresponding to the semiconductor element array is formed, respectively.
A reflective member made of a scattering reflection type synthetic resin that is provided in close contact with the back surface side of the case member and is capable of reflecting light incident from the front surface side of the case member and transmitted through the case member toward the semiconductor element array ,
The power generation apparatus using a spherical semiconductor element, wherein the reflection member has a partial cylindrical reflection surface that is in close contact with a partial cylindrical surface on a back surface of the case member .
半導体の球状結晶に光起電力発生部を形成するとともに両端部に1対の電極を形成してなる球状半導体素子を複数個直列接続した半導体素子アレイを複数列平行に並べた半導体素子モジュールと、この半導体素子モジュールを収容する光透過性のケース部材とを備えた発電装置において、
前記ケース部材の光入射側の表面とこの表面の反対側の裏面には前記複数列の半導体素子アレイに対応する外側へ凸の複数の部分円筒面が夫々形成され、
前記ケース部材の裏面側に密着状に設けられ且つケース部材の表面側から入射しケース部材を透過した光を半導体素子アレイの方へ反射可能な散乱反射型合成樹脂製の反射部材を設け
前記反射部材は、前記ケース部材の裏面の複数の部分円筒面に密着する部分円筒状の複数の反射面を有することを特徴とする球状半導体素子を用いた発電装置。
A semiconductor element module in which a plurality of semiconductor element arrays in which a plurality of spherical semiconductor elements formed by forming a photovoltaic generation portion in a semiconductor spherical crystal and forming a pair of electrodes at both ends are connected in series are arranged in parallel; In a power generation device including a light transmissive case member that accommodates the semiconductor element module,
A plurality of outwardly projecting partial cylindrical surfaces corresponding to the plurality of rows of semiconductor element arrays are respectively formed on the light incident side surface of the case member and the back surface opposite to the surface.
A reflective member made of a scattering reflection type synthetic resin that is provided in close contact with the back surface side of the case member and is capable of reflecting light incident from the front surface side of the case member and transmitted through the case member toward the semiconductor element array ,
The power generation apparatus using a spherical semiconductor element, wherein the reflection member has a plurality of partial cylindrical reflection surfaces that are in close contact with the plurality of partial cylinder surfaces on the back surface of the case member .
前記反射部材は、ケース部材の裏面に密着させた合成樹脂製の板状反射体からなることを特徴とする請求項1又は2に記載の球状半導体素子を用いた発電装置。  3. The power generation device using the spherical semiconductor element according to claim 1, wherein the reflection member is made of a synthetic resin plate-like reflector closely adhered to the back surface of the case member. 半導体の球状結晶に電光変換部を形成するとともに両端部に1対の電極を形成してなる球状半導体素子を複数個直列接続した半導体素子アレイと、この半導体素子アレイを収容する光透過性のケース部材とを備えた発光装置において、
前記ケース部材の光出射側の表面とこの表面の反対側の裏面には前記半導体素子アレイに対応する外側へ凸の部分円筒面が夫々形成され、
前記ケース部材の裏面側に密着状に設けられ且つ半導体素子アレイで発生しケース部材の裏面側に透過した光をケース部材の表面側へ反射可能な散乱反射型合成樹脂製の反射部材を設け
前記反射部材は、前記ケース部材の裏面の部分円筒面に密着する部分円筒状の反射面を有することを特徴とする球状半導体素子を用いた発光装置。
A semiconductor element array in which a plurality of spherical semiconductor elements each having an electro-optic conversion portion formed in a semiconductor spherical crystal and a pair of electrodes formed at both ends thereof are connected in series, and a light-transmitting case for housing the semiconductor element array In a light emitting device comprising a member,
On the light emitting side surface of the case member and on the back surface on the opposite side of the surface, a partially cylindrical surface projecting outward corresponding to the semiconductor element array is formed, respectively.
A reflection member made of a scattering reflection type synthetic resin that is provided in close contact with the back surface side of the case member and can reflect the light generated in the semiconductor element array and transmitted to the back surface side of the case member to the front surface side of the case member ,
The light-emitting device using a spherical semiconductor element, wherein the reflective member has a partial cylindrical reflective surface that is in close contact with the partial cylindrical surface on the back surface of the case member .
半導体の球状結晶に電光変換部を形成するとともに両端部に1対の電極を形成してなる球状半導体素子を複数個直列接続した半導体素子アレイを複数列平行に並べた半導体素子モジュールと、この半導体素子モジュールを収容する光透過性のケース部材とを備えた発光装置において、
前記ケース部材の光入射側の表面とこの表面の反対側の裏面には前記複数列の半導体素子アレイに対応する外側へ凸の複数の部分円筒面が夫々形成され、
前記ケース部材の裏面側に密着状に設けられ且つ半導体素子アレイで発生しケース部材の裏面側に透過した光をケース部材の表面側へ反射可能な散乱反射型合成樹脂製の反射部材を設け
前記反射部材は、前記ケース部材の裏面の複数の部分円筒面に密着する部分円筒状の複数の反射面を有することを特徴とする球状半導体素子を用いた発光装置。
A semiconductor element module in which a plurality of semiconductor element arrays in which a plurality of spherical semiconductor elements each having an electro-optic conversion portion formed in a semiconductor spherical crystal and a pair of electrodes formed at both ends are connected in series are arranged in parallel, and the semiconductor In a light-emitting device including a light-transmissive case member that houses an element module,
A plurality of outwardly projecting partial cylindrical surfaces corresponding to the plurality of rows of semiconductor element arrays are respectively formed on the light incident side surface of the case member and the back surface opposite to the surface.
A reflection member made of a scattering reflection type synthetic resin that is provided in close contact with the back surface side of the case member and can reflect the light generated in the semiconductor element array and transmitted to the back surface side of the case member to the front surface side of the case member ,
The light-emitting device using a spherical semiconductor element, wherein the reflective member has a plurality of partial cylindrical reflective surfaces that are in close contact with a plurality of partial cylindrical surfaces on the back surface of the case member .
前記反射部材は、ケース部材の裏面に密着させた合成樹脂製の板状反射体からなることを特徴とする請求項4又は5に記載の球状半導体素子を用いた発光装置。6. The light emitting device using a spherical semiconductor element according to claim 4 , wherein the reflecting member is made of a synthetic resin plate-like reflector adhered to the back surface of the case member.
JP35032099A 1999-12-09 1999-12-09 Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element Expired - Lifetime JP4276758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35032099A JP4276758B2 (en) 1999-12-09 1999-12-09 Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35032099A JP4276758B2 (en) 1999-12-09 1999-12-09 Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element

Publications (2)

Publication Number Publication Date
JP2001168369A JP2001168369A (en) 2001-06-22
JP4276758B2 true JP4276758B2 (en) 2009-06-10

Family

ID=18409695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35032099A Expired - Lifetime JP4276758B2 (en) 1999-12-09 1999-12-09 Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element

Country Status (1)

Country Link
JP (1) JP4276758B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570255B2 (en) * 2001-01-12 2010-10-27 京セラ株式会社 Photoelectric conversion device
US6563041B2 (en) * 2000-11-29 2003-05-13 Kyocera Corporation Photoelectric conversion device
AU2001277779B2 (en) 2001-08-13 2005-04-07 Sphelar Power Corporation Semiconductor device and method of its manufacture
AU2001277778B2 (en) 2001-08-13 2005-04-07 Sphelar Power Corporation Light-emitting or light-receiving semiconductor module and method of its manufacture
KR100619614B1 (en) * 2001-10-19 2006-09-01 죠스케 나카다 Light-emitting or light-receiving semiconductor module and method for making the same
WO2003056633A1 (en) * 2001-12-25 2003-07-10 Josuke Nakata Light receiving or emitting semiconductor apparatus
WO2003094248A1 (en) * 2002-05-02 2003-11-13 Josuke Nakata Light-receiving panel or light-emitting panel, and manufacturing method thereof
AU2002313256B8 (en) 2002-06-21 2006-11-02 Sphelar Power Corporation Light-receiving or light-emitting device and its production method
US7079453B2 (en) 2002-07-09 2006-07-18 Casio Computer Co., Ltd. Timepiece and electronic apparatus with bulb-shaped semiconductor element
JP4755799B2 (en) * 2002-08-08 2011-08-24 真也 石田 Continuous LED display system
US7387400B2 (en) * 2003-04-21 2008-06-17 Kyosemi Corporation Light-emitting device with spherical photoelectric converting element
WO2004109890A1 (en) 2003-06-09 2004-12-16 Kyosemi Corporation Generator system
CN1771608A (en) * 2003-10-24 2006-05-10 京半导体股份有限公司 Light receiving or light emitting modular sheet and process for producing the same
AU2004317236B2 (en) 2004-03-12 2008-05-22 Sphelar Power Corporation Multilayer solar cell
EP1900038A4 (en) * 2005-06-17 2012-01-04 Transform Solar Pty Ltd A solar cell interconnection process
CA2640083A1 (en) * 2006-02-06 2007-08-16 Kyosemi Corporation Light receiving or emitting semiconductor module
JP2007273199A (en) * 2006-03-31 2007-10-18 Sekisui Jushi Co Ltd Dye-sensitized solar cell
JP5007395B2 (en) * 2006-06-23 2012-08-22 シーシーエス株式会社 Solid light source
JP4948535B2 (en) 2006-07-04 2012-06-06 京セミ株式会社 Panel type semiconductor module
AU2006345848B2 (en) 2006-07-07 2010-09-02 Energy Related Devices, Inc. Panel-shaped semiconductor module
US7963813B2 (en) * 2006-11-15 2011-06-21 Solyndra, Inc. Apparatus and methods for connecting multiple photovoltaic modules
JP4912938B2 (en) * 2007-03-30 2012-04-11 パナソニック株式会社 Light emitting device and manufacturing method
JP2009123779A (en) * 2007-11-12 2009-06-04 Taichi Tsuboi Dome-shaped solar photovoltaic power generation device, dome-shaped solar thermal power generation device, dome-shaped solar photovoltaic power generation system, and dome-shaped solar thermal power generation system
JP2012001379A (en) * 2010-06-15 2012-01-05 Sharp Corp Solar cell module, method for producing silicon ribbon, and method for producing spherical silicon
JP5869317B2 (en) * 2011-11-25 2016-02-24 京セラ株式会社 Concentrated solar cell device component and concentrated solar cell device
JP2014049736A (en) * 2012-09-04 2014-03-17 Asahi Kasei Corp Solar cell and solar cell system
US10396708B2 (en) 2017-01-03 2019-08-27 Saudi Arabian Oil Company Maintaining a solar power module
US10374546B2 (en) 2017-01-03 2019-08-06 Saudi Arabian Oil Company Maintaining a solar power module
US10469027B2 (en) * 2017-01-03 2019-11-05 Saudi Arabian Oil Company Maintaining a solar power module

Also Published As

Publication number Publication date
JP2001168369A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
JP4276758B2 (en) Power generation device using spherical semiconductor element and light emitting device using spherical semiconductor element
KR100619614B1 (en) Light-emitting or light-receiving semiconductor module and method for making the same
JP3902210B2 (en) Light receiving or light emitting panel and manufacturing method thereof
US6410843B1 (en) Solar cell module
US20200321483A1 (en) Shingled solar cells overlapping along non-linear edges
JP4021441B2 (en) Light receiving or light emitting device and manufacturing method thereof
JP3899073B2 (en) Light receiving or light emitting semiconductor device
JP4368151B2 (en) Solar cell module
EP3067937B1 (en) Solar cell module
KR20080097392A (en) Light receiving or emitting semiconductor module
TWI539613B (en) High power solar cell module
EP2141747B2 (en) Solar cell module
US20180366606A1 (en) Solar cell module
KR101846468B1 (en) Solar cell panel and the window having thereof
US20080210288A1 (en) Solar cell unit and solar cell module
JP3157502B2 (en) Solar cell module
KR101192345B1 (en) Pattern Of The Electrode Of Solar Cell And Sollar Cell Comprising The Said Electrode Pattern
JP4444937B2 (en) Light emitting or receiving semiconductor module
JP5147754B2 (en) Solar cell module
JPH0718458U (en) Solar cell module
CN102299187A (en) Flexible solar cell device
KR20150060413A (en) Solar cell module and rear substrate for the same
US20110220173A1 (en) Active solar concentrator with multi-junction devices
CN218769573U (en) Solar panel structure
TWM517475U (en) High power solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4276758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term