JPH06137842A - Method and device for measuring rotary tool blade part form - Google Patents

Method and device for measuring rotary tool blade part form

Info

Publication number
JPH06137842A
JPH06137842A JP4310874A JP31087492A JPH06137842A JP H06137842 A JPH06137842 A JP H06137842A JP 4310874 A JP4310874 A JP 4310874A JP 31087492 A JP31087492 A JP 31087492A JP H06137842 A JPH06137842 A JP H06137842A
Authority
JP
Japan
Prior art keywords
axis
tool
rotary tool
blade
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4310874A
Other languages
Japanese (ja)
Other versions
JP3215193B2 (en
Inventor
Yosuke Tate
洋介 舘
Masahide Hirai
正英 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP31087492A priority Critical patent/JP3215193B2/en
Publication of JPH06137842A publication Critical patent/JPH06137842A/en
Application granted granted Critical
Publication of JP3215193B2 publication Critical patent/JP3215193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To measure the blade part profile form of a rotary tool with helical tooth such as ball end mill, etc., accurately and by a simple operation. CONSTITUTION:An axis A of a rotary tool 3 is positioned at a right angle to an optical axis P of a tool maker's microscope 1 with a TV camera 19. First the focus point of the tool maker's microscope 1 is made flush with the height of axis of the rotary tool, and fixed. Then, the optical axis of the tool maker's microscope 1 is positioned at multiple measuring points (1),... (n) on the blade part profile line of the rotary tool 3 in order, a cutting blade of the rotary tool 3 at each measuring point is detected by an image processing device connected to the TV camera 19, and the rotary tool 3 is positioned around its axis A so that the cutting blade is made coincide with the focus position of the tool maker's microscope 1. Here the coordinate of the cutting blade in X-axis and Y-axis directions at each measuring point is measured and, from measured values, the dimensions of the tool top end or form accuracy are calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボールエンドミルやドリ
ル等のねじれ刃を有する回転工具の形状、寸法を精度よ
く測定する方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for accurately measuring the shape and size of a rotary tool having a twisting blade such as a ball end mill or a drill.

【0002】[0002]

【従来の技術】成型金型などの表面を三次元的に機械加
工する場合、その工具としてボールエンドミルが使用さ
れている。そして近年は数値制御の機械によりワークの
三次元的形状を直接削り出すことが多くなり、倣い加工
に比べて誤差要因が大幅に減少するため、加工精度を向
上させるうえで工具の切れ刃形状、とくに先端球状部の
真円度と半径値を高精度に保つことがきわめて重要な要
件となっている。とくに、工具を再研摩して使用する場
合には、工具の先端部が適正な形状・寸法になっている
かを測定し把握することは、ワークの仕上がり精度を維
持する上でたいへん重要である。従来、このような工具
形状の測定には、拡大投影器によって間接的に測定する
方法や、工具を一定角度ずつ回転させながら三次元測定
器を用いて測定する方法があったが、ボールエンドミル
等が通常ねじれ刃を有し先端球状部の頂部にまで切れ刃
リードがあるため、この部分の測定が難しく、測定に長
時間を要するうえ、かなりの労力と技能を必要とする問
題があった。
2. Description of the Related Art A ball end mill is used as a tool for three-dimensionally machining a surface of a molding die or the like. And in recent years, the numerical control machine often directly cuts the three-dimensional shape of the work, and the error factor is greatly reduced compared to the copy machining.Therefore, the cutting edge shape of the tool for improving the machining accuracy, Especially, it is a very important requirement to maintain the roundness and radius value of the tip spherical portion with high accuracy. In particular, when the tool is re-polished and used, it is very important to measure and grasp whether the tip end portion of the tool has an appropriate shape or size in order to maintain the finish accuracy of the work. Conventionally, in measuring such a tool shape, there are a method of indirectly measuring with a magnifying projector and a method of using a three-dimensional measuring device while rotating the tool at a constant angle, but a ball end mill, etc. However, since it usually has a twisting blade and there is a cutting edge lead even up to the top of the spherical tip portion, it is difficult to measure this portion, and it takes a long time for measurement, and there is a problem that considerable labor and skill are required.

【0003】これらの問題点を改善した測定方法が特開
昭63−182505号公報に開示されている。これは
工具の軸線と直交する方向に配置されたラインセンサの
測定エリアの一端を工具先端部の内側の先端Rのほぼ中
心に位置させ、次いで測定ヘッド駆動手段によってライ
ンセンサを上記測定エリアの一端を中心として工具と直
交する方向の横軸回りに所定の角度ずつ回動させなが
ら、その各角度ごとに工具軸を中心として工具を一回転
させることにより、ラインセンサに得られた工具の端面
の位置に関する測定データ、及びタッチセンサによって
得られた工具の軸方向の測定データを、制御・演算部で
円の最小二乗法等によって計算し、工具の先端球状部の
半径や形状精度を算出する方法である。
A measuring method in which these problems have been improved is disclosed in JP-A-63-182505. This is to position one end of the measurement area of the line sensor arranged in the direction orthogonal to the axis of the tool substantially at the center of the tip R inside the tool tip, and then move the line sensor to one end of the measurement area by the measuring head driving means. While rotating by a predetermined angle about the horizontal axis in the direction orthogonal to the tool around the center of the tool, by rotating the tool once around the tool axis for each angle, the end surface of the tool obtained by the line sensor A method to calculate the radius and shape accuracy of the tip spherical portion of the tool by calculating the measurement data related to the position and the measurement data in the axial direction of the tool obtained by the touch sensor using the least square method of the circle in the control / calculation unit. Is.

【0004】[0004]

【発明が解決しようとする課題】しかし、この特開昭6
3−182505号の方法にも次のような問題があり、
十分に信頼すべきものとはいえなかった。すなわち、図
6に示すようにラインセンサはビームの幅bを有してい
るため、ビーム幅bに比較して工具先端部のDが小さい
ときは、ラインセンサによる刃部境界位置の判別が困難
となり、工具先端部の切れ刃の座標の表示が不正確とな
った。また、工具を回転させながらラインセンサの指示
値が最大となる点を切れ刃と判断しているため、切れ刃
以外の部分をとらえてしまう不具合があった。さらに、
R−θ座標で工具の先端部形状を測定するため、制御・
演算部でデータ処理の際、X−Y座標に置換えるための
演算誤差が発生する不利があった。本発明は、これら従
来技術の欠点を解消したもので、ボールエンドミルなど
ねじれ刃を有する回転工具の刃部輪郭形状を、精度良く
かつ簡単な操作で測定できる測定方法及びそれに使用さ
れる測定装置を提供するものである。
However, this Japanese Unexamined Patent Application Publication No.
The method of No. 3-182505 also has the following problems,
It was not reliable enough. That is, since the line sensor has a beam width b as shown in FIG. 6, when the tool tip D is smaller than the beam width b, it is difficult for the line sensor to determine the blade boundary position. The display of the coordinates of the cutting edge of the tool tip became incorrect. Further, since the point at which the value indicated by the line sensor is maximum is determined as the cutting edge while rotating the tool, there is a problem in that a portion other than the cutting edge is caught. further,
Since the tip shape of the tool is measured with R-θ coordinates,
At the time of data processing in the arithmetic unit, there is a disadvantage that an arithmetic error for replacing with the XY coordinates occurs. The present invention eliminates these drawbacks of the prior art, and provides a measuring method and a measuring device used therefor capable of measuring the contour shape of a blade portion of a rotary tool having a twisting blade such as a ball end mill with high precision and simple operation. It is provided.

【0005】[0005]

【課題を解決するための手段】本発明の構成を図1及び
実施例に対応する図2,図3を参照して説明する。本発
明の方法は、画像を電気信号に変換するTVカメラ19
を有する工具顕微鏡ユニット1の光軸Pと直角方向に回
転工具3の軸線Aを配置し、まず工具顕微鏡ユニット1
の焦点位置を回転工具3の軸線Aの高さhに合致させて
固定し、次いで工具顕微鏡ユニット1の光軸Pを回転工
具3の刃部輪郭線上の複数の測定点(1)…(n)に順
次位置させるとともに、TVカメラ19に接続された画
像処理装置30により各測定点(1)…(n)における
回転工具3の切れ刃部分ε1…εnを検出して、工具顕
微鏡ユニット1の焦点位置に合致するように回転工具3
をその軸線A回りに角度位置決めし、ここで各測定点に
おける切れ刃部分のX軸及びY軸方向の座標を測定し
て、これらの測定値に基づいて工具先端部の寸法或いは
形状精度を算出する方法である。
The structure of the present invention will be described with reference to FIG. 1 and FIGS. 2 and 3 corresponding to the embodiment. The method of the present invention uses a TV camera 19 for converting an image into an electric signal.
The axis A of the rotary tool 3 is arranged in the direction perpendicular to the optical axis P of the tool microscope unit 1 having
Is fixed to match the height h of the axis A of the rotary tool 3, and then the optical axis P of the tool microscope unit 1 is set to a plurality of measurement points (1) (n) on the contour line of the blade of the rotary tool 3. ) Sequentially, and the image processing device 30 connected to the TV camera 19 detects the cutting edge portions ε1 ... εn of the rotary tool 3 at each measurement point (1) ... (n) to detect the tool microscope unit 1 Rotating tool 3 to match the focus position
Is angularly positioned around its axis A, the coordinates of the cutting edge portion in the X-axis and Y-axis directions at each measurement point are measured, and the dimension or shape accuracy of the tool tip is calculated based on these measured values. Is the way to do it.

【0006】これに使用される本発明の装置は、光源
2、レンズ系18,20及び画像を電気信号に変換する
TVカメラ19を有し、その光軸Pと直交する平面上で
X軸及びY軸方向に移動可能なXYテーブル4を備えた
工具顕微鏡ユニット1であって、XYテーブル4に回転
工具3の軸線Aを光軸Pと直角方向に保ってその軸線A
回りに任意角度回転可能な角度割出し台24が設けられ
ており、TVカメラ19の画像信号を処理して回転工具
3の切れ刃部分εmを検出する画像処理装置30と、画
像処理装置30からの信号を受けて回転工具3の刃部形
状数値を算出するとともに、所定プログラムに従って
X,Y及びAの各軸の制御指令を発するコンピュータ3
3と、コンピュータ33からの制御指令によってXYテ
ーブル4のX軸,Y軸方向の移動及び角度割出し台24
の回転角度を制御する3軸コントローラ37とを具備す
る測定装置である。
The apparatus of the present invention used for this has a light source 2, lens systems 18 and 20, and a TV camera 19 for converting an image into an electric signal, and the X axis and the X axis on a plane orthogonal to the optical axis P thereof. A tool microscope unit 1 equipped with an XY table 4 movable in the Y-axis direction, in which the axis A of the rotary tool 3 is kept in the XY table 4 in a direction perpendicular to the optical axis P.
An image processing device 30 is provided which is provided with an angle indexing table 24 which is rotatable around an arbitrary angle, and which processes an image signal of the TV camera 19 to detect a cutting edge portion εm of the rotary tool 3, and an image processing device 30. Computer 3 which receives the signal of the above, calculates the numerical value of the blade shape of the rotary tool 3, and issues a control command for each axis of X, Y and A according to a predetermined program.
3 and a control command from the computer 33, movement of the XY table 4 in the X-axis and Y-axis directions and an angle indexing table 24.
And a three-axis controller 37 for controlling the rotation angle of the measuring device.

【0007】[0007]

【作用】本発明の作用を図1を参照して説明する。図1
の(イ) のような形状の回転工具3を測定する場合、図
1の(ロ)のように回転工具3の刃部輪郭線上に測定点
(1),(2),(3)…(n)が設定されている。焦
点位置を回転工具3の軸線Aの高さhと合致させた工具
顕微鏡ユニットの光軸Pを測定点(1)に位置させ、工
具顕微鏡ユニットのTVカメラに接続された画像処理装
置によって回転工具3の切れ刃部分ε1を検出する。切
れ刃部分ε1の画像は初めはボケているが、回転工具3
をその軸線A回りに回転させて、図1の(ハ)のように
切れ刃部分ε1の角度位置が顕微鏡の焦点位置に合致す
ると、画像処理装置は画像のコントラスト極大点として
それを検知し、回転工具3の回転を停止させ角度位置決
めがなされる。
The operation of the present invention will be described with reference to FIG. Figure 1
When measuring a rotary tool 3 having a shape such as (a), measurement points (1), (2), (3), ... () on the contour line of the blade portion of the rotary tool 3 as shown in (b) of FIG. n) is set. The optical axis P of the tool microscope unit whose focus position matches the height h of the axis A of the rotary tool 3 is located at the measurement point (1), and the rotary tool is rotated by the image processing device connected to the TV camera of the tool microscope unit. The cutting edge portion ε1 of 3 is detected. The image of the cutting edge portion ε1 is initially blurred, but the rotary tool 3
Is rotated about its axis A, and when the angular position of the cutting edge portion ε1 matches the focal position of the microscope as shown in FIG. 1C, the image processing apparatus detects it as the maximum contrast point of the image, The rotation of the rotary tool 3 is stopped and angular positioning is performed.

【0008】このように角度位置決めされた測定点
(1)の切れ刃部分ε1は、回転工具3の軸線と同じ高
さhに位置するので、ここで測定点(1)について測定
することにより、そのX軸,Y軸の座標は正確に工具顕
微鏡ユニットに捕捉される。同様に測定点(2)につい
て測定する場合は、工具顕微鏡ユニット1の光軸Pと回
転工具3の切れ刃部分ε2の角度位置との関係は図1の
(ニ)のように示され、さらに測定点(3)について測
定する場合には図1の(ホ)のように示される。何れも
その測定点における切れ刃部分の高さhは顕微鏡の焦点
位置に合致し、回転工具の軸心と同じ高さとなるためX
軸,Y軸の座標は正確に捉えられる。
Since the cutting edge portion ε1 of the measuring point (1) thus angularly positioned is located at the same height h as the axis of the rotary tool 3, the measuring point (1) is measured by The X-axis and Y-axis coordinates are accurately captured by the tool microscope unit. Similarly, when measuring at the measurement point (2), the relationship between the optical axis P of the tool microscope unit 1 and the angular position of the cutting edge portion ε2 of the rotary tool 3 is shown as (d) in FIG. When measuring at the measurement point (3), it is shown as (e) in FIG. In both cases, the height h of the cutting edge portion at the measurement point matches the focus position of the microscope, and is the same height as the axis of the rotary tool.
The coordinates of the axes and the Y axis can be accurately captured.

【0009】[0009]

【実施例】本発明の一実施例装置を図2及び図3に基づ
いて説明する。図2はこの装置の測定部を示す図であっ
て、工具顕微鏡1の台座部分2には透過光源2aを有し
ており、直立の光軸Pに沿って透過光を上方に向け投射
するようになっている。台座部分2には光軸Pに垂直な
面内で左右(X軸)方向及び前後(Y軸)方向に移動可
能なXYテーブル4が敷設されている。このXYテーブ
ル4は中央に透明部5を有し、左右方向ガイド6及び前
後方向ガイド7に案内され、それぞれ精密送りねじ8,
9を介してX軸はパルスモータ10により、Y軸はパル
スモータ11によって駆動されるようにしている。また
XYテーブル4にはそのX軸方向とY軸方向の各位置
を、電気的に検出する位置センサ12,13が設けられ
ている。台座部分の奥側には支柱14があり、垂直ガイ
ド15に沿って上下するブラケット16には顕微鏡の鏡
筒17が垂直に取付けられ、その下部にリボルバ付の対
物レンズ18、上端部にTVカメラであるCCDカメラ
19を有している。また中間部には斜下向きに接眼レン
ズ20が設けられている。なお、21はブラケット16
を上下させる回転つまみ、22は反射光を使用する場合
の光源である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a view showing the measuring section of this device, in which the pedestal portion 2 of the tool microscope 1 has a transmitted light source 2a so that the transmitted light is projected upward along an upright optical axis P. It has become. An XY table 4 is laid on the pedestal portion 2 so as to be movable in the left-right (X-axis) direction and the front-back (Y-axis) direction in a plane perpendicular to the optical axis P. The XY table 4 has a transparent portion 5 in the center thereof, and is guided by a left-right direction guide 6 and a front-back direction guide 7, and each has a precision feed screw 8,
The X-axis is driven by the pulse motor 10 and the Y-axis is driven by the pulse motor 11 via 9. Further, the XY table 4 is provided with position sensors 12 and 13 that electrically detect respective positions in the X-axis direction and the Y-axis direction. A column 14 is provided on the back side of the pedestal part, and a microscope barrel 17 is vertically attached to a bracket 16 that moves up and down along a vertical guide 15. An objective lens 18 with a revolver is provided below the microscope barrel 17, and a TV camera is provided at the upper end. The CCD camera 19 is An eyepiece lens 20 is provided obliquely downward in the middle portion. In addition, 21 is a bracket 16
Is a rotary knob for moving up and down, and 22 is a light source when the reflected light is used.

【0010】XYテーブル4には取付座23を介して、
回転工具3を回転させる角度割出し台24が、その回転
軸AをX軸と平行にして取付けられている。角度割出し
台24は、前面側にコレットチャック25を備えて回転
工具3を把持するようにされており、後面側ではプーリ
とベルト27を介してパルスモータ28により任意角度
回転し角度位置決めが可能なようにされている。
The XY table 4 is attached with a mounting seat 23.
An angle indexing table 24 for rotating the rotary tool 3 is attached with its rotation axis A parallel to the X axis. The angle indexing table 24 is provided with a collet chuck 25 on the front surface side so as to hold the rotary tool 3, and on the rear surface side, an arbitrary angle can be rotated by a pulse motor 28 via a pulley and a belt 27 for angular positioning. It is done like this.

【0011】図3はこの装置の制御・演算部まで含めた
全体構成を示すむブロック図である。TVカメラとして
使用されているCCDカメラ19は、カメラアンプ29
を介して画像処理装置30に接続され、画像処理装置3
0には各種データ入力用のキーボード31、及び顕微鏡
画面表示用のモノクロモニタ32が接続されている。画
像処理装置30に接続されているコンピュータ33に
は、各種データを入力するキーボード34、出力される
刃部輪郭の形状及び数値の各情報を表示するRGBモニ
タ35、及びプリンタ36が接続されている。このコン
ピュータ33にはXYテーブル4のX軸,Y軸の移動及
び角度割出し台24のA軸の回転を制御する3軸コント
ローラ37が接続されており、この3軸コントローラ3
7には、X軸,Y軸及びA軸を駆動する各パルスモータ
38,39,40がそれぞれのドライバーアンプ41,
42,43を介して接続されている。またXYテーブル
4のX軸及びY軸方向の位置センサ12,13は、その
位置情報を数値表示する表示ユニット44に接続されて
おり、さらにコンピュータ33に接続されている。
FIG. 3 is a block diagram showing the overall configuration including the control / calculation unit of this apparatus. The CCD camera 19 used as a TV camera has a camera amplifier 29.
Is connected to the image processing device 30 via the
A keyboard 31 for inputting various data and a monochrome monitor 32 for displaying a microscope screen are connected to 0. A computer 34 connected to the image processing apparatus 30 is connected to a keyboard 34 for inputting various data, an RGB monitor 35 for displaying each output information of the shape and numerical value of the blade contour, and a printer 36. . A three-axis controller 37 that controls the movement of the X-axis and Y-axis of the XY table 4 and the rotation of the A-axis of the angle indexing table 24 is connected to the computer 33.
In FIG. 7, pulse motors 38, 39, 40 for driving the X-axis, Y-axis, and A-axis are respectively driver amplifiers 41,
It is connected via 42 and 43. The position sensors 12 and 13 in the X-axis and Y-axis directions of the XY table 4 are connected to a display unit 44 that numerically displays the position information, and further connected to a computer 33.

【0012】本発明の実施例装置による測定手順のフロ
ーチャートを図4に示す。例えばボールエンドミルを測
定するときは、まず測定装置をボールエンドミルの測定
モードとし、測定すべき基本データの、ロット番号、直
径、刃部Rの径、ねじれ角度、刃の枚数及びその番号な
どをコンピュータ33に入力する。次いで基準センタ
(図示省略)をコレットチャック25により角度割出し
台24に取付け、さらにXYテーブル4をX軸及びY軸
方向に移動させて、基準センタ先端の軸線高さに一致す
る面の周縁(工具の切れ刃に相当する部分)を工具顕微
鏡1の光軸Pに合わせる。ここで工具顕微鏡1を調節し
てその焦点位置を基準センタの軸線に合致させ、画像処
理装置30により最も鮮明な画像がモノクロモニタ32
に表示される個所で焦点位置を決め固定する。この焦点
位置を合せる操作には、基準センタを用いるほかXYテ
ーブル4に基準ブロックを装着して用いてもよく、ま
た、2枚刃のボールエンドミルなどで、その先端部に軸
線と一致する刃面を有している場合は、ボールエンドミ
ル自身の先端部を軸線基準として用いることができる。
FIG. 4 shows a flow chart of the measurement procedure by the apparatus of the embodiment of the present invention. For example, when measuring a ball end mill, first, the measuring device is set to the measurement mode of the ball end mill, and basic data to be measured, such as the lot number, diameter, diameter of the blade portion R, twist angle, number of blades, and their numbers, are calculated by a computer. Enter in 33. Next, a reference center (not shown) is attached to the angle indexing table 24 by the collet chuck 25, and the XY table 4 is further moved in the X-axis and Y-axis directions so that the peripheral edge of the surface corresponding to the axial height of the reference center tip ( The portion corresponding to the cutting edge of the tool) is aligned with the optical axis P of the tool microscope 1. Here, the tool microscope 1 is adjusted so that its focal position coincides with the axis line of the reference center, and the clearest image is displayed by the image monitor 30 on the monochrome monitor 32.
Fix and fix the focus position at the position displayed on. In addition to using the reference center, a reference block may be attached to the XY table 4 for the operation of adjusting the focus position. In addition, a two-blade ball end mill or the like may be used, and the tip surface of the reference edge may be aligned with the axis. When it has, the tip of the ball end mill itself can be used as the axis reference.

【0013】次に、測定すべき図1の(イ) に示すよう
なボールエンドミル3をコレットチャック25により角
度割出し台24に取付ける。ここで自動測定に切換える
ボタンを押すと、コンピュータ33からのボールエンド
ミルの測定プログラム指令によって3軸コントローラ3
7が作動し、XYテーブル4のX軸,Y軸方向の移動が
なされ、図1の(ロ)〜(ヘ) に示すように、ボールエ
ンドミル3の刃部Rの輪郭線上に設定された(1),
(2)…(m)…(n)の各測定点を順次工具顕微鏡1
の光軸Pの位置に合せ、それらの各測定点においてボー
ルエンドミル3の切れ刃部分ε1,ε2…εm…εnを
自動的に測定して行く操作が行われる。測定点(m)に
おいては画像処理装置30からの信号により、コンピュ
ータ33は3軸コントローラ37を作動させ、角度割出
し台24を回転させながら画像処理装置30に画像信号
データを連続的に取り込み、その測定点(m)における
ボールエンドミル3の切れ刃部分εmの画像のコントラ
ストが最大となる角度位置を画像処理装置30により判
定し、図1の(ハ)〜(ヘ)に示すように、その角度位
置に角度割出し台24のA軸の回転角度を合致させるこ
とによって、工具顕微鏡1の自動焦点合せがなされる。
同時にその測定点(m)における切れ刃部分εmはボー
ルエンドミル3の軸線Aの高さhと同じ高さに角度位置
決めされ、その切れ刃部分εmのX軸及びY軸方向の位
置は工具顕微鏡1の視野内に正確に現示される。
Next, the ball end mill 3 as shown in FIG. 1A to be measured is attached to the angle indexing table 24 by the collet chuck 25. When the button for switching to automatic measurement is pressed here, the 3-axis controller 3 is operated by the measurement program command of the ball end mill from the computer 33.
7, the XY table 4 is moved in the X-axis and Y-axis directions, and is set on the contour line of the blade portion R of the ball end mill 3 as shown in (b) to (f) of FIG. 1),
(2) ... (m) ... (n) are sequentially measured by the tool microscope 1
According to the position of the optical axis P, the cutting edge portions ε1, ε2 ... εm ... εn of the ball end mill 3 are automatically measured at the respective measurement points. At the measurement point (m), the computer 33 operates the three-axis controller 37 in response to a signal from the image processing device 30 to continuously load the image signal data into the image processing device 30 while rotating the angle indexing table 24, The angle position where the contrast of the image of the cutting edge portion εm of the ball end mill 3 at the measurement point (m) is maximum is determined by the image processing device 30, and as shown in (c) to (f) of FIG. The tool microscope 1 is automatically focused by matching the rotation angle of the A-axis of the angle indexing table 24 with the angle position.
At the same time, the cutting edge portion εm at the measurement point (m) is angularly positioned at the same height as the height h of the axis A of the ball end mill 3, and the position of the cutting edge portion εm in the X-axis and Y-axis directions is the tool microscope 1. Is exactly represented in the field of view.

【0014】画像処理装置30により、ボールエンドミ
ル3の測定点(m) の画像は図5の(イ) のようにな
り、その切れ刃部分εmは長方形に設定された測定エリ
ア内で、ボールエンドミルの影(暗) 部分と透過光によ
り明るい(明) 部分の境界として認識される。この境界
認識の手段には、図5の(ロ) のように測定エリア内の
照度レベル信号をしきい値より高いか低いかで判別する
ものや、図5の(ハ) のように照度レベル信号を微分処
理してその中心値を捉えるものなどがある。ここで、コ
ンピュータ33によって位置決めされた測定点(m) の
座標(x,y) は、X軸及びY軸の位置センサ12,1
3によって捉えられ、それは画面上の測定エリアの中心
の座標と一致する。これと切れ刃部分εmの位置とのず
れ量δは、測定エリアの中心位置から明部と暗部の境界
位置までの距離として計算され修正量とされる。その結
果、測定点(m)における切れ刃部分εmの実際の座標
が修正された座標(x+δ,y)としてボールエンドミ
ル3の測定データとなる。この画像処理による測定の際
の長方形の測定エリアは、測定点(m)の計算上の座標
に対して、測定される切れ刃部分εmの実際の座標のず
れ量が明瞭となるように、測定点(m)の工具軸線に対
する角度位置が45度以下ではX軸方向を長辺とし、4
5度以上ではY軸方向を長辺とするように設定される。
The image at the measuring point (m) of the ball end mill 3 by the image processing device 30 becomes as shown in FIG. It is perceived as a boundary between the shadow (dark) part and the light (bright) part of the transmitted light. As the means for recognizing the boundary, as shown in (b) of FIG. 5, the illuminance level signal in the measurement area is determined to be higher or lower than the threshold value, or as shown in (c) of FIG. For example, there is a method in which a signal is differentiated and the center value thereof is captured. Here, the coordinates (x, y) of the measurement point (m) positioned by the computer 33 are the X-axis and Y-axis position sensors 12, 1
3 which is coincident with the coordinates of the center of the measuring area on the screen. A deviation amount δ between this and the position of the cutting edge portion εm is calculated as a distance from the center position of the measurement area to the boundary position between the bright portion and the dark portion, and is set as a correction amount. As a result, the actual coordinates of the cutting edge portion εm at the measurement point (m) become the corrected data (x + δ, y), which is the measurement data of the ball end mill 3. The rectangular measurement area at the time of measurement by this image processing is measured so that the actual coordinate shift amount of the measured cutting edge portion εm becomes clear with respect to the calculated coordinate of the measurement point (m). When the angular position of the point (m) with respect to the tool axis is 45 degrees or less, the X-axis direction is the long side and 4
When the angle is 5 degrees or more, the long side is set in the Y-axis direction.

【0015】ボールエンドミルの場合、各測定点(1)
…(n)は1枚の刃につき工具軸線に対して0度から9
0度の間に等間隔に設定され、例えば10度ごとの測定
であれば0度,10度…90度まで10個所が測定され
る。この実施例に示したように2枚刃のボールエンドミ
ルであれば、−90度から+90度の間に10度刻みで
21個所が測定される。多数枚の刃を持つ場合はその1
枚の刃ごとに測定が反復される。
In the case of a ball end mill, each measuring point (1)
(N) is from 0 degrees to 9 with respect to the tool axis for one blade
It is set at equal intervals between 0 degrees, and for example, in the case of measurement every 10 degrees, 10 points are measured up to 0 degree, 10 degrees ... 90 degrees. In the case of the two-blade ball end mill as shown in this embodiment, 21 points are measured at intervals of 10 degrees between -90 degrees and +90 degrees. If you have a large number of blades 1
The measurement is repeated for each blade.

【0016】このようにして、すべての測定点について
切れ刃部分の測定が終了すると測定装置は原点復帰する
から、ここでボールエンドミル3を取り外す。以上のよ
うにして得られたボールエンドミル3の各測定点におけ
る切れ刃部分の測定データは座標の点群となっている。
この座標の点群を予めコンピュータ33に入力されてい
る演算処理プログラムに従って計算し、円の最小二乗法
等により、まずボールエンドミル3の先端刃部Rの中心
座標を算出し、さらに各測定点における切れ刃部分のR
半径その他ボールエンドミルの形状精度に関する各種数
値を算出する。こうして算出された各種の演算結果はR
GBモニタ35に表示されるとともに、必要に応じてプ
リンタ36でプリントアウトされる。
In this way, when the measurement of the cutting edge portion is completed for all the measurement points, the measuring device returns to the origin, and the ball end mill 3 is removed here. The measurement data of the cutting edge portion at each measurement point of the ball end mill 3 obtained as described above is a point group of coordinates.
The point group of these coordinates is calculated in accordance with an arithmetic processing program previously input to the computer 33, the center coordinates of the tip blade portion R of the ball end mill 3 are first calculated by the least square method of the circle, and further, at each measurement point. R of the cutting edge
Calculate various values related to the radius and other shape accuracy of the ball end mill. The various calculation results thus calculated are R
The data is displayed on the GB monitor 35 and, if necessary, printed out by the printer 36.

【0017】以上の実施例においては、ボールエンドミ
ルを測定する場合について述べたが、本発明は制御・演
算部に予め所定の測定手順及び演算処理プログラムを入
力しておくことにより、テーパボールエンドミル、特殊
刃形ドリル等の刃先形状を測定することも可能である。
また、この実施例では工具顕微鏡の焦点位置を回転工具
の軸線に合致させる操作を手動で行う場合について述べ
たが、測定手順プログラムによっては、この操作も自動
で行わせることもできる。基準ブロックを使用する場合
はXYテーブルを移動させるだけで工具顕微鏡の測定範
囲外とすることが可能であり、基準センタの場合のよう
に取付け替えする必要はない。本発明装置の測定部分で
ある工具顕微鏡ユニットを工作機械に組込み、さらに制
御・演算部分を工作機械制御用コンピュータに接続する
ことにより、加工途中で逐次工具刃部形状を測定して工
具の磨耗を補償する加工システムとすることができ、高
精度の成形加工が実現される。
In the above embodiments, the case where the ball end mill is measured has been described. However, the present invention allows the taper ball end mill to be operated by inputting a predetermined measurement procedure and a calculation processing program into the control / calculation unit in advance. It is also possible to measure the edge shape of a special blade drill.
Further, in this embodiment, the case where the operation for aligning the focus position of the tool microscope with the axis of the rotary tool is manually performed has been described, but this operation can also be automatically performed depending on the measurement procedure program. When using the reference block, it is possible to move it outside the measurement range of the tool microscope simply by moving the XY table, and there is no need to replace it as in the case of the reference center. By incorporating the tool microscope unit, which is the measuring part of the device of the present invention, into the machine tool and connecting the control / calculation part to the computer for controlling the machine tool, the tool blade shape is successively measured during machining to reduce tool wear. It can be a processing system that compensates, and high-precision molding processing is realized.

【0018】[0018]

【発明の効果】本発明は、回転工具の刃部形状の測定に
際し、まず工具顕微鏡の焦点位置を回転工具の軸心に合
致させて固定し、次に各測定点における切れ刃の高さを
その回転工具の軸線回りに角度位置決めすることによ
り、顕微鏡の焦点位置に一致させているので、各測定点
における切れ刃の位置座標を正確に捕捉することができ
る。また、画像のボケがないので測定を容易に速く行う
ことができる。本発明では、回転工具の切れ刃の検出を
TVカメラとそれに接続された画像処理装置により画像
のコントラストの極大点として検出しているので、回転
工具が小径の場合でも正確な測定値が得られる。また本
発明では、回転工具の刃部輪郭線上の各測定点について
X−Y座標により測定しているので、R−θ座標による
測定と比較して演算処理の際に置換誤差が発生すること
がなく、また演算処理に要する時間も短縮できる。
According to the present invention, when measuring the shape of the blade of a rotary tool, the focus position of the tool microscope is first fixed to the axis of the rotary tool, and then the height of the cutting edge at each measurement point is determined. The position coordinates of the cutting edge at each measurement point can be accurately captured because the position of the focus of the microscope is matched by angularly positioning the rotary tool around the axis. Further, since there is no blurring of the image, the measurement can be performed easily and quickly. In the present invention, the detection of the cutting edge of the rotary tool is detected as the maximum point of the image contrast by the TV camera and the image processing device connected to the TV camera, so that an accurate measurement value can be obtained even when the rotary tool has a small diameter. . Further, in the present invention, since each measurement point on the contour line of the blade of the rotary tool is measured by the XY coordinates, a substitution error may occur during the arithmetic processing as compared with the measurement by the R-θ coordinates. In addition, the time required for the arithmetic processing can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法によりボールエンドミルを測定す
る場合の説明図。
FIG. 1 is an explanatory view when a ball end mill is measured by the method of the present invention.

【図2】本発明の一実施例装置の測定部を示す斜視図。FIG. 2 is a perspective view showing a measuring unit of an apparatus according to an embodiment of the present invention.

【図3】本発明の一実施例装置のブロック図。FIG. 3 is a block diagram of an apparatus according to an embodiment of the present invention.

【図4】図2及び図3の装置により測定を行う場合の測
定手順のフローチャート。
FIG. 4 is a flowchart of a measurement procedure when the measurement is performed by the device of FIGS. 2 and 3.

【図5】測定時に画像処理装置により認識される画像。FIG. 5 is an image recognized by an image processing device during measurement.

【図6】従来技術の問題点を示す説明図。FIG. 6 is an explanatory diagram showing a problem of the conventional technique.

【符号の説明】[Explanation of symbols]

1 工具顕微鏡ユニット 2a 光源 3 回転工具(ボールエンドミル) 4 XYテーブル 19 TVカメラ(CCDカメラ) 24 角度割出し台 30 画像処理装置 33 コンピュータ 37 3軸コントローラ P 光軸 h A軸の高さ 1 Tool microscope unit 2a Light source 3 Rotating tool (ball end mill) 4 XY table 19 TV camera (CCD camera) 24 Angle indexing table 30 Image processing device 33 Computer 37 3-axis controller P Optical axis h Height of A axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 画像を電気信号に変換するTVカメラを
有する工具顕微鏡ユニットの光軸と直角方向に回転工具
の軸線を配置し、まず工具顕微鏡ユニットの焦点位置を
回転工具の軸線の位置に合致させて固定し、次いで工具
顕微鏡ユニットの光軸を回転工具の刃部輪郭線上の複数
の測定点に順次位置させるとともに、前記TVカメラに
接続された画像処理装置により各測定点における回転工
具の切れ刃を検出して工具顕微鏡ユニットの焦点位置に
合致するように回転工具をその軸線A回りに角度位置決
めし、ここで各測定点における切れ刃のX軸及びY軸方
向の座標を測定して、これらの測定値に基づいて工具先
端部の寸法或いは形状精度を算出することを特徴とする
回転工具の刃部形状測定方法。
1. An axis line of a rotating tool is arranged in a direction perpendicular to an optical axis of a tool microscope unit having a TV camera for converting an image into an electric signal, and a focus position of the tool microscope unit is first matched with a position of the axis line of the rotating tool. Then, the optical axis of the tool microscope unit is sequentially positioned at a plurality of measurement points on the contour line of the blade of the rotary tool, and the rotary tool is cut at each measurement point by the image processing device connected to the TV camera. The rotary tool is angularly positioned around its axis A so as to match the focus position of the tool microscope unit by detecting the blade, and here, the coordinates of the cutting edge at each measurement point in the X-axis and Y-axis directions are measured, A method for measuring the shape of a blade of a rotary tool, characterized in that the dimension or shape accuracy of the tip of the tool is calculated based on these measured values.
【請求項2】 光源、レンズ系及び画像を電気信号に変
換するTVカメラを有し、その光軸と直交する平面上で
X軸及びY軸方向に移動可能なXYテーブルを備えた工
具顕微鏡ユニットであって、前記XYテーブルに回転工
具の軸線を光軸と直角方向に保ってその軸線A回りに任
意角度回転可能な角度割出し台が設けられており、前記
TVカメラの画像信号を処理して回転工具の切れ刃を検
出する画像処理装置と、画像処理装置からの信号を受け
て回転工具の刃部形状数値を算出するとともに所定プロ
グラムに従ってX,Y及びA軸の制御指令を発するコン
ピュータと、コンピュータからの制御指令によって前記
XYテーブルのX軸,Y軸方向の移動及び前記角度割出
し台の回転角度を制御する3軸コントローラを具備する
ことを特徴とする回転工具の刃部形状測定装置。
2. A tool microscope unit having a light source, a lens system, and a TV camera for converting an image into an electric signal, and provided with an XY table movable in the X-axis and Y-axis directions on a plane orthogonal to the optical axis thereof. The XY table is provided with an angle indexing table capable of rotating the axis of the rotary tool at right angles to the optical axis and rotating around the axis A by an arbitrary angle, and processes the image signal of the TV camera. An image processing device for detecting a cutting edge of a rotary tool, and a computer for receiving a signal from the image processing device to calculate a numerical value of a blade shape of the rotary tool and issuing a control command for X, Y and A axes according to a predetermined program. A three-axis controller for controlling the movement of the XY table in the X-axis and Y-axis directions and the rotation angle of the angle indexing table according to a control command from a computer. A blade part shape measuring device for rolling tools.
JP31087492A 1992-10-26 1992-10-26 Method and apparatus for measuring blade shape of rotary tool Expired - Lifetime JP3215193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31087492A JP3215193B2 (en) 1992-10-26 1992-10-26 Method and apparatus for measuring blade shape of rotary tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31087492A JP3215193B2 (en) 1992-10-26 1992-10-26 Method and apparatus for measuring blade shape of rotary tool

Publications (2)

Publication Number Publication Date
JPH06137842A true JPH06137842A (en) 1994-05-20
JP3215193B2 JP3215193B2 (en) 2001-10-02

Family

ID=18010428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31087492A Expired - Lifetime JP3215193B2 (en) 1992-10-26 1992-10-26 Method and apparatus for measuring blade shape of rotary tool

Country Status (1)

Country Link
JP (1) JP3215193B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205246A (en) * 2001-01-10 2002-07-23 Hitachi Tool Engineering Ltd Accuracy measuring method of ball end mill
JP2006142412A (en) * 2004-11-17 2006-06-08 Olympus Corp Tool alignment method and tool alignment device
JP2010539475A (en) * 2007-09-17 2010-12-16 コノプチカ エイエス Method and apparatus for finding the position and change of rotating parts
TWI380872B (en) * 2009-03-31 2013-01-01 Toshiba Machine Co Ltd Tool nose position detection method and tool nose position detection device
TWI419762B (en) * 2010-09-02 2013-12-21 Univ Nat Yunlin Sci & Tech Online measuring method and apparatus for work pieces of machine tools
CN105773309A (en) * 2016-03-10 2016-07-20 天津大学 Online testing method for ultra-view-field cutter
CN108562228A (en) * 2018-06-08 2018-09-21 昆山迈致治具科技有限公司 A kind of automation follow-on test equipment
US10322483B2 (en) 2014-01-24 2019-06-18 Mitsubishi Electric Corporation Tool shape measurement device and tool shape measurement method
CN109986466A (en) * 2019-04-19 2019-07-09 基准精密工业(惠州)有限公司 Detection device and grinding machine with the detection device
CN112082477A (en) * 2020-09-01 2020-12-15 中国科学技术大学 Universal tool microscope three-dimensional measuring device and method based on structured light
CN113466131A (en) * 2021-06-30 2021-10-01 山东大学 Continuous detection device for metal cutting tool
JP2022053671A (en) * 2020-09-25 2022-04-06 芝浦機械株式会社 Processing machine, measurement device and workpiece manufacturing method
CN115091107A (en) * 2022-08-24 2022-09-23 中国工程物理研究院激光聚变研究中心 High-precision clamping device and method for laser processing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4311144B2 (en) * 2003-09-19 2009-08-12 株式会社村田製作所 CUTTING DEVICE AND CUTTING METHOD

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205246A (en) * 2001-01-10 2002-07-23 Hitachi Tool Engineering Ltd Accuracy measuring method of ball end mill
JP2006142412A (en) * 2004-11-17 2006-06-08 Olympus Corp Tool alignment method and tool alignment device
JP2010539475A (en) * 2007-09-17 2010-12-16 コノプチカ エイエス Method and apparatus for finding the position and change of rotating parts
TWI380872B (en) * 2009-03-31 2013-01-01 Toshiba Machine Co Ltd Tool nose position detection method and tool nose position detection device
TWI419762B (en) * 2010-09-02 2013-12-21 Univ Nat Yunlin Sci & Tech Online measuring method and apparatus for work pieces of machine tools
US10322483B2 (en) 2014-01-24 2019-06-18 Mitsubishi Electric Corporation Tool shape measurement device and tool shape measurement method
CN105773309A (en) * 2016-03-10 2016-07-20 天津大学 Online testing method for ultra-view-field cutter
CN108562228A (en) * 2018-06-08 2018-09-21 昆山迈致治具科技有限公司 A kind of automation follow-on test equipment
CN108562228B (en) * 2018-06-08 2024-03-26 昆山迈致治具科技有限公司 Automatic change continuous test equipment
CN109986466A (en) * 2019-04-19 2019-07-09 基准精密工业(惠州)有限公司 Detection device and grinding machine with the detection device
CN112082477A (en) * 2020-09-01 2020-12-15 中国科学技术大学 Universal tool microscope three-dimensional measuring device and method based on structured light
JP2022053671A (en) * 2020-09-25 2022-04-06 芝浦機械株式会社 Processing machine, measurement device and workpiece manufacturing method
CN113466131A (en) * 2021-06-30 2021-10-01 山东大学 Continuous detection device for metal cutting tool
CN115091107A (en) * 2022-08-24 2022-09-23 中国工程物理研究院激光聚变研究中心 High-precision clamping device and method for laser processing
CN115091107B (en) * 2022-08-24 2023-04-25 中国工程物理研究院激光聚变研究中心 High-precision clamping device and clamping method for laser processing

Also Published As

Publication number Publication date
JP3215193B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP5725796B2 (en) Tool measuring method and measuring device, and machine tool
US7005606B2 (en) Laser machine tool with image sensor for registration of workhead guidance system
JP2931078B2 (en) Laser beam path adjustment device for laser beam machine
TWI380872B (en) Tool nose position detection method and tool nose position detection device
JP3215193B2 (en) Method and apparatus for measuring blade shape of rotary tool
US7405388B2 (en) Video centerscope for machine alignment
US20130222580A1 (en) Method of measurement and apparatus for measurement of tool dimensions
JPH05200654A (en) Automatic tool measurement device
US20120194651A1 (en) Shape measuring apparatus
US20080186446A1 (en) Eyeglass lens processing apparatus
US5864778A (en) Device and process for measuring and calculating geometrical parameters of an object
JP2000074644A (en) Measuring apparatus of rod type cutting tool and measuring method of drill which uses the measuring apparatus
JP3958815B2 (en) Tool position measuring method in NC machine tools
JPH0914921A (en) Non-contact three-dimensional measuring instrument
JP7087366B2 (en) Axis setting device, spectacle lens processing system, and spectacle lens processing method
JPH0763923B2 (en) Origin correction method in NC processing device
JPH10258382A (en) Focal position regulating method and its correcting method in laser beam machine and laser beam machine
JP7172029B2 (en) Alignment device
JP2019209380A (en) Spectacle lens processing control data acquisition device
JPH0641091B2 (en) Grinding machine
JPH07139929A (en) Apparatus for positioning inclining angle
JP2003223213A (en) Teaching method and apparatus, and laser processing machine provided with the teaching method
JPH08247719A (en) Method for detecting edge and non-contact picture measuring system using the same
JP2000193429A (en) Shape measuring device
JP7512119B2 (en) Image measuring head device that can be attached to an NC machine tool, and method for controlling an NC machine tool system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12