CN112082477A - Universal tool microscope three-dimensional measuring device and method based on structured light - Google Patents
Universal tool microscope three-dimensional measuring device and method based on structured light Download PDFInfo
- Publication number
- CN112082477A CN112082477A CN202010902612.5A CN202010902612A CN112082477A CN 112082477 A CN112082477 A CN 112082477A CN 202010902612 A CN202010902612 A CN 202010902612A CN 112082477 A CN112082477 A CN 112082477A
- Authority
- CN
- China
- Prior art keywords
- structured light
- calibration
- image acquisition
- acquisition device
- ccd camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种基于结构光的万能工具显微镜三维测量装置,包括万能工具显微镜本体,图像采集装置,结构光投影装置,同步驱动装置和计算机控制及处理装置,结构光投影装置投射结构光至标定面和被测工件面,通过同步驱动装置使结构光投影装置与图像采集装置在Z方向上同步移动并由计算机控制及处理装置控制图像采集装置获取标定及一系列被测工件图像并通过预设算法处理采集的图像进而实现三维非接触式测量;结合数字摄影测量和图像处理技术,基于结构光测量原理对万能工具显微镜进行简单改造,拓展了原始万能工具显微镜的应用范围,不仅可以实现三维几何尺寸信息的非接触式测量,还可以检测Z轴方向形状误差和表面缺陷等信息。
The invention discloses a three-dimensional measuring device for a universal tool microscope based on structured light, comprising a universal tool microscope body, an image acquisition device, a structured light projection device, a synchronous drive device and a computer control and processing device. The structured light projection device projects structured light to The calibration surface and the workpiece surface to be tested, the structured light projection device and the image acquisition device are moved synchronously in the Z direction through the synchronous drive device, and the image acquisition device is controlled by the computer control and processing device to obtain the calibration and a series of images of the workpiece to be tested, and pass the pre- The algorithm is designed to process the collected images to realize 3D non-contact measurement; combined with digital photogrammetry and image processing technology, the universal tool microscope is simply transformed based on the principle of structured light measurement, which expands the application range of the original universal tool microscope, not only can achieve 3D Non-contact measurement of geometric dimension information can also detect information such as Z-axis shape errors and surface defects.
Description
技术领域technical field
本发明涉及摄影测量领域,特别涉及一种基于结构光的万能工具显微镜三维测量装置及方法。The invention relates to the field of photogrammetry, in particular to a three-dimensional measurement device and method for a universal tool microscope based on structured light.
背景技术Background technique
万能工具显微镜是采用光栅细分和数字化技术的一种高效率计量光学仪器,其操作简便、读数直观、准确度高、性能稳定,广泛应用于计量检测工作(参见段伟飞,穆亚娟.万能工具显微镜的基本原理和测量方法[J].价值工程,2018,37(17):239-240.以及上海光学仪器五厂,19JC数字式万能工具显微镜使用说明书.)。Universal tool microscope is a high-efficiency metrology optical instrument using grating subdivision and digital technology. It is easy to operate, intuitive to read, has high accuracy, and has stable performance. It is widely used in metrology and inspection work (see Duan Weifei, Mu Yajuan. Universal tool Basic principles and measurement methods of microscopes [J]. Value Engineering, 2018, 37(17): 239-240. And Shanghai Optical Instrument No. 5 Factory, 19JC Digital Universal Tool Microscope Instruction Manual.).
使用万能工具显微镜可以很方便地测量出被测工件X轴和Y轴方向尺寸,但是Z轴方向尺寸无法测量。然而,目前对万能工具显微镜改造的研究还比较欠缺。专利(车红,徐芩,朱琳,李书冬.万能工具显微镜测量仪[P].CN203672316U,2014-06-25.)为了解决这一问题,用千分表替换主显微镜与主显微镜镜体固定连接,对被测工件进行接触式测量,但是此方法无法同时进行三维测量,在测量过程中需要替换主显微镜,操作过程繁琐,并且接触式测量范围有限,测头经常磨损,测量精度较低。Using a universal tool microscope can easily measure the X-axis and Y-axis dimensions of the workpiece to be tested, but the Z-axis dimension cannot be measured. However, the research on the transformation of the universal tool microscope is still relatively lacking. Patent (Che Hong, Xu Qin, Zhu Lin, Li Shudong. Universal tool microscope measuring instrument [P]. CN203672316U, 2014-06-25.) In order to solve this problem, the main microscope is replaced with a dial indicator and the main microscope body is fixedly connected , perform contact measurement on the measured workpiece, but this method cannot perform 3D measurement at the same time, the main microscope needs to be replaced during the measurement process, the operation process is cumbersome, and the contact measurement range is limited, the probe is often worn, and the measurement accuracy is low.
因此,我们基于结构光测量原理对万能工具显微镜进行改造,使之可以在保留原有非接触式测量X轴和Y轴几何尺寸的基础上,进行Z轴方向几何尺寸的非接触式测量,以及形状误差和表面缺陷等信息的检测。Therefore, we modified the universal tool microscope based on the principle of structured light measurement, so that it can perform non-contact measurement of the geometric dimensions of the Z-axis on the basis of retaining the original non-contact measurement of the geometric dimensions of the X-axis and Y-axis, and Detection of information such as form errors and surface defects.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对现有技术的不足,提供一种基于结构光的万能工具显微镜三维测量装置及方法。结合数字摄影测量和图像处理技术,基于结构光对万能工具显微镜进行改造,使之可以简单方便的进行非接触式三维测量和Z轴方向形状误差、表面缺陷检测,方法实现简单且改造方便。The purpose of the present invention is to provide a three-dimensional measurement device and method for a universal tool microscope based on structured light, aiming at the deficiencies of the prior art. Combined with digital photogrammetry and image processing technology, the universal tool microscope is transformed based on structured light, so that it can simply and conveniently perform non-contact three-dimensional measurement and Z-axis shape error and surface defect detection. The method is simple to implement and easy to transform.
本发明采用的技术方案为:一种基于结构光的万能工具显微镜三维测量装置,包括万能工具显微镜本体,所述万能工具显微镜本体,包括底座,工作台,纵、横向导轨,瞄准显微镜系统和照明系统;所述瞄准显微镜系统包括光学透镜成像系统和光栅读数系统;该测量装置还包括图像采集装置,结构光投影装置,同步驱动装置和计算机控制及处理装置,其中:The technical scheme adopted in the present invention is as follows: a three-dimensional measuring device for a universal tool microscope based on structured light, comprising a universal tool microscope body, and the universal tool microscope body includes a base, a worktable, vertical and horizontal guide rails, an aiming microscope system and illumination system; the aiming microscope system includes an optical lens imaging system and a grating reading system; the measuring device also includes an image acquisition device, a structured light projection device, a synchronous drive device and a computer control and processing device, wherein:
所述图像采集装置,保留万能工具显微镜瞄准显微镜系统中的光学透镜成像系统和光栅读数系统,采用CCD摄像头代替原有目镜采集标定图像和被测工件图像信息;The image acquisition device retains the optical lens imaging system and the grating reading system in the aiming microscope system of the universal tool microscope, and uses a CCD camera instead of the original eyepiece to collect the calibration image and the image information of the measured workpiece;
所述结构光投影装置,包括光纤激光器、圆锥折射镜,将万能工具显微镜照明系统中的主机LED照明光源改造为结构光投影装置,保留原有与瞄准显微镜系统目镜在X、Y方向上同步移动的结构,结构光投影装置中光纤激光器出射的激光束经圆锥折射镜折射后形成圆锥形结构光投射至空白透光平板,标定相应光环图像后,投射结构光至被测工件面,由图像采集装置获取图像;The structured light projection device includes a fiber laser and a conical refractor. The host LED illumination source in the universal tool microscope illumination system is transformed into a structured light projection device, and the original and the eyepiece of the aiming microscope system are kept synchronously moving in the X and Y directions. The structure of the structured light projection device, the laser beam emitted by the fiber laser in the structured light projection device is refracted by the conical refractor to form a conical structured light and projected to the blank light-transmitting plate. the device acquires the image;
所述同步驱动装置,包括位移传感器、单片机、驱动器、步进电机和二级齿轮,位移传感器固定在Z轴升降臂检测图像采集装置的CCD摄像头在Z方向上的移动距离,通过单片机给驱动器中的脉冲发生器信号驱动步进电机,进而带动二级齿轮使结构光投影装置与图像采集装置的CCD摄像头在Z方向上同步移动;The synchronous drive device includes a displacement sensor, a single-chip microcomputer, a driver, a stepping motor and a secondary gear. The displacement sensor is fixed on the Z-axis lifting arm to detect the moving distance of the CCD camera of the image acquisition device in the Z direction, and sends the information to the driver through the single-chip microcomputer. The pulse generator signal drives the stepping motor, and then drives the secondary gear to move the structured light projection device and the CCD camera of the image acquisition device synchronously in the Z direction;
所述计算机控制及处理装置,控制图像采集装置获取标定及被测工件图像并通过预设算法处理采集的图像。The computer control and processing device controls the image acquisition device to acquire the calibration and the image of the workpiece to be tested, and processes the acquired images through a preset algorithm.
一种基于结构光的万能工具显微镜三维测量方法,包括:A three-dimensional measurement method of a universal tool microscope based on structured light, comprising:
步骤1、第一次使用改造的万能工具显微镜,需要标定获得相机内外参数和圆锥形结构光参数,之后在保证图像采集装置和结构光投射装置相对位置不变的前提下使用无需再次标定;Step 1. When using the modified universal tool microscope for the first time, it is necessary to calibrate the internal and external parameters of the camera and the parameters of the conical structured light.
提供空白透光平板和一台只用于标定的CCD相机;Provide a blank transparent plate and a CCD camera for calibration only;
标定CCD相机与图像采集装置的CCD摄像头光轴夹角小于90°;The angle between the optical axis of the calibration CCD camera and the CCD camera of the image acquisition device is less than 90°;
1)相机内外参数的标定1) Calibration of camera internal and external parameters
计算机控制及处理装置控制图像采集装置的CCD摄像头和标定CCD相机同时拍摄具有统一标记点的标定板平面;The computer control and processing device controls the CCD camera of the image acquisition device and the calibration CCD camera to simultaneously shoot the calibration plate plane with uniform marking points;
使用张正友平面模板标定法对采集到的图像进行处理,标定图像采集装置的CCD摄像头和标定CCD相机的内外参数,并将两相机的外参统一到同一世界坐标系下;Use the Zhang Zhengyou plane template calibration method to process the collected images, calibrate the CCD camera of the image acquisition device and the internal and external parameters of the CCD camera, and unify the external parameters of the two cameras into the same world coordinate system;
2)圆锥形结构光的标定2) Calibration of conical structured light
控制结构光投影装置投射圆锥形结构光至空白透光平板,移动Z轴升降臂使投射的结构光对焦在空白透光平板;Control the structured light projection device to project the conical structured light to the blank light-transmitting plate, and move the Z-axis lifting arm to focus the projected structured light on the blank light-transmitting plate;
计算机控制及处理装置控制图像采集装置和标定CCD相机获取结构光投射至空白透光平板的相应光环标定图像;The computer control and processing device controls the image acquisition device and the calibration CCD camera to obtain the corresponding halo calibration image projected by the structured light to the blank light-transmitting plate;
对光环标定图像的光环内边缘检测并拟合为椭圆光环图像;Detect and fit the halo inner edge of the halo calibration image to an elliptical halo image;
拟合后的椭圆光环和图像采集装置的CCD摄像头的光心构建斜椭圆锥表达式;The fitted elliptical halo and the optical center of the CCD camera of the image acquisition device construct the oblique elliptical cone expression;
拟合后的椭圆光环上任一点与标定CCD相机的光心构成成像直线表达式;Any point on the fitted elliptical halo and the optical center of the calibrated CCD camera form an imaging straight line expression;
斜椭圆锥表面方程和成像直线方程联合求解得到待标定圆锥形结构光面上一对点的三维坐标;The three-dimensional coordinates of a pair of points on the conical structured light surface to be calibrated are obtained by jointly solving the oblique elliptical cone surface equation and the imaging line equation;
通过选择一系列椭圆光环上的点,可以求得一系列对应的三维坐标,但这些点都是共面的,无法实现圆锥面的拟合,因此需要任意改变空白透光平板的位置和姿态获取不共面光环标定图像,一般需要拍摄6种不同位置和姿态;By selecting a series of points on the elliptical halo, a series of corresponding three-dimensional coordinates can be obtained, but these points are coplanar, and the fitting of the conical surface cannot be achieved, so it is necessary to arbitrarily change the position and attitude of the blank light-transmitting plate to obtain For non-coplanar halo calibration images, it is generally necessary to shoot 6 different positions and attitudes;
对拟合后的椭圆光环中心进行最小二乘拟合确定结构光圆锥面的轴线,得到圆锥形结构光表面方程,重建结构光圆锥面,完成圆锥形结构光的标定。Least square fitting is performed on the center of the fitted elliptical halo to determine the axis of the conical surface of the structured light, the surface equation of the conical structured light is obtained, the conical surface of the structured light is reconstructed, and the calibration of the conical structured light is completed.
步骤2、被测工件内孔三维几何尺寸信息获取:
首先控制结构光投影装置投射标定后的结构光至被测工件内孔,同步驱动装置带动结构光投影装置与图像采集装置的CCD摄像头在Z方向上同步移动完成对被测工件内孔的扫描并由图像采集装置获取结构光投射至被测工件内孔的一系列相应光环图像;First, the structured light projection device is controlled to project the calibrated structured light to the inner hole of the workpiece to be tested, and the synchronous drive device drives the structured light projection device and the CCD camera of the image acquisition device to move synchronously in the Z direction to complete the scanning of the inner hole of the workpiece to be tested. A series of corresponding halo images projected by the structured light to the inner hole of the workpiece under test are acquired by the image acquisition device;
将一系列相应光环图像传递给计算机控制及处理装置,对图像采集装置捕获的光环图像进行拟合,并代入圆锥形结构光表面方程得到扫描点在世界坐标系下的三维坐标,获得被测工件内孔三维几何尺寸、形状误差和表面缺陷信息。Pass a series of corresponding halo images to the computer control and processing device, fit the halo images captured by the image acquisition device, and substitute the conical structured light surface equation to obtain the three-dimensional coordinates of the scanning point in the world coordinate system, and obtain the measured workpiece Inner hole 3D geometry, shape error and surface defect information.
本发明的优点和积极效果为:The advantages and positive effects of the present invention are:
结合数字摄影测量和图像处理技术,基于结构光测量原理对万能工具显微镜进行了简单改造,拓展了原始万能工具显微镜的应用范围,在获取X、Y轴尺寸信息的基础上快速准确的获得Z轴尺寸信息,实现了三维几何尺寸信息的非接触式测量,还可以检测Z轴方向形状误差和表面缺陷等信息,在提高效率的同时保持原有准确性,改造结构简单、成本低廉,易于加工制造,操作方便,检测结果直观可靠,满足自动化测量的需求,在测量领域有广阔的应用前景。Combined with digital photogrammetry and image processing technology, the universal tool microscope is simply transformed based on the principle of structured light measurement, which expands the application range of the original universal tool microscope, and quickly and accurately obtains the Z axis on the basis of obtaining the X and Y axis size information. Dimension information realizes non-contact measurement of three-dimensional geometric dimension information, and can also detect information such as shape errors and surface defects in the Z-axis direction, while maintaining the original accuracy while improving efficiency, the transformation structure is simple, low cost, and easy to manufacture. , easy to operate, intuitive and reliable detection results, to meet the needs of automated measurement, has broad application prospects in the field of measurement.
附图说明Description of drawings
图1为本发明实施例提供的基于结构光的万能工具显微镜三维测量装置示意图;1 is a schematic diagram of a three-dimensional measurement device for a universal tool microscope based on structured light provided by an embodiment of the present invention;
图2为本发明实施例提供的系统标定示意图;2 is a schematic diagram of system calibration provided by an embodiment of the present invention;
图3为本发明实施例提供的光环标定图像示意图;3 is a schematic diagram of a halo calibration image provided by an embodiment of the present invention;
图4为本发明实施例提供的圆锥形结构光示意图。FIG. 4 is a schematic diagram of a conical structured light provided by an embodiment of the present invention.
其中:万能工具显镜本体1、图像采集装置2、结构光投影装置3、同步驱动装置4、计算机控制及处理装置5、CCD相机6、标定板平面7、透光平板8、底座11、工作台12、横向导轨13、纵向导轨14、CCD摄像头21、括光纤激光器31、圆锥折射镜32、位移传感器41。Among them: universal tool display body 1,
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
如图1所示,本发明设计的基于结构光的万能工具显微镜三维测量装置,包括万能工具显镜本体1、图像采集装置2、结构光投影装置3、同步驱动装置4和计算机控制及处理装置5。As shown in FIG. 1 , the three-dimensional measurement device for a universal tool microscope based on structured light designed by the present invention includes a universal tool display body 1, an
万能工具显微镜本体1,主要由底座11、工作台12、横向导轨13、纵向导轨14、瞄准显微镜系统、光栅读数系统、照明系统等附件组成;The universal tool microscope body 1 is mainly composed of a
图像采集装置2,保留万能工具显微镜瞄准显微镜系统中的光学透镜成像系统和光栅读数系统,采用CCD摄像头21代替原有目镜采集标定图像和被测工件图像信息;
结构光投影装置3,包括光纤激光器31、圆锥折射镜32,光纤激光器31出射的激光束经圆锥折射镜32折射后形成圆锥形结构光投射至空白透光平板8和被测工件面,由图像采集装置获取标定及被测工件图像;The structured
同步驱动装置4,包括位移传感器41、单片机、驱动器、步进电机和二级齿轮,位移传感器41固定在Z轴升降臂检测图像采集装置的CCD摄像头在Z方向上的移动距离,通过单片机给驱动器中的脉冲发生器信号驱动步进电机,进而带动二级齿轮使结构光投影装置与图像采集装置的CCD摄像头在Z方向上同步移动;The
计算机控制及处理装置5,控制图像采集装置2获取标定及被测工件图像并通过预设算法处理采集的图像。The computer control and
第一次使用改造的万能工具显微镜,需要标定获得相机内外参数和圆锥形结构光参数,如图2所示,之后在保证图像采集装置2和结构光投影装置3相对位置不变的前提下使用无需再次标定。The first time to use the modified universal tool microscope, it is necessary to calibrate the internal and external parameters of the camera and the parameters of the conical structured light, as shown in Figure 2, and then use it under the premise that the relative positions of the
首先,进行相机内外参数的标定。固定另一个用于标定的CCD相机6,其光轴与图像采集装置2的CCD摄像头21光轴夹角小于90°。计算机控制及处理装置5控制图像采集装置2的CCD摄像头21和标定CCD相机6同时拍摄具有统一标记点的标定板平面7,并使用张正友平面模板标定法对采集到的图像进行处理,标定图像采集装置2的CCD摄像头21和标定CCD相机6的内外参数,将两相机的外参统一到同一世界坐标系下。First, the calibration of the internal and external parameters of the camera is carried out. Another
其次,进行圆锥形结构光的标定。控制结构光投影装置3投射圆锥形结构光至空白透光平板8,移动Z轴升降臂使投射的结构光对焦在空白透光平板8上,将透光平板8与投射的结构光以任意方向和位置相交(一般为6个不同的位姿),相交线(光环)是一个空间椭圆Ei,表达式为:Next, the calibration of the conical structured light is performed. Control the structured
式中,Δx、Δy、Δz是结构光圆锥面三个轴方向的偏移量,α是结构光圆锥面的锥顶角,γ是结构光圆锥面的俯仰角和偏航角,x、y、z是世界坐标,本发明将标定图像采集装置2的CCD摄像头21的相机坐标选为世界坐标。In the formula, Δ x , Δ y , Δ z are the offsets of the three axis directions of the structured light cone, α is the cone apex angle of the structured light cone, γ is the pitch angle and yaw angle of the structured light conical surface, and x, y, and z are world coordinates. The present invention selects the camera coordinates of the
计算机控制及处理装置5控制图像采集装置2和标定CCD相机6获取结构光投射至空白透光平板8的不共面相应光环标定图像,即上述椭圆光环Ei同时被两个相机捕获。相应光环标定图像如图3所示,根据几何投影可知,两台相机捕获的图像也是椭圆形,因此光环标定图像内边缘拟合为椭圆光环,图像采集装置2捕获的光环标定图像拟合的椭圆光环为ei1,标定CCD相机6捕获的光环标定图像拟合的椭圆光环为ei2,表达式为:The computer control and
相机参数标定后可知图像采集装置2的CCD摄像头21的焦距f1,则ei1在世界坐标系下的表达式为:After the camera parameters are calibrated, the focal length f 1 of the
空间椭圆光环Ei和图像采集装置的CCD摄像头21的光心构建斜椭圆锥Ai,拟合后的空间椭圆光环Ei上任一点与标定CCD相机6的光心构成成像光线Lp,如图4所示。斜椭圆锥Ai的表达式为:The spatial elliptical halo E i and the optical center of the
成像光线Lp的表达式为:The expression of imaging ray L p is:
其中,(R T)是标定相机与检测相机之间的坐标转换。Among them, (RT) is the coordinate transformation between the calibration camera and the detection camera.
对不同位姿下获取的图像后拟合的椭圆光环中心进行最小二乘拟合确定结构光圆锥面的轴线,即式(1)中的两个参数和γ。再通过最小二乘法搜索剩下四个参数(Δx,Δy,Δz,α)的最优值:The least squares fitting is performed on the center of the fitted elliptical halo after the images obtained under different poses to determine the axis of the structured light cone, that is, the two parameters in formula (1). and γ. Then search the optimal value of the remaining four parameters (Δ x , Δ y , Δ z , α) by the least square method:
其中,dik为点到轴线的距离,rik是相应截面的半径。where d ik is the distance from the point to the axis, and r ik is the radius of the corresponding section.
斜椭圆锥Ai方程(4)和成像光线Lp方程(5)联合求解可以确定求解圆锥表面点。一组表面点构建一个空间椭圆,通过移动空白透光平板8产生不同组表面点,获得不同的空间椭圆,进而可以重建结构光圆锥面,完成圆锥形结构光的标定。The joint solution of the oblique elliptical cone A i equation (4) and the imaging ray L p equation (5) can determine the surface point of the cone. A set of surface points constructs a spatial ellipse, and different sets of surface points are generated by moving the blank light-transmitting
完成标定之后即可获取被测工件内孔三维几何尺寸、形状误差和表面缺陷信息。After the calibration is completed, the three-dimensional geometric size, shape error and surface defect information of the inner hole of the tested workpiece can be obtained.
首先,将被测工件固定在工作台12上,控制结构光投影装置3投射标定后的结构光至被测工件内孔;First, the workpiece to be tested is fixed on the
接着,同步驱动装置4带动结构光投影装置3与图像采集装置2的CCD摄像头21在Z方向上同步移动完成对被测工件内孔的扫描并由计算机控制及处理装置5控制图像采集装置2获取结构光投射至被测工件内孔的一系列相应光环图像;Next, the
最后,将一系列相应光环图像传递给计算机控制及处理装置5,对图像采集装置2捕获的光环图像进行拟合,并代入之前标定的圆锥形结构光表面方程得到扫描点在世界坐标系下的三维坐标,获得被测工件内孔三维点云数据,进而得到Z轴方向几何尺寸、形状误差和表面缺陷信息。Finally, a series of corresponding halo images are transmitted to the computer control and
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010902612.5A CN112082477A (en) | 2020-09-01 | 2020-09-01 | Universal tool microscope three-dimensional measuring device and method based on structured light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010902612.5A CN112082477A (en) | 2020-09-01 | 2020-09-01 | Universal tool microscope three-dimensional measuring device and method based on structured light |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112082477A true CN112082477A (en) | 2020-12-15 |
Family
ID=73731286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010902612.5A Pending CN112082477A (en) | 2020-09-01 | 2020-09-01 | Universal tool microscope three-dimensional measuring device and method based on structured light |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112082477A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113052797A (en) * | 2021-03-08 | 2021-06-29 | 江苏师范大学 | BGA solder ball three-dimensional detection method based on depth image processing |
CN113375591A (en) * | 2021-06-03 | 2021-09-10 | 昆山一麦自动化科技有限公司 | Imaging device based on 3D scanning and correction method thereof |
CN113686872A (en) * | 2021-08-06 | 2021-11-23 | 中国计量大学 | Micro-nano-scale defect detection device and method for integrated circuit chips |
CN114459346A (en) * | 2022-01-04 | 2022-05-10 | 佛山市屹博电子科技有限公司 | Device for detecting coordinates |
CN114459347A (en) * | 2022-01-04 | 2022-05-10 | 佛山市屹博电子科技有限公司 | Coordinate measuring device |
CN114719752A (en) * | 2022-04-11 | 2022-07-08 | 中国科学院光电技术研究所 | Method for measuring geometric parameters of precision part based on universal tool microscope and measuring head |
CN116734775A (en) * | 2023-08-11 | 2023-09-12 | 成都飞机工业(集团)有限责任公司 | Non-contact hole perpendicularity measuring method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD262907A1 (en) * | 1987-08-12 | 1988-12-14 | Hartmetallwerk Immelborn Im Ve | DEVICE FOR IDENTIFICATION OF THE TOPOGRAPHY OF DOUBLE CROPPED FLAKES |
JPH06137842A (en) * | 1992-10-26 | 1994-05-20 | Nachi Fujikoshi Corp | Method and device for measuring rotary tool blade part form |
JPH11337320A (en) * | 1998-05-28 | 1999-12-10 | Menicon Co Ltd | Automatic projector inspecting device for in traocular lens and method for inspecting intraoccular lens using the same device |
CN1492212A (en) * | 2003-08-27 | 2004-04-28 | 天津大学 | Device for Realizing Digital Reading of Existing Visual Optical Measuring Instruments |
CN1847878A (en) * | 2005-04-15 | 2006-10-18 | 中国科学院西安光学精密机械研究所 | A CCD splicing system |
CN201247342Y (en) * | 2008-08-01 | 2009-05-27 | 东莞市源兴光学仪器有限公司 | Image tool microscope |
CN101876533A (en) * | 2010-06-23 | 2010-11-03 | 北京航空航天大学 | A Microscopic Stereo Vision Calibration Method |
DE102014210121A1 (en) * | 2014-05-27 | 2015-08-27 | Carl Zeiss Meditec Ag | Surgical microscope and image-guided surgery system and method for their operation |
CN207963753U (en) * | 2018-03-02 | 2018-10-12 | 昆山世纪三友测量技术有限公司 | A kind of tool microscope |
DE202019105838U1 (en) * | 2019-10-21 | 2019-12-04 | Carl Zeiss Industrielle Messtechnik Gmbh | Arrangement with a coordinate measuring machine or microscope |
-
2020
- 2020-09-01 CN CN202010902612.5A patent/CN112082477A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD262907A1 (en) * | 1987-08-12 | 1988-12-14 | Hartmetallwerk Immelborn Im Ve | DEVICE FOR IDENTIFICATION OF THE TOPOGRAPHY OF DOUBLE CROPPED FLAKES |
JPH06137842A (en) * | 1992-10-26 | 1994-05-20 | Nachi Fujikoshi Corp | Method and device for measuring rotary tool blade part form |
JPH11337320A (en) * | 1998-05-28 | 1999-12-10 | Menicon Co Ltd | Automatic projector inspecting device for in traocular lens and method for inspecting intraoccular lens using the same device |
CN1492212A (en) * | 2003-08-27 | 2004-04-28 | 天津大学 | Device for Realizing Digital Reading of Existing Visual Optical Measuring Instruments |
CN1847878A (en) * | 2005-04-15 | 2006-10-18 | 中国科学院西安光学精密机械研究所 | A CCD splicing system |
CN201247342Y (en) * | 2008-08-01 | 2009-05-27 | 东莞市源兴光学仪器有限公司 | Image tool microscope |
CN101876533A (en) * | 2010-06-23 | 2010-11-03 | 北京航空航天大学 | A Microscopic Stereo Vision Calibration Method |
DE102014210121A1 (en) * | 2014-05-27 | 2015-08-27 | Carl Zeiss Meditec Ag | Surgical microscope and image-guided surgery system and method for their operation |
CN207963753U (en) * | 2018-03-02 | 2018-10-12 | 昆山世纪三友测量技术有限公司 | A kind of tool microscope |
DE202019105838U1 (en) * | 2019-10-21 | 2019-12-04 | Carl Zeiss Industrielle Messtechnik Gmbh | Arrangement with a coordinate measuring machine or microscope |
Non-Patent Citations (3)
Title |
---|
ZHU YE等: "Flexible calibration method for line-structured light based on binocular vision", 《PROCEEDINGS OF SPIE》 * |
朱烨: "深孔类零件内表面三维综合测量技术的研究", 《中国博士学位论文全文数据库(工程科技I辑)》 * |
林鹏鹏: "传统万能工具显微镜的数字化改造", 《中国优秀硕士学位论文全文数据库(工程科技II辑)》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113052797A (en) * | 2021-03-08 | 2021-06-29 | 江苏师范大学 | BGA solder ball three-dimensional detection method based on depth image processing |
CN113052797B (en) * | 2021-03-08 | 2024-01-05 | 江苏师范大学 | BGA solder ball three-dimensional detection method based on depth image processing |
CN113375591A (en) * | 2021-06-03 | 2021-09-10 | 昆山一麦自动化科技有限公司 | Imaging device based on 3D scanning and correction method thereof |
CN113686872A (en) * | 2021-08-06 | 2021-11-23 | 中国计量大学 | Micro-nano-scale defect detection device and method for integrated circuit chips |
CN114459346A (en) * | 2022-01-04 | 2022-05-10 | 佛山市屹博电子科技有限公司 | Device for detecting coordinates |
CN114459347A (en) * | 2022-01-04 | 2022-05-10 | 佛山市屹博电子科技有限公司 | Coordinate measuring device |
CN114719752A (en) * | 2022-04-11 | 2022-07-08 | 中国科学院光电技术研究所 | Method for measuring geometric parameters of precision part based on universal tool microscope and measuring head |
CN116734775A (en) * | 2023-08-11 | 2023-09-12 | 成都飞机工业(集团)有限责任公司 | Non-contact hole perpendicularity measuring method |
CN116734775B (en) * | 2023-08-11 | 2023-12-08 | 成都飞机工业(集团)有限责任公司 | Non-contact hole perpendicularity measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112082477A (en) | Universal tool microscope three-dimensional measuring device and method based on structured light | |
WO2018103694A1 (en) | Robotic three-dimensional scanning device and method | |
CN108180851B (en) | Five-axis image measuring device for measuring shape and position parameters of air film hole | |
CN110906863B (en) | Hand-eye calibration system and calibration method for line-structured light sensor | |
CN107121093A (en) | A kind of gear measurement device and measuring method based on active vision | |
CN107270833A (en) | A kind of complex curved surface parts three-dimension measuring system and method | |
CN108908337B (en) | Measuring device and method for repetitive positioning accuracy of manipulator based on digital speckle interferometry | |
TWI623724B (en) | Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium | |
CN108827187B (en) | A 3D Profile Measurement System | |
CN104913737A (en) | Component quality checking device based on line laser three-dimensional measurement and detection method of device | |
CN105547153A (en) | Visual positioning method and device for pins of plug-in components based on binocular vision | |
CN101650156B (en) | Device and method for measuring geometric parameter of superplastic non-spherical free bulge | |
CN112097642B (en) | Three-dimensional cross hole position degree detection instrument and detection method | |
CN106247961A (en) | The precision measurement system of a kind of bore inner diameter and method | |
CN113409406A (en) | Large-range monocular tracking scanning device | |
CN111707189A (en) | Beam direction calibration method of laser displacement sensor based on binocular vision | |
CN110645911A (en) | Device and method for obtaining complete outer surface 3D contour through rotary scanning | |
CN109059755B (en) | A high-precision hand-eye calibration method for robots | |
CN109974583A (en) | Device and method for measuring surface shape of non-contact optical element | |
CN113899311A (en) | A non-contact end mill side edge wear profile on-machine testing test bench and method | |
TWI758737B (en) | Alignment method of substrate | |
JP5432551B2 (en) | PROBE METHOD AND PROBE DEVICE | |
CN105046650A (en) | Machine vision-based image mosaic method for small module gear detection process | |
CN117169118A (en) | Non-contact type in-hole surface appearance detection device and method | |
CN206847639U (en) | A kind of device of total powerstation support precision Image detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201215 |