JPH06132572A - Permanent current switch - Google Patents

Permanent current switch

Info

Publication number
JPH06132572A
JPH06132572A JP4240673A JP24067392A JPH06132572A JP H06132572 A JPH06132572 A JP H06132572A JP 4240673 A JP4240673 A JP 4240673A JP 24067392 A JP24067392 A JP 24067392A JP H06132572 A JPH06132572 A JP H06132572A
Authority
JP
Japan
Prior art keywords
fiber
superconducting
switch
current switch
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4240673A
Other languages
Japanese (ja)
Other versions
JP3362874B2 (en
Inventor
Toshihiro Kashima
俊弘 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Toyobo Co Ltd
Original Assignee
Railway Technical Research Institute
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Toyobo Co Ltd filed Critical Railway Technical Research Institute
Priority to JP24067392A priority Critical patent/JP3362874B2/en
Publication of JPH06132572A publication Critical patent/JPH06132572A/en
Application granted granted Critical
Publication of JP3362874B2 publication Critical patent/JP3362874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

PURPOSE:To obtain a permanent current switch, which has a high critical current value, is small in off-heater power consumption, is high in exciting or demagnetizing speed and can be stably operated, by a method wherein the switch is formed by a method of winding a superconductive wire on a bobbin obtained by molding integrally a matrix resin and a reinforcing fiber having a negative expansion coefficient. CONSTITUTION:A permanent current switch 7 is one formed by the method of winding a superconductive wire 9 on a bobbin obtained by molding integrally a matrix resin, such as an epoxy resin, and a reinforcing fiber having a negative expansion coefficient, that is, a negative expansion fiber. The negative expansion fiber is an organic fiber which is extended when a temperature is dropped from a room temperature, such as a polyethylene and a polyamide, and a carbon fiber and the like. Thereby, when the switch 7 is operated in a turn-ON state, the whole superconducting circuit can be stably operated and an increase of the resistance of the circuit can be made easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は核磁気共鳴診断装置
(MRI)、核磁気測定装置(MRS)、磁気線上列車
などの超電導コイルを永久電流モードで運転する際に、
この超電導コイルの両端を実質的に抵抗値が零の状態で
短絡し、必要に応じて実質的に電流遮断状態にする永久
電流スイッチ(PCS)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for operating a superconducting coil of a nuclear magnetic resonance diagnostic apparatus (MRI), a nuclear magnetic measurement apparatus (MRS), a magnetic line train, etc. in a permanent current mode.
The present invention relates to a permanent current switch (PCS) that short-circuits both ends of this superconducting coil in a state where the resistance value is substantially zero, and causes a current interruption state when necessary.

【0002】[0002]

【従来の技術】核磁気共鳴装置や磁気浮上列車などの超
電導コイルは、運転中は直流電源から切り離されて、永
久電流スイッチで短絡され閉ループの中を電流が循環し
て、長期にわたって流れ続ける、いわゆる永久電流モー
ドで使用されるのが一般的である。超電導コイルを構成
する超電導線は極低温においては超電導状態になり、電
気抵抗が零になっており、理論的には永久に電流が流れ
続けることになる。図1は、永久電流スイッチを使用し
た超電導装置の構成を示す回路図である。図において、
(1)は超電導コイルで液体ヘリウム等の冷媒(2)と
ともにクライオスタット(3)内に収容されている、超
電導コイル(1)の両端は電流リード(4)を介して、
クライオスタット(3)の外部へ引出され、外部電源
(5)及び保護抵抗(6)に接続されている。(7)は
引出し線を介して超電導コイル(1)の両端に接続され
た永久電流スイッチである。この永久電流スイッチの構
成を示す回路図を図2に示す。
2. Description of the Related Art A superconducting coil such as a nuclear magnetic resonance apparatus or a magnetic levitation train is disconnected from a DC power source during operation, short-circuited by a permanent current switch, current circulates in a closed loop, and continues to flow for a long time. It is generally used in a so-called permanent current mode. The superconducting wire forming the superconducting coil is in a superconducting state at an extremely low temperature and its electric resistance is zero, and theoretically, a current will continue to flow forever. FIG. 1 is a circuit diagram showing the configuration of a superconducting device using a persistent current switch. In the figure,
(1) is a superconducting coil which is housed in a cryostat (3) together with a refrigerant (2) such as liquid helium. Both ends of the superconducting coil (1) are connected via current leads (4).
It is led out of the cryostat (3) and is connected to an external power source (5) and a protective resistor (6). (7) is a persistent current switch connected to both ends of the superconducting coil (1) via a lead wire. A circuit diagram showing the configuration of this permanent current switch is shown in FIG.

【0003】図において、(9)は引出し線(8)に接
続された超電導体で永久電流スイッチとして、開閉操作
の対象となる線路を構成する。(10)及び(11)は
加熱装置としての電熱線及び、この電熱線(10)に電
流を供給するスイッチ用直流電源である。
In the figure, reference numeral (9) is a superconductor connected to the lead wire (8) and constitutes a line to be opened / closed as a permanent current switch. (10) and (11) are a heating wire as a heating device and a switch DC power supply for supplying a current to the heating wire (10).

【0004】次に永久電流スイッチ(7)を含む超電導
装置の動作について説明する。先ず超電導コイル(1)
を励磁するためには、スイッチ用直流電源(1)をオン
にし電熱線(10)に電流を流して超電導体(9)をそ
のTC以上に加熱して、常電導状態とすることにより永
久電流スイッチをオフの状態にする。ここで外部電源
(5)から超電導コイル(1)に電流を供給する。この
時、超電体(9)のオフ状態での抵抗R1 および保護抵
抗(6)の抵抗R2 が超電導コイル(1)のインダクタ
ンスLおよびそれに流れる電流の変化率できまるインピ
ーダンスに比較して十分大きければ外部電源(5)から
供給される電流の殆んどが超電導コイル(1)の励磁に
費されることになる。コイルのクエンチに際しては保護
抵抗体(6)の抵抗R2 が超電導体(1)の抵抗R3 よ
り大きな方がエネルギー回収の面から望ましい。また永
久電流スイッチのオフ状態での抵抗値R1 は保護抵抗体
(6)の抵抗値R2 より更に大きいことが、永久電流ス
イッチの保護及び超電導コイル(1)を励磁する際の励
磁時間の短縮のためには重要である。そのためこの超電
導体(9)には臨界温度TC以上の常電導状態における
抵抗率の高い材料が採用される。即ちスイッチオフ状態
での抵抗率を大きくするため被覆材としての安定化銅を
除去した超電導体だけのもの、あるいは銅より2桁以上
抵抗率の大きな例えばキュプロニッケル合金Cu−10
wt%Niなどを使用する必要がある。この様な超電導線
では何らかの理由で突然超電導状態から常電導状態に移
行する、いわゆるクエンチが生じ易くなるので、超電導
線近傍の磁界の強度を低減することを目的として、永久
電流スイッチ(7)の超電導巻線(9)は無誘導巻きと
いう特殊な巻回方法が採用されている。また超電導巻線
(9)が超電導を維持している状態で超電導線がわずか
に動くことによる摩擦熱が引き金になってクエンチが発
生することが知られており、このような超電導線の移動
を防止するために前述の様なa.接着剤を塗布しながら
巻回し、その後樹脂でモールドするという様な対策が講
じられているとともにb.巻回時に超電導線に引っ張り
応力がかかるようにする方法もとられている。
Next, the operation of the superconducting device including the permanent current switch (7) will be described. First, superconducting coil (1)
In order to excite the current, the switch DC power supply (1) is turned on and a current is passed through the heating wire (10) to heat the superconductor (9) to a temperature above its TC to bring it into a normal conducting state. Turn off the switch. Here, a current is supplied to the superconducting coil (1) from an external power source (5). At this time, the resistance R1 of the superconductor (9) in the off state and the resistance R2 of the protective resistance (6) should be sufficiently larger than the inductance L of the superconducting coil (1) and the impedance that allows the rate of change of the current flowing therethrough. For example, most of the current supplied from the external power source (5) is consumed for exciting the superconducting coil (1). When quenching the coil, it is desirable that the resistance R2 of the protective resistor (6) be larger than the resistance R3 of the superconductor (1) from the viewpoint of energy recovery. Further, the resistance value R1 in the OFF state of the permanent current switch is larger than the resistance value R2 of the protective resistor (6), which can protect the permanent current switch and shorten the excitation time when exciting the superconducting coil (1). Is important for. Therefore, for this superconductor (9), a material having a high resistivity in the normal conducting state above the critical temperature TC is adopted. That is, in order to increase the resistivity in the switch-off state, only a superconductor from which stabilized copper is removed as a coating material, or a cupro nickel alloy Cu-10 having a resistivity higher than that of copper by two digits or more is used.
It is necessary to use wt% Ni or the like. In such a superconducting wire, a so-called quench, which suddenly changes from the superconducting state to the normal conducting state, is likely to occur for some reason. Therefore, in order to reduce the strength of the magnetic field in the vicinity of the superconducting wire, the permanent current switch (7) The superconducting winding (9) uses a special winding method called non-inductive winding. Further, it is known that the friction heat generated by a slight movement of the superconducting wire while the superconducting winding (9) maintains superconducting causes a quench to occur, and such movement of the superconducting wire is prevented. In order to prevent this, a. Measures are taken such as winding while applying an adhesive, and then molding with a resin. B. Another method is to apply a tensile stress to the superconducting wire during winding.

【0005】所定の励時動作が終了するとスイッチ用電
源をオフにし外部電源(5)を切り離す。これにより超
電導体は冷媒(2)により冷却されて超電導体状態にな
り永久電流スイッチはオンの状態となり励磁電源から供
給されていた電流は超電導コイル(9)を含むCDEF
なる回路を流れ続けて、永久電流モードに移行する。こ
の永久電流モードを維持するためには永久電流スイッチ
の超電導体(9)の臨界電流1cが、超電導コイル
(1)の最大運転電流Iop以上であり且つ超電導体
(9)はIop以下の電流で動作が安定であることが必
要である。この様にして超電導コイル(1)を永久電流
モードで運転することにより長時間運転のコスト低減
や、時間的に変動しない磁界の発生が可能となる。
When the predetermined excitation operation is completed, the switch power supply is turned off and the external power supply (5) is disconnected. As a result, the superconductor is cooled by the refrigerant (2) to be in the superconductor state, the permanent current switch is turned on, and the current supplied from the excitation power source is the CDEF including the superconducting coil (9).
The circuit continues to flow, and the mode shifts to the permanent current mode. In order to maintain this persistent current mode, the critical current 1c of the superconductor (9) of the persistent current switch is equal to or higher than the maximum operating current Iop of the superconducting coil (1) and the superconductor (9) is equal to or lower than Iop. It is necessary that the operation is stable. By thus operating the superconducting coil (1) in the permanent current mode, it is possible to reduce the cost of long-term operation and generate a magnetic field that does not fluctuate with time.

【0006】[0006]

【発明が解決しようとする課題】超電導コイルを永久電
流モードで安定して運転するためには、永久電流スイッ
チの超電導体(9)の臨界電流1cが超電導コイル
(1)の最大運転電流Iop以上であり且つ超電導体
(9)はIop以下の電流で動作が安定であることが必
要である。一方超電導体(9)のオフ状態での抵抗値R
1 は出来るだけ高いことが必要であるがそのためには
a.超電導線のマトリクスにCu−Niを使うことによ
りオフ抵抗を上げるb.超電導線を出来るだけ長くする
ことが考えられるが、b.はクライオスタットの大きさ
に制限があり長さには限度がある。従ってa.のマトリ
クスを高抵抗にする方向をとらざるを得ないことが、超
電導コイル(9)の不安定性を引き起す大きな要因とな
っている。
In order to stably operate the superconducting coil in the persistent current mode, the critical current 1c of the superconductor (9) of the persistent current switch is equal to or higher than the maximum operating current Iop of the superconducting coil (1). And the superconductor (9) must be stable in operation at a current of Iop or less. On the other hand, the resistance value R in the off state of the superconductor (9)
1 must be as high as possible, for which a. Increase off resistance by using Cu-Ni for the matrix of superconducting wire. B. Although it is possible to make the superconducting wire as long as possible, b. Has a limited cryostat size and a limited length. Therefore a. Inevitably, the matrix must be made to have a high resistance, which is a major factor causing instability of the superconducting coil (9).

【0007】一方マトリクスの種類を選定して超電導線
の常電導状態での抵抗R1 を高くすることにも限度があ
る。それ以上にR1 が保護抵抗R2 及び超電導コイル
(1)のクエンチ時の抵抗R3 より見かけ上大きくなる
ためには超電導線(9)の臨界電流密度を大きくする必
要がある。これは巻枠に巻回した超電導線の安定性に依
存する。超電導線を巻枠に巻回した状態での物理的安定
性は超電導コイル自体の電気的な安定性と深く関わって
いる。通常巻枠としては、アルミニウム等の金属又はガ
ラス繊維強化プラスチック(GFRP)が用いられるが
これらは室温で巻付して液体窒素(LNT)又は液体ヘ
リウム温度(LHeT)迄冷却した時、いずれも巻枠の
周方向に大きく収縮する。一方超電導線は励磁した時、
ローレンツ力に由来する反発力により巻線はゆるむこと
になる。この両者の動きが相まって超電導線間にミクロ
な相互の動きが生じ表面の摩擦発熱に伴う撹乱が生じ超
電導コイルはクエンチに至る。またアルミ枠の場合は導
電性であるため渦電流に伴うジュール熱による発熱が生
ずるためより不安定といる。またこれは熱電導率が高い
ため電熱線よりかくれた熱が冷媒中に逃げ易くなり消費
電力が大きくなるという欠点も併せて持っている。ここ
でのクエンチのし易さは臨界電流値1cに関係しIop
以上で安定して運転するためにはIcが出来るだけ高い
ことが望ましい。またIop以下で動作が安定であるた
めには、超電導線を巻枠に巻いたコイル自体が安定であ
ることが必要な条件となっている。
On the other hand, there is a limit in selecting the type of matrix to increase the resistance R1 of the superconducting wire in the normal conducting state. In order to make R1 apparently larger than the protective resistance R2 and the resistance R3 of the superconducting coil (1) during quenching, it is necessary to increase the critical current density of the superconducting wire (9). This depends on the stability of the superconducting wire wound around the bobbin. The physical stability of the superconducting wire wound around the bobbin is closely related to the electrical stability of the superconducting coil itself. Usually, a metal such as aluminum or glass fiber reinforced plastic (GFRP) is used as the reel, but when these are wound at room temperature and cooled to liquid nitrogen (LNT) or liquid helium temperature (LHeT), both are wound. It contracts greatly in the circumferential direction of the frame. On the other hand, when the superconducting wire is excited,
The repulsive force resulting from the Lorentz force loosens the winding. These two movements are combined to cause microscopic mutual movement between the superconducting wires, causing disturbance due to frictional heat generation on the surface, and the superconducting coil is quenched. In addition, the aluminum frame is more unstable because it is conductive and heat is generated by Joule heat accompanying eddy current. Further, this has a drawback that the heat radiated from the heating wire easily escapes into the refrigerant due to its high thermal conductivity, resulting in large power consumption. The ease of quenching here is related to the critical current value 1c and Iop
As described above, it is desirable that Ic is as high as possible for stable operation. In order for the operation to be stable below Iop, it is a necessary condition that the coil itself on which the superconducting wire is wound is stable.

【0008】この発明は以上の問題点を解消するために
なされたものであり永久電通スイッチオン(閉)操作時
超電導回路全体が安定して運転でき容易に高抵抗化が可
能となる永久電流スイッチを得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and a permanent current switch that enables stable operation of the entire superconducting circuit during the operation of turning on (closing) the permanent electric conduction switch and easily achieves high resistance. Aim to get.

【0009】[0009]

【課題を解決するための手段】この発明に係る永久電流
スイッチは超電導線(9)がマトリックス樹脂と、負の
膨張率を持つ補強繊維(以下負膨張繊維という)を一体
成形してなる巻枠に巻回されてなるものである。
In the persistent current switch according to the present invention, a superconducting wire (9) is a reel formed by integrally molding a matrix resin and a reinforcing fiber having a negative expansion coefficient (hereinafter referred to as negative expansion fiber). It is wound around.

【0010】ここに負膨張繊維としてはポリエチレン、
アラミド、ポリアリレート、PBZポリマー(ポリベン
ヅビスオキサゾール、ポリベンヅビスチアゾールな
ど)、ポリビニルアルコール、ポリエチレンテレフタレ
ート、ポリエチレンナフタレート、ポリイミド、ポリア
ミドイミド、ポリエーテルエーテルケトン、ポリエーテ
ルケトンケトンなどの有機繊維、及びカーボン繊維等で
ある。これらはいずれも高強力、高弾性率繊維でありガ
ラスに比べて比重が小さく、比強度、比弾性率の高い且
つ軽量な強化繊維が得られる。
Here, polyethylene is used as the negative expansion fiber,
Organic fibers such as aramid, polyarylate, PBZ polymer (polybenzbisoxazole, polybenzbisthiazole, etc.), polyvinyl alcohol, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyamideimide, polyetheretherketone, polyetherketoneketone, etc. , And carbon fiber. All of these are high-strength, high-modulus fibers, which have a lower specific gravity than glass and have a high specific strength and a high specific modulus and are lightweight.

【0011】次に寸法変化については、これらの繊維は
いずれも調製法により負膨張率(室温から温度を下げる
と伸長する)を有するという特異な性質を持っている。
一方多くのマトリクス樹脂は正膨張を示すので、プレス
成形、引き抜き成形などではその比率を適当に変える
か、配向角を適当に選んで成形することにより室温から
温度を下げた時の寸法変化として0より伸長の間で任意
に制御することが可能である。上記の繊維の中では負膨
張性、比重、強度、弾性率の点で最も良好な性能を示す
高強力ポリエチレン繊維が好ましい。この様なポリエチ
レン繊維は例えば特開昭55−107506号公報、特
開昭56−15408号公報に開示されたような製法を
用いて得ることができる。上記繊維の形態としては、短
繊維フィラメント、縒糸、紡績糸等の各種の糸または平
織、綾織、朱子織、袋織、バスケット等の公知の形態の
織物が利用できる。また、この時これら負膨張を有する
繊維と正膨張を有する無機繊維を混合使用することもで
きる。その場合、無機繊維としては、ガラス、アルミ
ナ、シリカ、チタニア、ジルコニア、シリコンナイトラ
イド、シリコンカーバイドなどのセラミックスからなる
繊維及びアルミニウム、スチール等の単体金属や、その
合金からなる金属繊維が例示されるが、ガラス、アルミ
ナ、ジルコニア、シリカなどの繊維は熱電導率が小さ
く、機械特性が優れている点で特に好ましい。
Next, regarding the dimensional change, all of these fibers have a peculiar property that they have a negative expansion coefficient (elongate when the temperature is lowered from room temperature) by the preparation method.
On the other hand, many matrix resins exhibit positive expansion, so that in press molding, pultrusion molding, etc., the ratio is changed appropriately, or the orientation angle is selected appropriately so that the dimensional change is 0 when the temperature is lowered from room temperature. More control during extension is possible. Among the above fibers, the high-strength polyethylene fiber that exhibits the best performance in terms of negative expansibility, specific gravity, strength and elastic modulus is preferable. Such polyethylene fibers can be obtained by using the production method disclosed in, for example, JP-A-55-107506 and JP-A-56-15408. As the form of the fibers, various yarns such as short fiber filaments, twisted yarns, spun yarns, and woven fabrics of known forms such as plain weave, twill weave, satin weave, basket weave, and basket can be used. Further, at this time, the fibers having the negative expansion and the inorganic fibers having the positive expansion can be mixed and used. In that case, examples of the inorganic fibers include glass, alumina, silica, fibers made of ceramics such as titania, zirconia, silicon nitride and silicon carbide, and aluminum, single metals such as steel, and metal fibers made of alloys thereof. However, fibers such as glass, alumina, zirconia, and silica are particularly preferable because they have low thermal conductivity and excellent mechanical properties.

【0012】この場合の混合方法としては、2種以上の
負膨張繊維同士あるいは負膨張繊維と上記無機繊維のフ
ィラメント同士を合糸する方法、一方の繊維のフィラメ
ントを芯にしてその周囲を他方のフィラメントで被覆し
て芯鞘構造の糸を製造する方法、両方の繊維のそれぞれ
のフィラメント束を開繊した状態で重ね合わせて集束
し、生成したフィラメントを用いて混繊糸を製造する方
法、負膨張繊維を用いたプリプレグ同士あるいは負膨張
繊維を用いたプリプレグと無機繊維を用いたプリプレグ
を積層する方法等が挙げられるが、上記無機繊維は、重
量および膨張係数の点で負膨張繊維に大きく劣っている
ため、その配合量は考慮する必要がある。
As a mixing method in this case, a method in which two or more kinds of negative expansion fibers or negative expansion fibers and filaments of the above-mentioned inorganic fibers are mixed with each other, and a filament of one fiber is used as a core and the periphery thereof is the other A method of producing a core-sheath structure yarn by coating with a filament, a method of producing a mixed filament yarn by using the produced filaments by superimposing and focusing each filament bundle of both fibers in an opened state, Examples include a method of laminating prepregs using expanded fibers or a prepreg using negative expansion fibers and a prepreg using inorganic fibers, but the inorganic fibers are significantly inferior to negative expansion fibers in terms of weight and expansion coefficient. Therefore, it is necessary to consider the blending amount.

【0013】ここで使用されるマトリックスとしてはエ
ポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル
樹脂、ウレタン樹脂、ウレタンアクリレート樹脂などが
使用できるが、特に好ましいのはエポキシ樹脂である。
As the matrix used here, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a urethane resin, a urethane acrylate resin or the like can be used, but an epoxy resin is particularly preferable.

【0014】本繊維の糸状または織物(クロス)のテー
プ又はシート状のものにマトリックス樹脂を含浸させな
がら又はプリプレグをマンドレルに巻き付けるフィラメ
ントワインディング法、テープワインディング法又はシ
ートワインデング法、プリプレグを積層して金型中で加
圧するプレス成形法、繊維とマトリックス樹脂を一体に
してダイから加圧押出するブルトルージョン法、真夜中
で繊維とマトリックス樹脂を一体含浸した後に成形する
真空含浸法、オートクレーブ法等の公知の方法が挙げら
れる。上記複合材中の繊維とマトリックス樹脂の混合比
率は、繊維の体積分率(Vf)として35〜85%が好
ましく、より好ましいのは40〜70%である。繊維の
Vfが35%より少ないと繊維の補強効果が発現せず、
85%を超えるとマトリックス樹脂と含浸しにくくなり
複合材料としての機械的特性が悪化するため好ましくな
い。
A filament winding method, a tape winding method or a sheet winding method, in which a prepreg is wound around a mandrel while impregnating a matrix resin into a thread or woven (cloth) tape or sheet of the present fiber, and prepregs are laminated. Known methods such as press molding method in which pressure is applied in a mold, bulging method in which fibers and matrix resin are integrally extruded from a die under pressure, vacuum impregnation method in which fibers and matrix resin are integrally impregnated after molding at midnight, and autoclave method. The method of is mentioned. The mixing ratio of the fibers and the matrix resin in the composite material is preferably 35 to 85%, more preferably 40 to 70% as the volume fraction (Vf) of the fibers. If the Vf of the fiber is less than 35%, the reinforcing effect of the fiber is not exhibited,
If it exceeds 85%, it is difficult to impregnate with the matrix resin and the mechanical properties of the composite material deteriorate, which is not preferable.

【0015】巻枠の形状は各種のものが使用可能であ
り、円柱、楕円柱、各種の角柱などがあり、中実、中空
いずれでも使用可能であるが、重量、強度及び巻回作業
性などの観点から、中空パイプが最も好ましい。
Various shapes of the reel can be used, such as a cylinder, an elliptic cylinder, various prisms, etc., which can be solid or hollow, but have weight, strength and winding workability. From the viewpoint of, a hollow pipe is most preferable.

【0016】[0016]

【実施例】負膨張繊維としてポリエチレン繊維(東洋紡
ダイニーマ、SK−60)、アラミド繊維(日本アラミ
ド繊維、トワロンHM)、ポリアクリレート(クラレ、
ベクトラン)、カーボン繊維(ハーキュレス、AS−
4)、ガラス繊維(日東紡、T−ガラス)を用い、実施
例1〜5、比較例6の合計6種類の繊維強化プラスチッ
クをフィラメントワインディング法により作成した。マ
トリックスとしては以下に示すエポキシ樹脂を使用し
た。 エピコート827(油化シェル) 100 HN−2200(日立化成) 80 EMI−24(油化シェル) 2 これらを均一混合して樹脂ドープを作成した。次に各種
繊維にエポキシ樹脂を含浸させながらマンドレルに巻き
付け円筒状とした。次にこれをマンドレル上に保持した
まま110℃にて、2hr、次いで130℃にて2hr
の硬化成形し、繊維体積含有率65%、外径60mmφ/
内径50mmφ、長さ100mmの成形体を得た。この成形
体及び各強化繊維のRT〜LHeTの熱膨張率を測定し
た。結果を表2に示す。次にこれに金属枠としてアルミ
を加えた7本の巻枠に各々表1に示す超電導線(9)を
2本に折り巻げて巻枠に無誘導状態で巻回する。次いで
電熱線(10)として、シート状に成形されたものを使
用するがこれは絶縁フイルム(PET)の表面にアルミ
を蒸着したものを同じフイルムでサンドイッチ状に構成
したものである。これを先に巻いた超電線の上より一層
巻回して永久電流スイッチが作成した。次に各永久電流
スイッチの特性を調べた。永久電線スイッチ及び装置全
体の回路図は図2及び1に示す通りである。超電導コイ
ル(1)を励消磁する動作は前述の通りであるので省略
する。測定した特性値は永久電流スイッチ(7)におけ
る超電導線(9)の臨界電流値、電熱線(10)をオン
にして、、超電導線(9)が常電導になった時のオフ抵
抗、及び電力、永久電流スイッチのオフ及びオンの時の
スイッチング時間(Ts)及び励消磁速度を表2に示
す。
Examples As negative expansion fibers, polyethylene fibers (Toyobo Dyneema, SK-60), aramid fibers (Japanese aramid fibers, Twaron HM), polyacrylates (Kuraray,
Vectran), carbon fiber (Hercules, AS-
4), using glass fibers (Nittobo, T-glass), a total of 6 types of fiber reinforced plastics of Examples 1 to 5 and Comparative Example 6 were prepared by the filament winding method. The following epoxy resin was used as the matrix. Epicoat 827 (Oilized shell) 100 HN-2200 (Hitachi Chemical Co., Ltd.) 80 EMI-24 (Oilized shell) 2 These were uniformly mixed to form a resin dope. Next, various fibers were impregnated with epoxy resin and wound around a mandrel to form a cylindrical shape. Next, while keeping it on the mandrel, it was held at 110 ° C for 2 hours, then at 130 ° C for 2 hours.
Cured and molded, fiber volume content 65%, outer diameter 60 mmφ /
A molded body having an inner diameter of 50 mmφ and a length of 100 mm was obtained. The thermal expansion coefficient of RT to LHeT of this molded product and each reinforcing fiber was measured. The results are shown in Table 2. Next, the superconducting wire (9) shown in Table 1 can be folded into two around each of seven reels in which aluminum is added as a metal frame, and the superconducting wires (9) shown in Table 1 can be wound in a non-inductive state. Next, as the heating wire (10), a sheet-shaped one is used, which is a sandwich-like structure formed by depositing aluminum on the surface of an insulating film (PET) with the same film. The permanent current switch was created by further winding this on the previously wound super electric wire. Next, the characteristics of each persistent current switch were examined. Circuit diagrams of the permanent wire switch and the entire device are as shown in FIGS. The operation of exciting and demagnetizing the superconducting coil (1) is the same as described above, and will be omitted. The measured characteristic values are the critical current value of the superconducting wire (9) in the persistent current switch (7), the off resistance when the superconducting wire (9) becomes normal conducting when the heating wire (10) is turned on, and Table 2 shows the switching time (Ts) and the demagnetization speed when the power, the persistent current switch is off and on.

【0017】(熱膨張率)各試料の室温から液体He温
度までの寸法変化率をTMA法により測定し、熱膨張率
を算出した。(昇温速度:5℃/min )
(Thermal expansion coefficient) The dimensional change rate from room temperature to the liquid He temperature of each sample was measured by the TMA method to calculate the thermal expansion coefficient. (Raising rate: 5 ° C / min)

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明によると臨界電流値が高く、オフ
ヒーター消費電力が小さく、スイッチング時間が短く、
励消磁速度が高く且つ安定した運転が可能な永久電流ス
イッチを提供することを可能にした。
According to the present invention, the critical current value is high, the off-heater power consumption is low, the switching time is short,
It has become possible to provide a persistent current switch having a high excitation / demagnetization speed and capable of stable operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】永久電流スイッチを使用した超電導装置の構成
図。
FIG. 1 is a configuration diagram of a superconducting device using a persistent current switch.

【図2】永久電流スイッチの構成図。FIG. 2 is a configuration diagram of a permanent current switch.

【符号の説明】[Explanation of symbols]

1:超電導コイル 2:冷媒 3:クライオスタッ
ト 4:電流リード 6:保護抵抗 7:永久スイッチ 9:超電導体 10:電熱線
1: Superconducting coil 2: Refrigerant 3: Cryostat 4: Current lead 6: Protective resistance 7: Permanent switch 9: Superconductor 10: Heating wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 巻枠と、この巻枠に超電導線が巻回され
てなる超電導巻線、この超電導線を臨界温度以下に冷却
する冷却装置、及び上記超電導線を臨界温度以上に加熱
する加熱装置を備えた永久電流スイッチにおいて前記巻
枠がマトリックス樹脂と負の膨張率を持つ補強繊維とを
1体成形してなる繊維強化プラスチックよりなることを
特徴とする永久電流スイッチ。
1. A winding frame, a superconducting winding formed by winding a superconducting wire around the winding frame, a cooling device for cooling the superconducting wire below a critical temperature, and heating for heating the superconducting wire above the critical temperature. A permanent current switch provided with a device, wherein the reel is made of a fiber reinforced plastic obtained by molding a matrix resin and a reinforcing fiber having a negative expansion coefficient as one body.
JP24067392A 1992-09-09 1992-09-09 Permanent current switch Expired - Fee Related JP3362874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24067392A JP3362874B2 (en) 1992-09-09 1992-09-09 Permanent current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24067392A JP3362874B2 (en) 1992-09-09 1992-09-09 Permanent current switch

Publications (2)

Publication Number Publication Date
JPH06132572A true JPH06132572A (en) 1994-05-13
JP3362874B2 JP3362874B2 (en) 2003-01-07

Family

ID=17063006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24067392A Expired - Fee Related JP3362874B2 (en) 1992-09-09 1992-09-09 Permanent current switch

Country Status (1)

Country Link
JP (1) JP3362874B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126846A (en) * 1992-10-20 1994-05-10 Toyobo Co Ltd Fiber reinforced plastic material for extremely low temperature use
KR100614185B1 (en) * 2002-04-04 2006-08-21 주식회사 서명코엠 Redox bipolar cell fabric washer system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126846A (en) * 1992-10-20 1994-05-10 Toyobo Co Ltd Fiber reinforced plastic material for extremely low temperature use
KR100614185B1 (en) * 2002-04-04 2006-08-21 주식회사 서명코엠 Redox bipolar cell fabric washer system

Also Published As

Publication number Publication date
JP3362874B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
CN100413110C (en) Superconducting magnet
JP3362874B2 (en) Permanent current switch
US20240096535A1 (en) Current leads for superconducting magnets
JP3582602B2 (en) Cryogenic container
JPH06350148A (en) Perpetual current superconducting device
JP2001307915A (en) Composite material reinforced fiber for conduction- cooled superconducting magnet
JPH08195311A (en) Superconducting coil
JP4228282B2 (en) High temperature superconducting wire and high temperature superconducting coil
Kiyoshi et al. Operation of a 20-T superconducting magnet with a large bore
JPH06224026A (en) Superconducting coil device
Oshikiri et al. 21.1 T superconducting magnet with 50 mm clear bore
CN220306060U (en) Nitrogen fixation cooling type high temperature superconducting magnet
JPH04366139A (en) Cryogenic material made of fiber-reinforced resin
JP4006607B2 (en) Superconducting coil
JPH07335427A (en) Superconductive coil
Jones Electromagnet fundamentals
JPH08115813A (en) Superconducting coil
JPH06318514A (en) Superconducting coil device
Suzuki et al. Super conducting Magnet s
JP2765204B2 (en) How to train a permanent current switch
Bohn et al. Review on the performance limits of a large superconducting MHD-magnet
JP3181345B2 (en) Superconducting current lead
JPH0963366A (en) Insulation-covered superconducting wire rod and its manufacture
JPH0590917U (en) Permanent current switch
CN117877833A (en) Quick-cooling high-field flat-top pulse magnet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020924

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees