JPH0613210A - Manufacture of r-fe-b base permanent magnet - Google Patents

Manufacture of r-fe-b base permanent magnet

Info

Publication number
JPH0613210A
JPH0613210A JP4191623A JP19162392A JPH0613210A JP H0613210 A JPH0613210 A JP H0613210A JP 4191623 A JP4191623 A JP 4191623A JP 19162392 A JP19162392 A JP 19162392A JP H0613210 A JPH0613210 A JP H0613210A
Authority
JP
Japan
Prior art keywords
phase
heat treatment
permanent magnet
crystal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4191623A
Other languages
Japanese (ja)
Inventor
Eiji Iwamura
栄治 岩村
Tsukasa Yuri
司 由利
Hiroyuki Mitani
宏幸 三谷
Atsushi Hanaki
敦司 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4191623A priority Critical patent/JPH0613210A/en
Publication of JPH0613210A publication Critical patent/JPH0613210A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture the R-Fe-B base permanent magnet in small crystalline particle diameter having minimal magnetic impurity phase by a method wherein Fe is crystallized as the primary crystal during the crystalline separating step within an R-Fe-B base alloy for making the foundry structure fine or adjusting the liquid B quantity in the temperature region during the heat treatment step. CONSTITUTION:An alloy material comprising R: (rare earth metal): 12-17% (atomic%), B: 4-6%, remaining part: substantially Fe is used to form a fine foundry structure by crystallizing Fe as the primary crystal during melting.foundry steps. Next, the fine structure comprising R2Fe14B crystalline particles in crystalline particle diameter not exceeding 6mum amounting to exceeding 70% of the whole body is formed by adjusting the B content in liquid phase at the temperature of 600-1100 deg.C during the heat treatment step and 1-5 atomic% for suppressing the crystalline particle growth. Finally, two phase structure comprising R2Fe14B and a grain boundry phase not including such magnetic impurity phase as RFe4B4 or R2F17, etc., at all is to be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた磁気特性を有す
るR−Fe−B系永久磁石の製法に関し、この磁石は一
般家庭用の各種電気製品やコンピューター等の電気・電
子材料等として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an R--Fe--B system permanent magnet having excellent magnetic properties, which magnet is useful as various household electric appliances, electric / electronic materials for computers and the like. Is.

【0002】[0002]

【従来の技術】永久磁石とは、外部から電気的エネルギ
ーを供給しなくとも磁界を発生する材料であり、その需
要は上記の様な電気・電子材料を主体にしてますます増
大してきている。ところで現在使用されている永久磁石
のうち代表的なものはアルニコ系鋳造磁石と希土類一遷
移金属系磁石であり、中でも後者に属するR−Fe−B
系永久磁石は高い保持力とエネルギー積を持った永久磁
石として期待されており、該R−Fe−B系永久磁石の
製法としては次の様な方法が提案されている。
2. Description of the Related Art Permanent magnets are materials that generate a magnetic field without being supplied with electrical energy from the outside, and the demand for them is ever increasing mainly based on the electric and electronic materials described above. By the way, typical permanent magnets currently used are an alnico-based cast magnet and a rare earth-transition metal-based magnet, among which R-Fe-B belonging to the latter.
The system permanent magnet is expected as a permanent magnet having a high coercive force and energy product, and the following method has been proposed as a method for producing the R—Fe—B system permanent magnet.

【0003】(1) 特開昭59−46008号公報やM.
Sagawa,etc.;J.Appl.Phys.V
ol.55(6)15March1984,p2083
等に開示された方法であり、原子比で8〜30%のR
(但し、RはYを包含する希土類元素の少なくとも1
種:以下同じ)、2〜28%のBおよび残部Feからな
る磁気異方性焼結体よりなる永久磁石を粉末冶金法に基
づく焼結法によって得る方法である。
(1) Japanese Patent Laid-Open No. 59-46008 and M.K.
Sagawa, etc. J .; Appl. Phys. V
ol. 55 (6) 15 March 1984, p2083
And the like, and the atomic ratio of R is 8 to 30%.
(However, R is at least 1 of rare earth elements including Y.
Species: the same applies hereinafter), a method of obtaining a permanent magnet made of a magnetic anisotropic sintered body consisting of 2 to 28% B and the balance Fe by a sintering method based on powder metallurgy.

【0004】この方法では、溶解・鋳造により合金イン
ゴットを作製し、適度の粒径に粉砕した後バインダーと
混練してから磁場中で任意の形状にプレス成形し、次い
でアルゴン中で焼結することによって永久磁石を得る。
尚、焼結後600℃前後の温度で熱処理すると保磁力を
一層高めることができることも明らかにされている。
In this method, an alloy ingot is produced by melting and casting, crushed to an appropriate particle size, kneaded with a binder, press-formed into an arbitrary shape in a magnetic field, and then sintered in argon. To get a permanent magnet.
It has also been clarified that the coercive force can be further increased by performing heat treatment at a temperature of around 600 ° C. after sintering.

【0005】(2) 特開昭59−211549号公報、同
60−100402号公報、R.W.Lee;App
l.Phys.Lett.Vol.46(8),Apr
il,1985,p790等に開示された方法であり、
アモルファス合金の製造に用いられる急冷薄帯製造装置
を使用し、厚さ30μm程度の急冷薄片を作製した後、
樹脂結合法または2段階ホットプレス法により機械的配
向を行なって磁気特性を高める方法である。
(2) JP-A-59-211549, JP-A-60-100402, R.I. W. Lee; App
l. Phys. Lett. Vol. 46 (8), Apr
il, 1985, p790 and the like,
After using a quenching ribbon manufacturing apparatus used for manufacturing an amorphous alloy to produce a quenching thin piece having a thickness of about 30 μm,
It is a method of enhancing magnetic properties by performing mechanical orientation by a resin bonding method or a two-step hot pressing method.

【0006】(3) 特開昭62−276803号公報等に
開示された方法であり、鋳造インゴットを500℃以上
の温度で熱間加工することによって結晶粒を微細化し、
その結晶軸を特定方向に配向させて磁気的に異方化させ
る方法である。
(3) According to the method disclosed in Japanese Patent Laid-Open No. 62-276803, a cast ingot is hot-worked at a temperature of 500 ° C. or higher to refine the crystal grains,
This is a method in which the crystal axis is oriented in a specific direction to make it magnetically anisotropic.

【0007】(4) E.Otsuki,etc.;Pro
c.11th Int.Workshop on Ra
re EarthMagnets and Their
Application,Pittsburgh,1
990,vol.1,p328等に開示されている様な
方法であり、組成を調整(主相成分と粒界成分)した2
種類の超急冷粉末を焼結することで磁気的不純物相をで
きるだけ減少させることにより磁気特性を高める方法で
ある。上記方法の中で現在汎用されているのは(1) の焼
結法である。
(4) E. Otsuki, etc. ; Pro
c. 11th Int. Workshop on Ra
re EarthMagnets and Their
Application, Pittsburgh, 1
990, vol. 1, p328, etc., and the composition is adjusted (main phase component and grain boundary component).
This is a method of enhancing the magnetic properties by reducing the magnetic impurity phase as much as possible by sintering a kind of ultra-quenched powder. Among the above methods, the most commonly used method is the sintering method (1).

【0008】[0008]

【発明が解決しようとする課題】高性能の永久磁石を得
るには、強磁性相の磁気モーメントおよび異方性磁界が
大きいことは勿論であるが、このほか結晶粒径が小さく
且つ磁気的不純物相を含まないことも極めて重要であ
る。結晶粒径が大きくなると結晶粒内における反転磁界
の発生がエネルギー的に起こりやすくなり、その結果と
して保磁力が低下する。また磁気的不純物相が増加する
とそれだけ強磁性相の体積率が減少するので、磁石の単
位体積当たりに取り出すことのできる磁化は当然に減少
してくる。
In order to obtain a high-performance permanent magnet, it goes without saying that the magnetic moment of the ferromagnetic phase and the anisotropic magnetic field are large, but in addition to this, the crystal grain size is small and magnetic impurities are present. It is also very important not to include phases. When the crystal grain size becomes large, a reversal magnetic field easily occurs in the crystal grain due to energy, and as a result, the coercive force decreases. Further, as the magnetic impurity phase increases, the volume ratio of the ferromagnetic phase decreases correspondingly, so that the magnetization that can be extracted per unit volume of the magnet naturally decreases.

【0009】こうした観点に立って上記(1) 〜(4) とし
て示した従来法を検討してみると、(1) の焼結型磁石で
は、鋳塊を一旦3μm程度に微粉砕するが、その後の焼
結工程および熱処理工程で結晶粒の成長が起こり、最終
的な結晶粒径は10μm程度になってしまう。しかも合
金の基本組成は、強磁性相であるNd2 Fe14B(Nd
11.8Fe82.45.9 )のストイキオメトリーよりずれた
Nd15Fe778 であるため、磁気的不純物相として相
当量のNdFe44 相を含んでおり、これも磁気特性
を下げる原因になっている。
From this point of view, when the conventional method shown in the above (1) to (4) is examined, in the sintered magnet of (1), the ingot is once finely pulverized to about 3 μm. Crystal grains grow in the subsequent sintering process and heat treatment process, and the final crystal grain size becomes about 10 μm. Moreover, the basic composition of the alloy is Nd 2 Fe 14 B (Nd) which is a ferromagnetic phase.
Since it is Nd 15 Fe 77 B 8 which is deviated from the stoichiometry of 11.8 Fe 82.4 B 5.9 ), it contains a considerable amount of NdFe 4 B 4 phase as a magnetic impurity phase, which also causes a decrease in magnetic characteristics. ing.

【0010】また上記(2),(3),(4) の磁石は、いずれも
2 Fe14Bのストイキオメトリーに近い組成を有して
おり、磁気的不純物相が少ないという点では上記(1) の
磁石よりも優れたものであると言えるが、製造時の熱間
加工や熱処理工程での結晶粒の粗大化は避けられない。
The magnets (2), (3), and (4) each have a composition close to the stoichiometry of R 2 Fe 14 B, and have a small amount of magnetic impurity phase. Although it can be said that it is superior to the magnet of (1), coarsening of crystal grains is inevitable during hot working during manufacturing and heat treatment.

【0011】本発明は上記の様な従来技術の問題点に着
目してなされたものであって、その目的は、結晶粒径が
小さく且つ磁気的不純物相の極力低減された強磁性のR
−Fe−B系永久磁石の製法を確立しようとするもので
ある。
The present invention has been made by paying attention to the problems of the prior art as described above, and an object thereof is a ferromagnetic R having a small crystal grain size and a magnetic impurity phase reduced as much as possible.
It is intended to establish a manufacturing method of a —Fe—B system permanent magnet.

【0012】[0012]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る製法の構成は、R(RはYを含む
希土類元素の1種以上を表わす)とFeおよびBを主成
分とする合金を溶解・鋳造し、熱間加工及び熱処理を行
なって希土類系永久磁石を製造する方法において、R:
12〜17%(原子百分率を表わす、以下同じ)、B:
4〜6%、残部:実質的にFeからなる合金原料を使用
し、溶解・鋳造工程で鉄を初晶として晶出させることに
より微細な鋳造組織を形成し、且つ熱処理時においては
600〜1100℃の温度における液相中のB含有量を
原子百分率で1〜5%に調整することによって結晶粒の
成長を抑制することにより、結晶粒径が6μm以下のR
2Fe14B結晶粒が全体の70%以上を占める微細組織
を有すると共に、RFe44 やR217等の磁性不純
物相を含まず、R2 Fe14Bと粒界相からなる2相組織
を有する磁石を得るところに要旨を有するものである。
The structure of the manufacturing method according to the present invention, which has been capable of solving the above-mentioned problems, is mainly composed of R (R represents one or more rare earth elements including Y), Fe and B as main components. In the method for producing a rare earth-based permanent magnet by melting / casting the alloy, hot-working and heat-treating, R:
12 to 17% (representing atomic percentage, the same applies hereinafter), B:
4-6%, balance: Using an alloy raw material consisting essentially of Fe, a fine cast structure is formed by crystallizing iron as a primary crystal in the melting / casting process, and 600-1100 during heat treatment. By controlling the B content in the liquid phase at a temperature of ℃ to 1 to 5% in terms of atomic percentage to suppress the growth of crystal grains, R having a crystal grain size of 6 μm or less can be obtained.
2 Fe 14 B crystal grains have a fine structure occupying 70% or more of the whole, and do not contain a magnetic impurity phase such as RFe 4 B 4 or R 2 F 17 and consist of R 2 Fe 14 B and a grain boundary phase. The gist is to obtain a magnet having a phase structure.

【0013】[0013]

【作用】本発明者らは様々のR−Fe−B系合金を対象
として磁気特性と金属組織の関係を調査すると共に、該
磁石合金の組織形成過程について詳しく解析した。その
結果、R−Fe−B系合金においては結晶析出時の初晶
としてFeを晶出させることにより、R2 Fe14Bを初
晶とする場合よりも鋳造組織を格段に微細できること、
また熱処理時600〜1100℃の温度領域における液
相のB量が原子比で1〜5%の範囲内になるときに結晶
粒の成長が著しく抑制されることをつきとめた。
The present inventors investigated the relationship between the magnetic properties and the metal structure of various R-Fe-B type alloys and analyzed the structure formation process of the magnet alloy in detail. As a result, in the R-Fe-B system alloy, by crystallizing Fe as a primary crystal at the time of crystal precipitation, the cast structure can be remarkably finer than in the case where R 2 Fe 14 B is a primary crystal.
Further, it was found that when the B content of the liquid phase in the temperature range of 600 to 1100 ° C. during the heat treatment is in the range of 1 to 5% in atomic ratio, the growth of crystal grains is significantly suppressed.

【0014】ところでR−Fe−Bを主成分とする三元
系の状態図としては、RがNdおよびPrの場合につい
て、夫々Y.Matuura,etc.;Jap.J.
Appl.Phys.,24(1985),L635や
永山勝久等;第14回日本応用磁気学会学術講演概要
集,第493頁(1990)が知られており、これらの
状態図からも明らかである様に、B含有量が4〜6%
(以下特記しない限り原子百分率を意味する)では、R
が12〜17%(残部はFe)の領域でFeが初晶とし
て晶出し、また製造時の凝固過程で600〜1100℃
の温度域では液相中のB含有量が1〜5%になる。
As a phase diagram of a ternary system containing R-Fe-B as a main component, when R is Nd and Pr, Y. Matura, etc. Jap. J.
Appl. Phys. , 24 (1985), L635, Katsuhisa Nagayama, et al .; The 14th Annual Meeting of the Applied Magnetics Society of Japan, 493 (1990) is known, and as is clear from these phase diagrams, it contains B. The amount is 4-6%
(Unless otherwise specified, it means atomic percentage), R
Of Fe is crystallized as a primary crystal in the region of 12 to 17% (the balance is Fe), and 600 to 1100 ° C. in the solidification process during manufacturing.
In the temperature range of 1, the B content in the liquid phase is 1 to 5%.

【0015】一方、従来のR−Fe−B系焼結型磁石を
得る際に焼結および熱処理工程で生成する初晶はNd2
Fe14Bであり、600〜1100℃の温度域における
液相中のB含有量は10〜20%の領域にある。
On the other hand, when the conventional R-Fe-B system sintered magnet is obtained, the primary crystal formed in the sintering and heat treatment process is Nd 2.
It is Fe 14 B, and the B content in the liquid phase in the temperature range of 600 to 1100 ° C. is in the range of 10 to 20%.

【0016】鋳造・凝固時の初晶となる相の違いによっ
て合金組織の微細化の程度が著しく変わってくる理由は
次の様に考えられる。即ちFeとR2 Fe14Bを比較す
ると、前者は単純な立方晶であるのに対し後者は複雑な
結晶構造を有する立方晶である。
The reason why the degree of refinement of the alloy structure remarkably changes depending on the difference in the phase of the primary crystal during casting and solidification is considered as follows. That is, comparing Fe and R 2 Fe 14 B, the former is a simple cubic crystal, while the latter is a cubic crystal having a complicated crystal structure.

【0017】この結晶構造の違いにより、夫々が融液状
態から結晶として晶出して更に成長していくときの固溶
界面のエネルギーは、FeよりもR2 Fe14Bの方が大
きくなる。そのためギブス−トムソン効果
Due to this difference in crystal structure, R 2 Fe 14 B has a larger energy at the solid solution interface when crystallized from the melt state as crystals and further grown, as compared with Fe. So the Gibbs-Thomson effect

【0018】[0018]

【数1】 [Equation 1]

【0019】によって、R2 Fe14Bのデンドライト先
端半径は必然的にFeよりも大となる。つまりR2 Fe
14Bのσが大きいためγを小さくすると△Trが大きく
なり過ぎてしまい、デンドライト先端部において固相よ
りも液相が安定化するためγを小さくすることができな
い。合金の結晶成長中には、固相の周囲の液相に溶質の
拡散場が形成されるが、デンドライトアームスペーシン
グ(DAS)はこの拡散場に大きな影響を受け、夫々の
デンドライトは相互の拡散場が重なり合わない様に形成
されるので、デンドライト先端の曲率半径が大きいR2
Fe14Bでは、各溶質の拡散場が重なり合わない様にす
るために大きなDASを取らねばならなくなり、その結
果として結晶組織が粗大化するものと考えられる。
Thus, the radius of the dendrite tip of R 2 Fe 14 B is necessarily larger than that of Fe. That is, R 2 Fe
Since σ of 14 B is large, ΔTr becomes too large when γ is made small, and γ cannot be made small because the liquid phase is stabilized at the tip of the dendrite rather than the solid phase. During the crystal growth of the alloy, a solute diffusion field is formed in the liquid phase around the solid phase. The dendrite arm spacing (DAS) is greatly affected by this diffusion field, and the dendrites are mutually diffused. Are formed so that they do not overlap with each other, the radius of curvature of the dendrite tip is large R 2
With Fe 14 B, it is considered that a large DAS must be taken in order to prevent the diffusion fields of the solutes from overlapping, and as a result, the crystal structure becomes coarse.

【0020】また熱処理時の600〜1100℃の温度
域において生成する液相のB含有量を1〜5%にするこ
とによって結晶粒の成長が抑制される理由は現在のとこ
ろ明確ではない。一般に結晶粒成長の程度は物質拡散機
構に支配され、熱処理温度や熱処理時間によって粒径は
ほぼ決まってくる。しかしながら本発明に係る前述の成
分系においては、こうした拡散機構支配の結晶粒成長で
はなく、成長界面のカイネティクスが結晶粒の成長を支
配することで、B含有量の多少が重要な影響をもたらし
ているものと思われる。
The reason why the growth of crystal grains is suppressed by setting the B content of the liquid phase generated in the temperature range of 600 to 1100 ° C. during the heat treatment to 1 to 5% is not clear at present. Generally, the degree of crystal grain growth is governed by the material diffusion mechanism, and the grain size is almost determined by the heat treatment temperature and the heat treatment time. However, in the above-described component system according to the present invention, rather than such grain growth dominated by the diffusion mechanism, the kinetics of the growth interface dominates the grain growth, so that the B content has a significant influence. It seems that there is.

【0021】上記の様な理由と、さらにR2 Fe14Bの
ストイキオメトリーにより近く、磁気的不純物を含まな
いという観点から、本発明ではRおよびBの含有量を1
2〜17%および4〜6%に定めている。そしてこの様
に磁石合金の成分組成を特定することによってFeを初
晶とする微細な鋳造組織を得ることができ、しかもその
後の熱処理工程では600〜1100℃の温度域におけ
る液相中のB含有量が1〜5%の適性範囲に収まる結
果、該熱処理時における結晶の成長が抑制されると共に
RFe44 やR217等の磁性不純相を含まず実質的
にR2 Fe14Bと粒界相からなる微細な2相組織の磁石
を得ることができる。
From the above-mentioned reason and from the viewpoint of being closer to the stoichiometry of R 2 Fe 14 B and containing no magnetic impurities, the content of R and B is 1 in the present invention.
It is set to 2 to 17% and 4 to 6%. By specifying the component composition of the magnet alloy in this way, a fine cast structure with Fe as the primary crystal can be obtained, and in the subsequent heat treatment step, B content in the liquid phase in the temperature range of 600 to 1100 ° C. As a result of the amount falling within the suitable range of 1 to 5%, the growth of crystals during the heat treatment is suppressed, and the magnetic impure phase such as RFe 4 B 4 or R 2 F 17 is not contained and R 2 Fe 14 B is substantially contained. It is possible to obtain a magnet having a fine two-phase structure composed of a grain boundary phase.

【0022】本発明においてR(希土類金属)として
は、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、
Tb、Dy、Ho、Er、Tm、Yb、Lu等が挙げら
れ、これらは単独で使用してもよくあるいは2種類以上
を組み合わせて使用することもできる。最も高い磁気特
性が得られるのはPr,Ndであるので、実用的には、
Pr、Nd、Pr−Nd、Ce−Pr−Nd合金等が用
いられる。
In the present invention, R (rare earth metal) includes Y, La, Ce, Pr, Nd, Sm, Eu, Gd,
Examples thereof include Tb, Dy, Ho, Er, Tm, Yb and Lu, and these may be used alone or in combination of two or more kinds. The highest magnetic properties are obtained with Pr and Nd, so practically,
Pr, Nd, Pr-Nd, Ce-Pr-Nd alloy or the like is used.

【0023】尚本発明では、上記成分組成の規定要件を
満たす合金を溶解・鋳造、圧延、鍛造等の熱間加工を施
してから熱処理を行なって永久磁石を得る。或は溶解・
鋳造の後ジェットミル等で一旦平均粒径5μm程度以下
にまで微粉砕し、更に磁界中で配向させてから圧縮成形
した後、不活性ガス雰囲気中で加熱焼結してから熱処理
を行なうことによっても永久磁石が得られる。
In the present invention, the permanent magnet is obtained by subjecting an alloy satisfying the prescribed requirements of the above-mentioned composition to hot working such as melting / casting, rolling, forging and the like, followed by heat treatment. Or dissolution
After casting, finely pulverize with a jet mill etc. to an average particle size of about 5 μm or less, further orient in a magnetic field, compression-mold, then heat-sinter in an inert gas atmosphere, and then heat-treat Also obtains a permanent magnet.

【0024】この熱処理工程では、熱処理温度を600
℃〜1100℃程度に設定することによって当該熱処理
における液相中のB含有量は1〜5%となって熱処理時
における結晶粒の成長は殆んど進行せず、結晶粒径が6
μm以下のR2 Fe14B結晶粒が全体の70%以上を占
め、しかもR2 Fe44 やR2 Fe17などの磁性不純
物相を実質的に含まない微細で磁気特性の優れた永久磁
石を得ることができる。
In this heat treatment step, the heat treatment temperature is set to 600.
By setting the temperature to about 1 to 100 ° C, the B content in the liquid phase in the heat treatment becomes 1 to 5%, and the crystal grain growth hardly progresses during the heat treatment, and the crystal grain size is 6%.
R 2 Fe 14 B crystal grains with a size of μm or less occupy 70% or more of the whole, and the permanent particles are fine and have excellent magnetic properties and substantially do not contain a magnetic impurity phase such as R 2 Fe 4 B 4 or R 2 Fe 17. You can get a magnet.

【0025】次に実施例を挙げて本発明の構成および作
用効果をより具体的に説明するが、本発明はもとより下
記実施例によって制限を受けるものではない。
Next, the constitution and operational effects of the present invention will be described more specifically with reference to examples, but the present invention is not limited by the following examples.

【0026】[0026]

【実施例】実施例1 Nd15Fe85-XX (x=3.5〜7.5%)なる組成
の合金を高純度アルゴン雰囲気中で高周波誘導加熱炉を
用いて溶解・鋳造し、柱状晶のよく発達した鋳塊を得
た。
EXAMPLES Example 1 An alloy having a composition of Nd 15 Fe 85-X B X (x = 3.5 to 7.5%) was melted and cast in a high-purity argon atmosphere using a high frequency induction heating furnace, An ingot with well-developed columnar crystals was obtained.

【0027】得られた鋳造合金における平均結晶粒径の
B量依存性を図1に示す。結晶粒径は柱状晶の横断面よ
り測定した。この図からも明らかである様に初晶が鉄か
らNd2 Fe14Bに変わる5%Bと5.5%Bの間で結
晶粒径は急変しており、初晶が鉄である5%B以下での
結晶粒径は、Bが5%超である場合の1/3〜1/4以
下になっている。
FIG. 1 shows the B content dependency of the average crystal grain size in the obtained cast alloy. The crystal grain size was measured from the cross section of the columnar crystal. As is clear from this figure, the crystal grain size suddenly changes between 5% B and 5.5% B, where the primary crystal changes from iron to Nd 2 Fe 14 B, and the primary crystal is 5%. The crystal grain size of B or less is 1/3 to 1/4 or less of the case where B is more than 5%.

【0028】実施例2 実施例1と同様にして製造したNd−Fe−B三元系合
金鋳塊を、ジェットミルにより平均粒径約3μmまで粉
砕した後、ホットプレスにて1050℃で6時間、加圧
焼結した。この合金の平均結晶粒径のB量依存性を図2
に示す。この図からも明らかである様に、熱処理中の液
相組成のB量が低B側(1〜4%B)と高B側(10〜
20%)に分かれる境界となる、5%Bと5.5%Bの
間で粒径は大きく変化しており、5%B以下で熱処理中
の結晶粒成長が抑制され、平均結晶粒径は、それより大
きい場合の1/3〜1/4以下に抑えられることが分か
る。
Example 2 An Nd-Fe-B ternary alloy ingot produced in the same manner as in Example 1 was crushed by a jet mill to an average particle size of about 3 μm, and then hot-pressed at 1050 ° C. for 6 hours. , And pressure-sintered. Fig. 2 shows the dependence of the average grain size of this alloy on the amount of B.
Shown in. As is clear from this figure, the B content of the liquid phase composition during heat treatment is low B side (1 to 4% B) and high B side (10 to 10% B).
The grain size changes greatly between 5% B and 5.5% B, which is the boundary at which the grain size is divided into 20%). It can be seen that the value can be suppressed to 1/3 to 1/4 or less of the case larger than that.

【0029】実施例3 Nb15Fe778 とNb13.5Fe81.74.8 よりなる合
金を、アルゴン雰囲気中で高周波加熱により溶解・鋳造
した。この鋳造合金をジェットミルによって平均粒径約
3μmまで粉砕した後、得られた粉末を10kOe の磁界
中で配向させ、200MPaの圧力で配向方向と垂直方
向に圧縮成型した。成型体をアルゴン雰囲気中1080
℃で1時間の焼結を行ない、さらに焼結後600℃で1
時間熱処理した。尚Nd13.581.74.8 合金よりなる
熱処理物の結晶組織を走査型電子顕微鏡によって観察し
たところ、実質的にNd214Bと粒界相のみからなる
2相組織を有し粒径6μm以下のNd2 Fe14B結晶粒
が全体の70%を占めていた。これに対しNd15Fe77
8 合金よりなる熱処理物はNd2 Fe14B、NdFe
44 および粒界相であるNd−rich相から構成さ
れ、粒径6μm以下のNd2 Fe14B結晶粒は全体の5
0%程度であった。
Example 3 An alloy of Nb 15 Fe 77 B 8 and Nb 13.5 Fe 81.7 B 4.8 was melted and cast by high frequency heating in an argon atmosphere. This cast alloy was pulverized by a jet mill to an average particle size of about 3 μm, and the obtained powder was oriented in a magnetic field of 10 kOe and compression-molded in a direction perpendicular to the orientation direction at a pressure of 200 MPa. Molded body in argon atmosphere 1080
Sintering for 1 hour at ℃, and after sintering at 600 ℃ for 1 hour
Heat treated for hours. When the crystal structure of the heat-treated product made of Nd 13.5 F 81.7 B 4.8 alloy was observed by a scanning electron microscope, it had a two-phase structure consisting essentially of Nd 2 F 14 B and a grain boundary phase and a grain size of 6 μm or less. Nd 2 Fe 14 B crystal grains accounted for 70% of the whole. On the other hand, Nd 15 Fe 77
Heat-treated products made of B 8 alloy are Nd 2 Fe 14 B and NdFe
Nd 2 Fe 14 B crystal grains composed of 4 B 4 and Nd-rich phase which is a grain boundary phase and having a grain size of 6 μm or less are 5
It was about 0%.

【0030】表1は、両合金の磁気特性を比較したもの
であり、本発明に係る実施例磁石は従来の焼結磁石(比
較例)よりも優れた磁気特性を有していることがわか
る。
Table 1 is a comparison of the magnetic properties of the two alloys, and it can be seen that the example magnets according to the present invention have better magnetic properties than the conventional sintered magnet (comparative example). .

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明は以上の様に構成されており、結
晶粒径が小さく且つ磁気的不純物相が非常に少なく磁気
特性の卓越したR−Fe−B系永久磁石を提供し得るこ
とになった。
As described above, the present invention can provide an R-Fe-B system permanent magnet having a small crystal grain size and a very small magnetic impurity phase and excellent magnetic properties. became.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳造合金(鋳造のまま)における平均結晶粒径
のB量依存性を示す図である。
FIG. 1 is a diagram showing the B content dependency of the average crystal grain size in a cast alloy (as cast).

【図2】加圧焼結後の合金における平均結晶粒径のB量
依存性を示す図である。
FIG. 2 is a diagram showing the B amount dependency of the average crystal grain size in the alloy after pressure sintering.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花木 敦司 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Hanaki 1-5-5 Takatsukadai, Nishi-ku, Kobe City Kobe Steel Research Institute, Kobe Steel Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R(RはYを含む希土類元素の1種以上
を表わす)とFeおよびBを主成分とする合金を溶解・
鋳造し、熱間加工及び熱処理を行なって希土類系永久磁
石を製造する方法において、R:12〜17%(原子百
分率を表わす、以下同じ)、B:4〜6%、残部:実質
的にFeからなる合金原料を使用し、溶解・鋳造工程で
鉄を初晶として晶出させることにより微細な鋳造組織を
形成し、且つ熱処理時においては600〜1100℃の
温度において生成する液相中のB含有量を原子百分率で
1〜5%に調整することによって結晶粒の成長を抑制す
ることにより、結晶粒径が6μm以下のR2 Fe14B結
晶粒が全体の70%以上を占める微細組織を有すると共
に、磁性不純物相を含まず、R2 Fe14Bと粒界相から
なる2相組織を有する磁石を得ることを特徴とするR−
Fe−B系永久磁石の製法。
1. R (where R represents one or more rare earth elements including Y) and an alloy containing Fe and B as main components are melted.
In a method for producing a rare earth permanent magnet by casting, hot working and heat treatment, R: 12 to 17% (representing atomic percentage, the same applies hereinafter), B: 4 to 6%, balance: substantially Fe B is used in the liquid phase formed at a temperature of 600 to 1100 ° C. during the heat treatment by using an alloy raw material consisting of By suppressing the growth of crystal grains by adjusting the content to be 1 to 5% in atomic percentage, a fine structure in which R 2 Fe 14 B crystal grains having a crystal grain size of 6 μm or less occupy 70% or more of the whole is formed. R-characterized in that it has a two-phase structure of R 2 Fe 14 B and a grain boundary phase, and has no magnetic impurity phase.
Manufacturing method of Fe-B system permanent magnet.
JP4191623A 1992-06-24 1992-06-24 Manufacture of r-fe-b base permanent magnet Withdrawn JPH0613210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4191623A JPH0613210A (en) 1992-06-24 1992-06-24 Manufacture of r-fe-b base permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4191623A JPH0613210A (en) 1992-06-24 1992-06-24 Manufacture of r-fe-b base permanent magnet

Publications (1)

Publication Number Publication Date
JPH0613210A true JPH0613210A (en) 1994-01-21

Family

ID=16277725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4191623A Withdrawn JPH0613210A (en) 1992-06-24 1992-06-24 Manufacture of r-fe-b base permanent magnet

Country Status (1)

Country Link
JP (1) JPH0613210A (en)

Similar Documents

Publication Publication Date Title
US5963774A (en) Method for producing cast alloy and magnet
JPH09170055A (en) Alloy for rare earth magnet, its production and production of permanent magnet
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JPS6348805A (en) Manufacture of rare-earth magnet
EP0288637B1 (en) Permanent magnet and method of making the same
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH07173501A (en) Permanent magnet alloy powder and production thereof
JPH0613210A (en) Manufacture of r-fe-b base permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3294645B2 (en) Nitride magnetic powder and its production method
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH06112019A (en) Nitride magnetic material
JP2000232012A (en) Manufacture of rare-earth magnet
JP3209292B2 (en) Magnetic material and its manufacturing method
JPS63216307A (en) Alloy powder for magnet
JP3222919B2 (en) Method for producing nitride-based magnetic material
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP3157302B2 (en) Nitride magnetic materials

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831