JPH0612649B2 - Contact material for vacuum circuit breaker - Google Patents

Contact material for vacuum circuit breaker

Info

Publication number
JPH0612649B2
JPH0612649B2 JP58062490A JP6249083A JPH0612649B2 JP H0612649 B2 JPH0612649 B2 JP H0612649B2 JP 58062490 A JP58062490 A JP 58062490A JP 6249083 A JP6249083 A JP 6249083A JP H0612649 B2 JPH0612649 B2 JP H0612649B2
Authority
JP
Japan
Prior art keywords
weight
performance
contact material
vacuum
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58062490A
Other languages
Japanese (ja)
Other versions
JPS59186218A (en
Inventor
光弘 奥村
栄造 納谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58062490A priority Critical patent/JPH0612649B2/en
Publication of JPS59186218A publication Critical patent/JPS59186218A/en
Publication of JPH0612649B2 publication Critical patent/JPH0612649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 この発明は、大電流しゃ断性能に優れ、かつ耐電圧性能
の良好な真空しゃ断器用接点材料に関するものである。
Description: TECHNICAL FIELD The present invention relates to a contact material for a vacuum circuit breaker, which has excellent large-current breaking performance and good withstand voltage performance.

真空しゃ断器は、その無保守、無公害性、優れたしゃ断
性能等の利点を持つため、適用範囲が急速に拡大して来
ている。また、それに伴い、より大きなしゃ断容量や高
い耐電圧が要求されている。一方、真空しゃ断器の性能
は真空容器内の接点材料によって決定される要素がきわ
めて大である。
The vacuum circuit breaker has advantages such as no maintenance, no pollution, and excellent breaking performance, so that its application range is rapidly expanding. Along with this, larger breaking capacity and higher withstand voltage are required. On the other hand, the performance of the vacuum circuit breaker is extremely dependent on the contact material in the vacuum container.

真空しゃ断器用接点材料の満足すべき特性として、(1)
しゃ断容量が大きいこと、(2)耐電圧が高いこと、(3)接
触抵抗が小さいこと、(4)溶着力が小さいこと、(5)接点
消耗量が小さいこと、(6)さい断電流値が小さいこと、
(7)加工性が良いこと、(8)十分な機械的強度を有するこ
と、等がある。
As the satisfactory characteristics of contact materials for vacuum circuit breakers, (1)
Large breaking capacity, (2) High withstand voltage, (3) Small contact resistance, (4) Small welding force, (5) Small contact consumption, (6) Breaking current value Is small,
(7) Good workability, (8) sufficient mechanical strength, etc.

実際の接点材料では、これらの特性を全て満足させるこ
とは、かなり困難であって、一般には用途に応じて特に
重要な特性を満足させ、他の特性をある程度犠性にした
材料を使用しているのが実状である。
In an actual contact material, it is quite difficult to satisfy all of these properties, and in general, it is necessary to use a material in which the other properties are sacrificed to some extent while satisfying particularly important properties depending on the application. It is the actual situation.

従来、この種の接点材料として銅−ビスマス(以下Cu−
Biと表示する。他の元素および元素組み合せからなる材
料についても同様に元素記号で表示する)、Cu−Cr−B
i,Cu−Co−Bi,Cu−Cr等が使用されていた。しかし、C
u−Bi等の低融点金属を含有する合金接点では排気工程
中の高温加熱により、その一部が接点内から拡散、蒸発
し、真空容器内の金属シールドや絶縁容器に付着する。
これが真空しゃ断器の耐電圧を劣化させる大きな因子の
一つになっている。また、負荷開閉や大電流しゃ断時に
も低融点金属の蒸発、飛散が生じて耐電圧の劣化、しゃ
断性能の低下が見られる。上記の欠点を除くために真空
耐電圧に優れたCr,Coなどを添加したCu−Cr−Biなどに
おいても低融点金属による上記の欠点は根本的に解決さ
れず、高電圧、大電流には対応できない。一方、Cu−Cr
などのように真空耐電圧に優れた金属(Cr,Coなど)と
電気伝導度に優れたCuとの組み合せからなる材料は耐溶
着性能に関しては低融点金属を含有する接点材料に比較
して、やや劣るが、しゃ断性能や耐電圧性能が優れてい
るため、高電圧、大電流域ではよく使用されている。さ
らに、Cu−Cr合金などにおいても、しゃ断性能には限界
があるために接点の形状を工夫し、接点部の電流経路を
操作することで、磁場を発生させ、この力で大電流アー
クを強制駆動して、しゃ断性能を上げる努力がなされて
いた。
Conventionally, copper-bismuth (hereinafter Cu-
Display as Bi. Materials that consist of other elements and combinations of elements are also indicated by the element symbol), Cu-Cr-B
i, Cu-Co-Bi, Cu-Cr, etc. were used. But C
In an alloy contact containing a low melting point metal such as u-Bi, part of it diffuses and evaporates from the contact due to high temperature heating during the exhaust process, and adheres to the metal shield or insulating container in the vacuum container.
This is one of the major factors that deteriorate the withstand voltage of the vacuum circuit breaker. Also, when the load is opened or closed or a large current is cut off, the low-melting-point metal is vaporized and scattered to deteriorate the withstand voltage and the cut-off performance is deteriorated. Even in Cu-Cr-Bi, etc. added with Cr, Co, etc., which has excellent vacuum withstand voltage to eliminate the above-mentioned drawbacks, the above-mentioned drawbacks due to the low melting point metal are not fundamentally solved, and high voltage, large current I can not cope. On the other hand, Cu-Cr
Materials such as the combination of metals with excellent vacuum withstand voltage (Cr, Co, etc.) and Cu with excellent electrical conductivity are superior to the contact materials containing low melting point metal in terms of welding resistance. Although somewhat inferior, it is often used in high voltage and high current regions because of its excellent cutoff performance and withstand voltage performance. Furthermore, even with Cu-Cr alloys, since the breaking performance is limited, the contact shape is devised and the current path of the contact is manipulated to generate a magnetic field, forcing a large current arc. There was an effort to drive and improve the cutting performance.

しかし、大電流化、高電圧化への要求はさらにきびし
く、従来の接点材料では要求性能を十分満足させること
が困難となっている。又、真空しゃ断器の小型化に対し
ても同様に従来の接点性能では十分でなく、より優れた
性能を持つ接点材料が求められていた。
However, demands for higher current and higher voltage are more severe, and it is difficult for conventional contact materials to sufficiently satisfy the required performance. Further, as for the downsizing of the vacuum breaker, similarly, the conventional contact performance is not sufficient, and a contact material having higher performance has been demanded.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、大電流しゃ断性能に優れ、かつ耐
電圧性、耐溶着性および加工性の良好な真空しゃ断器用
接点材料を提供することを目的としている。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional ones, and provides a contact material for a vacuum breaker which is excellent in large-current interruption performance, and has good withstand voltage, welding resistance and workability. Is intended.

我々はCuに種々の金属、合金、金属間化合物を添加した
接点材料を試作し、真空スイッチ管に組み込んで種々の
実験を行なった。この結果、Cu,Cr及びAlが各々単体金
属、三者もしくは二者の合金、三者もしくは二者の金属
間化合物、又はそれらの複合体として分布している接点
材料は非常にしゃ断性能が優れ、耐電圧性能が良好であ
ることがわかった。この発明の真空しゃ断器用接点材料
は、Cuを主成分とし、他の成分としてCrが20〜30重量%
で、かつAlが3重量%以下の範囲含有することを特徴と
している。
We prototyped contact materials in which various metals, alloys, and intermetallic compounds were added to Cu, and incorporated them in a vacuum switch tube for various experiments. As a result, contact materials in which Cu, Cr, and Al are distributed as elemental metals, tripartite or bipartite alloys, tripartite or bipartite intermetallic compounds, or composites thereof have very good blocking performance. It was found that the withstand voltage performance was good. The contact material for a vacuum circuit breaker of the present invention contains Cu as a main component and Cr as another component of 20 to 30% by weight.
And Al is contained in a range of 3% by weight or less.

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は真空スイッチ管の構造図で、真空絶縁容器(1)
と、この真空絶縁容器(1)の両端を閉塞する端板(2)およ
び(3)とにより形成された容器内部に電極(4)および(5)
が、それぞれ電磁棒(6)および(7)の一端に、お互いが対
向するよう配置されている。前記電磁(7)は、ベローズ
(8)を介して前記端板(3)に気密を損うことなく軸方向の
動作が可能なように接合されている。シールド(9)およ
び(10)がアークにより発生する蒸気で汚染されることが
ないよう、それぞれ前記真空絶縁容器(1)の内面および
前記ベローズ(8)を覆っている。電磁(5)はその背面で電
磁棒(7)にろう材(51)を介挿してろう付けされている。
前記電極(4),(5)はこの発明のCu−Cr−Al系接点材料か
ら成っている。
Figure 1 is a structural diagram of the vacuum switch tube, vacuum insulation container (1)
And the electrodes (4) and (5) inside the container formed by the end plates (2) and (3) closing both ends of the vacuum insulation container (1).
Are arranged at one end of each of the electromagnetic rods (6) and (7) so as to face each other. The electromagnetic (7) is a bellows.
It is joined to the end plate (3) via the (8) so that the end plate (3) can move in the axial direction without impairing the airtightness. The shields (9) and (10) respectively cover the inner surface of the vacuum insulating container (1) and the bellows (8) so that they are not contaminated by vapor generated by the arc. The electromagnetic field (5) is brazed on its rear surface by inserting a brazing material (51) on the electromagnetic bar (7).
The electrodes (4) and (5) are made of the Cu-Cr-Al-based contact material of the present invention.

第3図は合金中のCr量を15,20,25,30およ
び35重量%にしたものに添加したAl量としゃ断容量の
関係を示したものであり、Al量が3重量%以下の範囲で
Crが30重量%以下のものは従来品に近いしゃ断性能
あるいは従来品以上のしゃ断性能を示し、Al量が1.
3重量%でCr量が30%以下では従来品(Cu−25重量
%Cr合金)に比較してしゃ断性能が著しく上昇している
ことがわかる。
Fig. 3 shows the relationship between the amount of Al added to the alloy with Cr content of 15, 20, 25, 30 and 35 wt% and the breaking capacity, and the range of Al content of 3 wt% or less. When the Cr content is 30% by weight or less, the cutting performance is close to that of the conventional product or higher than that of the conventional product, and the Al content is 1.
It can be seen that when the Cr content is 3% by weight and the Cr content is 30% or less, the breaking performance is remarkably increased as compared with the conventional product (Cu-25% by weight Cr alloy).

Alの添加量としては1重量%以下の範囲でピークを示
し、それ以上添加量を増加するとまたしゃ断容量の低下
が見られる。また、Al量が3重量%を越えるとむしろ、
従来品(Cu−25重量%Cr品)よりしゃ断性能が低下す
る。
The amount of Al added shows a peak in the range of 1% by weight or less, and when the amount of Al added is further increased, the blocking capacity decreases again. If the Al content exceeds 3% by weight,
The cutting performance is lower than that of the conventional product (Cu-25 wt% Cr product).

即ち、Cu中にCrとAlが共存して、ごく少量のCu,Cr,Al
の2種あるいは3種からなる合金、金属間化合物が形成
され、Cu中に分布することによって、その相互作用から
しゃ断性能の上昇がみられ、ある程度以上Alを増加させ
ると特にCuとAlの化合物などが多量に生じてCuマトリッ
クスの電気伝導度や熱伝導度が著しく低下し、アークに
よる熱入力をすみやかに放散することが困難になり、局
部的な溶融が生じ易く、アークを持続させてしまい、し
ゃ断性能を低下させるためであると思われる。
That is, Cr and Al coexist in Cu, and only a small amount of Cu, Cr, Al
2) or 3) alloys and intermetallic compounds are formed and distributed in Cu, the blocking performance is increased due to their interaction, and when Al is increased beyond a certain level, the compound of Cu and Al The electrical conductivity and thermal conductivity of the Cu matrix are significantly reduced due to such a large amount of heat generation, making it difficult to quickly dissipate the heat input by the arc, and local melting tends to occur and the arc is sustained. It seems that this is because the cutting performance is deteriorated.

大電流用あるいは機器の小型化を気体される場合、Al添
加量として、しゃ断容量が従来品(Cu−25重量%Cr合
金)の約1.3倍を上回るCr25%,Al1.3重量
%以下が最も望ましいが、Cr量30重量%以下,Al
が3重量%以下のものはしゃ断容量の点では十分使用可
能である。なお、この実験に使用したCu−Cr−Al合金は
Cu粉とCr粉及びAl粉を各々必要な量配合した混合粉を成
形、焼結して得られたものである。第3図の縦軸は従来
品のCu−25重量%Cr合金のしゃ断容量の値を1とした比
率を示し、横軸はAlの添加量を示す。
When a large current is used or gas is used for downsizing of equipment, the cutting capacity is more than 1.3 times that of the conventional product (Cu-25 wt% Cr alloy), Cr 25% and Al 1.3 wt% or less. Is most preferable, but the Cr content is 30% by weight or less, Al
Those having a content of 3% by weight or less are sufficiently usable in terms of blocking capacity. The Cu-Cr-Al alloy used in this experiment is
It is obtained by molding and sintering a mixed powder in which Cu powder, Cr powder and Al powder are mixed in necessary amounts. The vertical axis of FIG. 3 represents the ratio with the value of the breaking capacity of the conventional Cu-25 wt% Cr alloy being 1, and the horizontal axis represents the amount of Al added.

第4図は同様にAl添加量と電気伝導度の関係を示すもの
である。図から明らかなようにAl量の増加と共に電気伝
導度が低下し、Al量が1重量%以上では電気伝導度が従
来品の半分にもなる。これはCuとAlにより形成される化
合物の増加によるものである。また、電気伝導度の低下
と共に接触抵抗も増大し、負荷開閉しゃ断後の通電、温
度上昇に悪影響を及ぼすこともある。従って、Al量は1.
3重量%以下の範囲がより望ましい。第4図の縦軸は従
来品(Cu−25重量%Cr合金)の電気伝導度の値を1とし
た比率を示し、横軸はAl添加量を示す。
Similarly, FIG. 4 shows the relationship between the amount of Al added and the electrical conductivity. As is clear from the figure, the electrical conductivity decreases as the Al content increases, and when the Al content is 1% by weight or more, the electrical conductivity becomes half that of the conventional product. This is due to the increase in compounds formed by Cu and Al. Further, the contact resistance increases as the electric conductivity decreases, which may adversely affect the energization and temperature rise after the switching of the load. Therefore, the amount of Al is 1.
A range of 3% by weight or less is more desirable. The vertical axis of FIG. 4 shows the ratio with the electric conductivity of the conventional product (Cu-25 wt% Cr alloy) as 1, and the horizontal axis shows the amount of Al added.

第5図は同様にAl添加量(A)及び耐電圧(B)性能との関係
を示すものである。図から明らかなようにCr量が25重量
%ではAl量が0.5重量%までやや急激な硬度上昇が見ら
れ、その後もAl量の増加と硬度は直線的な関係にある。
これはAlとCuからなる化合物は非常に硬度の高い金属間
化合物から成っているためである。一方、耐電圧性能は
Cr量が25重量%ではAl量が3重量%以下の範囲で
従来品より優れており、3重量%を越えたところに従来
品より劣る範囲がある。その後はAl量の増加と共に耐電
圧も上昇気味である。このように硬度と耐電圧の関係は
Al量が3重量%以下の範囲では非直線的であり、Al量が
3重量%以上では耐圧と硬度に相関性がありそうであ
る。上記のように硬度(A)、耐電圧(B)性能などからみ
て、電気的諸特性、加工性においてもAl量は3重量%以
下の範囲でしゃ断器用接点材料として好適であることが
認められた。第5図の縦軸は従来品(Cu−25重量%Cr合
金)の硬度および耐電圧の値を1とした比率を示し、横
軸はAl添加量を示す。
Similarly, FIG. 5 shows the relationship between the Al addition amount (A) and the withstand voltage (B) performance. As is clear from the figure, when the Cr content is 25% by weight, the hardness of Al is increased to 0.5% by weight, and the hardness is increased abruptly.
This is because the compound consisting of Al and Cu consists of an intermetallic compound having a very high hardness. On the other hand, the withstand voltage performance is superior to the conventional product when the Cr content is 25% by weight and the Al content is in the range of 3% by weight or less, and is inferior to the conventional product when it exceeds 3% by weight. After that, the withstand voltage tends to increase as the Al content increases. Thus, the relationship between hardness and withstand voltage
When the amount of Al is 3% by weight or less, it is non-linear, and when the amount of Al is 3% by weight or more, there seems to be a correlation between pressure resistance and hardness. From the viewpoint of hardness (A), withstand voltage (B) performance, etc. as described above, it is recognized that the Al content is 3% by weight or less in terms of electrical characteristics and workability, and is suitable as a contact material for circuit breakers. It was The vertical axis of FIG. 5 shows the ratio of the hardness and withstand voltage of the conventional product (Cu-25 wt% Cr alloy) to 1, and the horizontal axis shows the amount of Al added.

発明者らは第5図に示したようにAl添加量と耐電圧の
関係をCr量を種々変化させた合金についても実験した
が、Cr量が20重量%未満の場合には耐電圧が不十分
であった。また、図示しないが耐溶着性も不十分であっ
た。従って、第3図に示したしゃ断性能の結果および第
5図に示した耐電圧の結果から、Cr量は20〜30重
量%の範囲が適当である。
The inventors have also conducted experiments on alloys in which the amount of added Al and the withstand voltage are variously changed, as shown in FIG. 5, but when the amount of Cr is less than 20% by weight, the withstand voltage is unsatisfactory. Was enough. Further, although not shown, the welding resistance was also insufficient. Therefore, from the results of the breaking performance shown in FIG. 3 and the results of the withstand voltage shown in FIG. 5, it is appropriate that the Cr content be in the range of 20 to 30% by weight.

また、図示しないが、上記合金にBi,Te,Sb,Tl,Pb,
Se,Ce及びCaの低融点金属、それらの合金、それらの金
属間化合物、並びにそれらの酸化物のうち少なくとも1
種を20重量%以下添加した低さい断真空真空しゃ断器用
接点においても、前記実施例と同様にしゃ断性能や耐電
圧性能を上昇させる効果があることを確認している。
In addition, although not shown, Bi, Te, Sb, Tl, Pb,
At least one of low melting point metals such as Se, Ce and Ca, alloys thereof, intermetallic compounds thereof, and oxides thereof.
It has been confirmed that even in the case of a low breaking vacuum contactor for a vacuum breaker containing 20% by weight or less of a seed, there is an effect of increasing the breaking performance and the withstanding voltage performance as in the above-mentioned embodiment.

なお、低融点金属、それらの合金、それらの金属間化合
物、並びにそれらの酸化物のうち少なくとも1種を20重
量%以上添加した場合には著しく、しゃ断性能が低下し
た。又、低融点金属がCe、あるいはCaの場合は若干特性
が劣る。
When 20% by weight or more of at least one of low melting point metals, their alloys, their intermetallic compounds, and their oxides was added, the breaking performance was remarkably reduced. Further, when the low melting point metal is Ce or Ca, the characteristics are slightly inferior.

以上のように、この発明によれば、銅を主成分とし、他
の成分としてクロムが20〜30重量%で、かつアルミニウ
ムが3重量%以下の範囲含有することを特徴とするもの
であるので、しゃ断性能に優れ、かつ耐電圧性、耐溶着
性および加工性の良好な真空しゃ断器用接点材料が得ら
れる効果がある。
As described above, according to the present invention, copper is contained as a main component, and chromium as another component is contained in a range of 20 to 30% by weight and aluminum in a range of 3% by weight or less. In addition, there is an effect that a contact material for a vacuum circuit breaker which is excellent in breaking performance and excellent in withstand voltage, welding resistance and workability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は一般的な真空スイッチ管の構造を示す断面図、
第2図はその第1図の電極部分の拡大断面図である。第
3図はこの発明の接点材料におけるCr量を15,2
0,25,30および35重量%の合金に対してAl添加
量を変化させた時のしゃ断容量の変化を示す特性図、第
4図はこの発明の接点材料におけるCr量を25重量%に固
定した合金に対してAl添加量を変化させた時の電気伝導
度の変化を示す特性図、第5図はこの発明の接点材料に
おけるCr量を25重量%に固定した合金に対してAl添加量
を変化させた時の硬度およびCr量を15,20,2
5,30および35重量%の合金に対してAl添加量を
変化させた時の耐電圧性能の変化を示す特性図である。 (1)…真空絶縁容器、(2),(3)…端板、(4),(5)…電
極、(6),(7)…電極棒、(8)…ベローズ、(9),(10)…シ
ールド、(51)…ろう材
FIG. 1 is a sectional view showing the structure of a general vacuum switch tube,
FIG. 2 is an enlarged sectional view of the electrode portion of FIG. FIG. 3 shows the amount of Cr in the contact material of the present invention of 15,2.
Fig. 4 is a characteristic diagram showing the change in the breaking capacity when changing the amount of Al added to the alloys of 0, 25, 30 and 35% by weight. Fig. 4 shows that the Cr content in the contact material of the present invention is fixed at 25% by weight. Fig. 5 is a characteristic diagram showing the change in electrical conductivity when changing the amount of Al added to the alloys shown in Fig. 5. Fig. 5 shows the amount of Al added to the alloy in which the Cr amount in the contact material of the present invention is fixed at 25% The hardness and the amount of Cr when changing
It is a characteristic view which shows change of withstand voltage performance when changing the amount of Al additions with respect to 5, 30 and 35 weight% alloy. (1) ... vacuum insulation container, (2), (3) ... end plate, (4), (5) ... electrode, (6), (7) ... electrode rod, (8) ... bellows, (9), (10) ... shield, (51) ... brazing material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】銅を主成分とし、他の成分としてクロムが
20〜30重量%で、かつアルミニウムが3重量%以下の範
囲含有することを特徴とする真空しゃ断器用接点材料。
1. A main component is copper, and chromium is another component.
A contact material for a vacuum circuit breaker, which contains 20 to 30% by weight of aluminum and 3% by weight or less of aluminum.
【請求項2】アルミニウムが1.3重量%以下の範囲含有
することを特徴とする特許請求の範囲第1項記載の真空
しゃ断器用接点材料。
2. A contact material for a vacuum circuit breaker according to claim 1, wherein the aluminum content is 1.3 wt% or less.
【請求項3】銅、クロム、及びアルミニウムが各々単体
金属、三者もしくは二者の合金、三者もしくは二者の金
属間化合物、又はそれらの複合体として分布しているこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
真空しゃ断器用接点材料。
3. A patent characterized in that copper, chromium, and aluminum are distributed as a single metal, a tripartite or bipartite alloy, a tripartite or bipartite intermetallic compound, or a complex thereof. The contact material for a vacuum breaker according to claim 1 or 2.
JP58062490A 1983-04-07 1983-04-07 Contact material for vacuum circuit breaker Expired - Lifetime JPH0612649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58062490A JPH0612649B2 (en) 1983-04-07 1983-04-07 Contact material for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062490A JPH0612649B2 (en) 1983-04-07 1983-04-07 Contact material for vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JPS59186218A JPS59186218A (en) 1984-10-23
JPH0612649B2 true JPH0612649B2 (en) 1994-02-16

Family

ID=13201661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062490A Expired - Lifetime JPH0612649B2 (en) 1983-04-07 1983-04-07 Contact material for vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH0612649B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2357333C3 (en) * 1973-11-16 1980-04-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Penetration composite metal as contact material for vacuum switches

Also Published As

Publication number Publication date
JPS59186218A (en) 1984-10-23

Similar Documents

Publication Publication Date Title
US3246979A (en) Vacuum circuit interrupter contacts
EP0083200B1 (en) Electrode composition for vacuum switch
JPH0156490B2 (en)
JPH06231658A (en) Contact material for vacuum bulb
JPH0612649B2 (en) Contact material for vacuum circuit breaker
US4129760A (en) Vacuum circuit breaker
EP0126347B2 (en) Contact material for vacuum circuit interrupter, contact member of such material, a vacuum circuit interrupter and the use of such material
JPS6336090B2 (en)
JPH0449734B2 (en)
JPH0449733B2 (en)
JPS59201334A (en) Contact material for vacuum breaker
EP0175349A2 (en) Vacuum circuit breaker
JPS6336092B2 (en)
JPH0133011B2 (en)
JP3382000B2 (en) Contact material for vacuum valve
JPS6336089B2 (en)
JPS59201335A (en) Contact material for vacuum breaker
JPS59201336A (en) Contact material for vacuum breaker
JPH0133012B2 (en)
JPS59169012A (en) Contact material for vacuum breaker
JPS60170122A (en) Contact material for vacuum breaker
JPS596449B2 (en) Vacuum cutter
JPS60170123A (en) Contact material for vacuum breaker
JPH043610B2 (en)
JPH07123015B2 (en) Vacuum circuit breaker electrode and vacuum circuit breaker