JPS6336089B2 - - Google Patents

Info

Publication number
JPS6336089B2
JPS6336089B2 JP19278582A JP19278582A JPS6336089B2 JP S6336089 B2 JPS6336089 B2 JP S6336089B2 JP 19278582 A JP19278582 A JP 19278582A JP 19278582 A JP19278582 A JP 19278582A JP S6336089 B2 JPS6336089 B2 JP S6336089B2
Authority
JP
Japan
Prior art keywords
weight
alloy
contact material
vacuum
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19278582A
Other languages
Japanese (ja)
Other versions
JPS5981816A (en
Inventor
Mitsuhiro Okumura
Eizo Naya
Michinosuke Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19278582A priority Critical patent/JPS5981816A/en
Priority to US06/547,218 priority patent/US4517033A/en
Priority to DE8383110920T priority patent/DE3378088D1/en
Priority to EP83110920A priority patent/EP0110176B1/en
Publication of JPS5981816A publication Critical patent/JPS5981816A/en
Publication of JPS6336089B2 publication Critical patent/JPS6336089B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、大電流しや断特性に優れ、かつ高
耐圧性能を有する真空しや断器用接点材料に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a contact material for a vacuum shield breaker, which has excellent large current shearing characteristics and high voltage resistance.

真空しや断器は、その無保守,無公害性,優れ
たしや断性能等の利点を持つため、適用範囲が急
速に拡大して来ている。また、それに伴い、より
高耐圧化,大電流しや断化の要求がきびしくなつ
て来ている。一方、真空しや断器の性能は真空容
器内の接点材料によつて決定される要素がきわめ
て大である。
Vacuum sheath breakers have advantages such as maintenance-free, non-polluting properties, and excellent sheath breaker performance, so the scope of their application is rapidly expanding. In addition, along with this trend, demands for higher voltage resistance and higher current resistance are becoming more severe. On the other hand, the performance of a vacuum shield breaker is determined to a large extent by the contact material inside the vacuum container.

真空しや断器用接点材料の満足すべき特性とし
て、(1)しや断容量が大きいこと、(2)耐電圧が高い
こと、(3)接触抵抗が小さいこと、(4)溶着力が小さ
いこと、(5)接点消耗量が小さいこと、(6)さい断電
流値が小さいこと、(7)加工性が良いこと、(8)十分
な機械的強度を有すること、等がある。
Satisfactory characteristics of contact materials for vacuum shield disconnectors include (1) large shield breaking capacity, (2) high withstand voltage, (3) low contact resistance, and (4) low welding force. (5) low contact wear, (6) low cutting current, (7) good workability, and (8) sufficient mechanical strength.

実際の接点材料では、これらの特性を全て満足
させることは、かなり困難であつて、一般には用
途に応じて特に重要な特性を満足させ、他の特性
をある程度犠牲にした材料を使用しているのが実
状である。
In actual contact materials, it is quite difficult to satisfy all of these properties, and in general, materials are used that satisfy particularly important properties depending on the application, sacrificing other properties to some extent. This is the actual situation.

従来、この種の接点材料として銅―ビスマス
(以下Cu―Biと表示する。他の元素および元素の
組み合せからなる合金についても同様に元素記号
で表示する。)、Cu―Cr―Bi,Cu―Co―Bi,Cu
―Cr等が使用されていた。しかし、Cu―Bi等の
低融点金属を含有する合金接点では排気工程中の
高温加熱により、その一部が接点内から拡散、蒸
発し、真空容器内の金属シールドや絶縁容器に付
着する。これが真空しや断器の耐電圧を劣化させ
る大きな因子のひとつになつている。また、負荷
開閉や大電流しや断時にも低融点金属の蒸発,飛
散が生じて耐電圧の劣化,しや断性能の低下が見
られる。上記の欠点を除くために真空耐電圧に優
れたCr,Coなどを添加したCu―Cr―Biなどにお
いても、低融点金属による上記の欠点は根本的に
解決されず、高電圧,大電流には対応できない。
一方、Cu―Crなどのように真空耐電圧に優れた
金属(Cr,Coなど)と電気伝導度に優れたCuと
の組み合せからなる材料は耐溶着性能に関しては
低融点金属を含有する接点材料に比較して、やや
劣るが、しや断性能や耐電圧性能が優れているた
め、高電圧,大電流域ではよく使用されている。
さらに、Cu―Cr合金などにおいても、しや断性
能には限界があるために、接点の形状を工夫し、
接点部の電流経路を操作することで、磁場を発生
させ、この力で大電流アークを強制駆動して、し
や断性能を上げる努力がなされていた。
Conventionally, this type of contact material has been copper-bismuth (hereinafter referred to as Cu-Bi. Other elements and alloys made of combinations of elements are also indicated by element symbols), Cu-Cr-Bi, Cu- Co―Bi, Cu
-Cr, etc. were used. However, in the case of alloy contacts containing low melting point metals such as Cu--Bi, due to the high temperature heating during the evacuation process, some of the metal diffuses and evaporates from within the contacts, and adheres to the metal shield or insulating container inside the vacuum container. This is one of the major factors that degrades the withstand voltage of vacuum shields and disconnectors. In addition, when the load is switched on and off or when a large current is interrupted, evaporation and scattering of low-melting point metals occur, resulting in deterioration of withstand voltage and deterioration of shearing performance. Even with Cu-Cr-Bi, which has added Cr, Co, etc., which have excellent vacuum withstand voltage, to eliminate the above-mentioned drawbacks, the above-mentioned drawbacks caused by low-melting point metals are not fundamentally solved, and it cannot be used at high voltages and large currents. cannot be handled.
On the other hand, materials such as Cu-Cr, which are made of a combination of metals (Cr, Co, etc.) with excellent vacuum withstand voltage and Cu with excellent electrical conductivity, are inferior to contact materials containing low melting point metals in terms of welding resistance. Although it is slightly inferior to , it is often used in high voltage and large current ranges because of its excellent shearing performance and withstand voltage performance.
Furthermore, since there is a limit to the shearing performance of Cu-Cr alloys, we devised the shape of the contact,
Efforts have been made to improve shearing performance by generating a magnetic field by manipulating the current path in the contact, and using this force to forcibly drive a large current arc.

しかし、高電圧化,大電流化への要求はさらに
きびしく、従来の接点材料では要求性能を十分満
足させることが困難となつている。又、真空しや
断器の小型化に対しても同様に従来の接点性能で
は十分でなく、より優れた性能を持つ接点材料が
求められていた。
However, the demands for higher voltages and larger currents have become even more demanding, and it has become difficult to fully satisfy the required performance with conventional contact materials. Furthermore, in order to reduce the size of vacuum shields and disconnectors, conventional contact performance is not sufficient, and there is a need for contact materials with even superior performance.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、大電流しや断特性
に優れ、かつ高耐電圧性能を有する真空しや断器
用接点材料を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional products as described above, and its purpose is to provide a contact material for vacuum shields and breakers that has excellent large current breaking characteristics and high withstand voltage performance. It is said that

我々はCuに種々の金属,合金,金属間化合物
を添加した接点材料を試作し、真空しや断器に組
み込んで種々の実験を行なつた。この結果、Cu,
Cr,及びTaが、各々単体金属,三者もしくは二
者の合金、三者もしくは二者の金属間化合物、又
はそれらの複合体として分布している接点材料は
非常にしや断性能が優れていることがわかつた。
この発明による真空しや断器用接点材料は、Cu
を含有すると共に、他の成分としてCrが35重量
%以下及びTaが50重量%以下で、CrとTaの合計
が10重量%以上の範囲含有する、Cu,Cr及びTa
が、各々単体金属、三者もしくは二者の合金,三
者もしくは二者の金属間化合物、又はそれらの複
合体として分布していることを特徴としている。
We fabricated prototype contact materials by adding various metals, alloys, and intermetallic compounds to Cu, and conducted various experiments by incorporating them into vacuum shields and disconnectors. As a result, Cu,
Contact materials in which Cr and Ta are distributed as individual metals, tri- or bi-metallic alloys, tri- or bi-metallic compounds, or composites thereof have extremely excellent shearing performance. I found out.
The contact material for vacuum insulation and disconnection according to this invention is Cu
Cu, Cr, and Ta containing 35% by weight or less of Cr, 50% by weight or less of Ta, and a total of Cr and Ta of 10% by weight or more as other components.
are each distributed as a single metal, an alloy of three or two metals, an intermetallic compound of three or two metals, or a composite thereof.

以下、この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は真空スイツチ管の構造図で、1真空絶
縁容器、前記真空絶縁容器1の両端を閉塞する端
板2および3とにより形成された容器内部に電極
4および5が、それぞれ電極棒6および7の一端
に、お互いが対向するように配置されている。前
記電極7は、ベローズ8を介して前記端板3に気
密を損うことなく軸方向の動作が可能なように接
合されている。シールド9および10がアークに
より発生する蒸気で汚染されることがないよう、
それぞれ前記真空絶縁容器1内面および前記ベロ
ーズ8を覆つている。電極4および5の構成を第
2図に示す。電極5はその背面で電極棒7にろう
材51を介挿してろう付されている。前記電極
4,5はこの発明に係るCu―Cr―Ta系接点材料
から成つている。
FIG. 1 is a structural diagram of a vacuum switch tube, in which electrodes 4 and 5 are installed inside a container formed by a vacuum insulating container 1 and end plates 2 and 3 that close both ends of the vacuum insulating container 1, and an electrode rod 6, respectively. and 7 are arranged so as to face each other. The electrode 7 is joined to the end plate 3 via a bellows 8 so as to be movable in the axial direction without compromising airtightness. To prevent shields 9 and 10 from being contaminated with vapor generated by the arc,
They cover the inner surface of the vacuum insulating container 1 and the bellows 8, respectively. The structure of electrodes 4 and 5 is shown in FIG. The electrode 5 is brazed to the electrode rod 7 on the back side thereof with a brazing material 51 inserted therein. The electrodes 4 and 5 are made of a Cu--Cr--Ta based contact material according to the present invention.

第3図は比較例として従来のCu―Cr合金接点
材料の倍率が100の金属組織写真を示す。これは
Cu粉とCr粉をそれぞれ75重量%,25重量%で混
合、成形して焼結して得られたCu―Cr合金であ
る。
FIG. 3 shows a photograph of the metal structure of a conventional Cu-Cr alloy contact material at a magnification of 100 as a comparative example. this is
This is a Cu-Cr alloy obtained by mixing Cu powder and Cr powder at 75% by weight and 25% by weight, forming and sintering.

第4図はこの発明の一実施例としてCu―Cr―
Ta合金接点材料の倍率が100の金属組織写真を示
す。これはCu粉とCr粉の配合を各々75重量%,
25重量%とした混合粉末にTaを10重量%加えた
ものを混合、成形、焼結して得られたCu―Cr―
Ta合金である。なお、焼結は1100℃程度で行な
い、CrおよびTaの一部が反応してCr2Taを形成
する条件とした。
Figure 4 shows a Cu-Cr-
A photograph of the metallographic structure of Ta alloy contact material at a magnification of 100 is shown. This is a mixture of Cu powder and Cr powder of 75% by weight each.
Cu―Cr― obtained by mixing, molding, and sintering a mixed powder containing 25% by weight and 10% by weight of Ta.
It is a Ta alloy. Note that the sintering was performed at about 1100° C. under conditions such that part of Cr and Ta reacted to form Cr 2 Ta.

第5図はこの発明の他の実施例としてCu―Cr
―Ta合金をCrとTaが合金あるいは金属間化合物
を形成し難い程度の比較的低温で焼結した場合の
倍率が100の金属組織写真を示す。これは、第4
図に示した実施例と同一の配合比からなるCu―
Cr―Ta混合粉末を成形、焼結して得られる合金
である。第4図の合金はCu中にCr,Ta,Cr2Ta
が均一微細に分布していることがわかる。また、
第5図の合金はCu中にCr,Taが主として単体金
属で分布し、Cr2Taはほとんど見られない。
Figure 5 shows another embodiment of the present invention.
- Shows a photo of the metallographic structure at a magnification of 100 when a Ta alloy is sintered at a relatively low temperature that makes it difficult for Cr and Ta to form an alloy or intermetallic compound. This is the fourth
Cu made of the same blending ratio as the example shown in the figure.
This is an alloy obtained by molding and sintering Cr-Ta mixed powder. The alloy in Figure 4 contains Cr, Ta, Cr 2 Ta in Cu.
It can be seen that the particles are uniformly and finely distributed. Also,
In the alloy shown in Figure 5, Cr and Ta are mainly distributed as single metals in Cu, and Cr 2 Ta is hardly seen.

以下に種々の測定あるいは試験を行なつた結果
について説明する。
The results of various measurements or tests will be explained below.

まず、我々の実験の結果から、Cu,Crの二元
合金からなる接点合金ではCr量が20〜30重量%
の範囲で各種の性能が非常に優れていることを確
認しているので、第6図〜第9図における接点材
料中のCuとCrの重量比を常に一定(75:25)と
し、これに添加するTa量を種々変化させた場合
の合金の諸特性の変化について示す。
First, from our experimental results, we found that in a contact alloy consisting of a binary alloy of Cu and Cr, the amount of Cr is 20 to 30% by weight.
Since we have confirmed that various performances are extremely excellent within the range of The changes in various properties of the alloy when the amount of Ta added is varied are shown.

第6図は合金中のCuとCrの重量比率を75:25
に固定したものに添加したTa量と電気伝導度の
関係を示したものであり、Ta量の増加とともに
電気伝導度が低下しているが、合金中のCuとCr
の重量比率を75:25に固定した場合、Ta量は目
的により使用可能であるが、特に30重量%程度ま
でが望ましい。
Figure 6 shows the weight ratio of Cu and Cr in the alloy at 75:25.
This figure shows the relationship between the amount of Ta added to a fixed alloy and the electrical conductivity.The electrical conductivity decreases as the amount of Ta increases, but the relationship between Cu and Cr in the alloy
When the weight ratio of is fixed at 75:25, the amount of Ta can be used depending on the purpose, but it is particularly desirable that it be up to about 30% by weight.

なお、第6図の縦軸はCu―25Crの電気伝導度
を1とした場合の比率、横軸はTa添加量を示す。
In addition, the vertical axis in FIG. 6 shows the ratio when the electrical conductivity of Cu-25Cr is assumed to be 1, and the horizontal axis shows the amount of Ta added.

第7図は合金中のCuとCrの重量比率を75:25
に固定したものに添加したTa量と接触抵抗の関
係を示したもので、電気伝導度と同様の傾向を示
す。なお、第7図の縦軸は、従来品aのCu―25
重量%Cr合金の値を1とした比率を示す。
Figure 7 shows the weight ratio of Cu and Cr in the alloy at 75:25.
This figure shows the relationship between the amount of Ta added to a fixed material and contact resistance, and shows the same tendency as electrical conductivity. The vertical axis in Figure 7 is Cu-25 of conventional product a.
The ratio is shown with the value of weight% Cr alloy as 1.

第8図は合金中のCuとCrの重量比率を75:25
に固定したものに添加したTa量としや断容量の
関係を示しており、Taを添加したものは従来品
(Cu―25重量%Cr合金)に比較して著しくしや断
性能が上昇していることがわかる。
Figure 8 shows the weight ratio of Cu and Cr in the alloy at 75:25.
The figure shows the relationship between the amount of Ta added and the shearing capacity of a material fixed at I know that there is.

なお、第8図の縦軸は従来品aのCu―25重量
%Cr合金の値を1とした比率を示す。第8図か
ら明らかなようにTa添加量の増加とともに、し
や断容量は増加し、10重量%Taでは従来品の1.7
倍に達し、Taが15重量%程度でピークを示し、
それ以上Taを加えると逆にしや断容量の低下が
生じる。即ち、TaとCrが共存して、その相互作
用により、しや断性能を上昇させるが、ある程度
以上TaとCrを増加させると合金中において、良
導電性のCuが減少して合金の電気伝導度や熱伝
導度が低下し、アークによる熱入力をすみやかに
放散することが困難になり、逆にしや断性能を悪
くさせるためである。
Note that the vertical axis in FIG. 8 indicates the ratio with the value of the Cu-25 wt % Cr alloy of conventional product a being 1. As is clear from Figure 8, as the amount of Ta added increases, the shearing capacity increases, and at 10 wt% Ta, it is 1.7% compared to the conventional product.
The amount of Ta peaks at about 15% by weight.
If more Ta is added than this, the shear shear capacity will decrease. In other words, Ta and Cr coexist and their interaction increases the shearing performance, but if Ta and Cr are increased beyond a certain level, Cu, which has good conductivity, decreases in the alloy and the electrical conductivity of the alloy decreases. This is because the temperature and thermal conductivity decrease, making it difficult to quickly dissipate the heat input from the arc, and conversely worsening the shear breaking performance.

第9図は同様にTa添加量と耐電圧性能の関係
を示すものである。図から明らかなようにTa量
が5重量%以下では従来品a(Cu―25重量%Cr合
金)と差がわずかであるが、添加量が増加すれ
ば、Ta添加量の増加とともに耐電圧性能の上昇
が見られる。一般的にはCrとTaの合計の重量%
が増加すれば、耐電圧性能が向上する傾向にあ
る。
FIG. 9 similarly shows the relationship between the amount of Ta added and the withstand voltage performance. As is clear from the figure, when the amount of Ta is 5% by weight or less, there is only a slight difference from conventional product a (Cu-25% by weight Cr alloy), but as the amount of Ta added increases, the withstand voltage improves. An increase can be seen. Generally the total weight% of Cr and Ta
As the number increases, the withstand voltage performance tends to improve.

次に合金中のTa量を30重量%に固定したもの
のCuに対するCrの重量比率を変化させた場合の
合金の特性の変化について示す。
Next, we will show how the characteristics of the alloy change when the weight ratio of Cr to Cu is changed while the amount of Ta in the alloy is fixed at 30% by weight.

第10図はCuに対するCrの重量比率と電気伝
導度の関係を示す。
Figure 10 shows the relationship between the weight ratio of Cr to Cu and electrical conductivity.

次に合金中のTa添加量を0,1,3,5,7,
10,15,30,40,50,60重量%で各々固定とし、
各合金でのCuに対するCrの重量比率を変化させ
た場合のしや断性能とCr重量比率の関係につい
て、第11図に示す。なお、縦軸は従来品a(Cu
―25重量%Cr合金)の値を1とした比率を示し、
横軸はCuに対するCrの重量比率を示す。図から
わかるように、従来品aのCu―Cr二元合金では
Cr量が20〜30重量%の範囲にしや断容量のピー
クがあり、Ta量を1〜15重量%に固定した場合
も同様の傾向がある。また、Ta量を15重量%に
固定した場合には、Crの重量比率がCuに対して
10重量%程度(接点材料全体に対しては8.5重量
%)からCuに対して25重量%程度(接点材料全
体に対しては21.3重量%)まで著しいしや断性能
の上昇が見られる。一方、Ta量を30重量%に固
定した場合にはしや断容量のピークはCrの重量
比率が10〜20重量%(接点材料全体に対しては7
〜14重量%)の範囲にあり、そのピーク値はTa
量が15重量%の合金よりやや劣る。
Next, the amount of Ta added in the alloy was changed to 0, 1, 3, 5, 7,
Fixed at 10, 15, 30, 40, 50, 60% by weight,
FIG. 11 shows the relationship between shearing performance and Cr weight ratio when the weight ratio of Cr to Cu is changed in each alloy. Note that the vertical axis is conventional product a (Cu
-25 wt% Cr alloy) is expressed as 1,
The horizontal axis shows the weight ratio of Cr to Cu. As can be seen from the figure, the Cu-Cr binary alloy of conventional product a
There is a peak in sheath shear capacity when the Cr content is in the range of 20 to 30% by weight, and the same tendency occurs when the Ta content is fixed in the range of 1 to 15% by weight. In addition, when the amount of Ta is fixed at 15% by weight, the weight ratio of Cr to Cu is
A remarkable increase in shearing performance is seen from about 10% by weight (8.5% by weight for the entire contact material) to about 25% by weight for Cu (21.3% by weight for the entire contact material). On the other hand, when the amount of Ta is fixed at 30% by weight, the peak of the shear breaking capacity occurs when the weight ratio of Cr is 10 to 20% (7% to the entire contact material).
~14 wt%), and its peak value is Ta
It is slightly inferior to the alloy with a content of 15% by weight.

第12図はCuとTaの二元合金において、Ta量
と電気伝導度の関係を示し、第13図はCuとCr
の二元合金においてCr量と電気伝導度の関係を
示す。両図からTa,Crの各々が増加するに従い
電気伝導度が低下し、Taでは50重量%程度で、
またCrでは40重量%で一般にしや断用接点とし
て要求される電気伝導度の限界に達し、それ以上
Ta,Crを増加させると通電,しや断などから実
用上悪影響を及ぼす。また、第11図から明らか
なように、Taと共存する場合は接点材料全体に
対してCr量が35重量%以下の範囲でしや断性能
の改善が見られ、それ以上Cr量を増加しても効
果が得られない。一方、Taに関しては、Crとの
共存によつて少量の添加でもしや断性能の改善が
見られ、Ta量が50重量%以下で実用的である。
なお、Ta量は50重量%以上でも、しや断性能か
らみて有効な範囲があると思われるが、まず、製
造上、通常の焼結法では得難いこと、次に第12
図から明らかなように50重量%Ta以上では電気
伝導度が低く、接触抵抗なども上昇し、特殊用途
以外のしや断器には実用化が難しい。
Figure 12 shows the relationship between Ta content and electrical conductivity in a binary alloy of Cu and Ta, and Figure 13 shows the relationship between Cu and Cr.
The relationship between Cr content and electrical conductivity is shown in the binary alloy. From both figures, the electric conductivity decreases as Ta and Cr increase, and for Ta, it decreases at about 50% by weight.
In addition, 40% by weight of Cr reaches the limit of electrical conductivity generally required for a plastic breaking contact;
Increasing Ta and Cr will have a negative effect on practical use due to current conduction, shearing, etc. Furthermore, as is clear from Fig. 11, when coexisting with Ta, the shearing performance is improved when the amount of Cr is 35% by weight or less based on the entire contact material, and when the amount of Cr is increased beyond that, However, the effect is not obtained. On the other hand, with regard to Ta, when it coexists with Cr, even a small amount of addition can improve the cracking performance, and it is practical when the amount of Ta is 50% by weight or less.
It should be noted that even if the amount of Ta is 50% by weight or more, there seems to be an effective range in terms of shearing performance.
As is clear from the figure, if Ta exceeds 50% by weight, the electrical conductivity is low and the contact resistance increases, making it difficult to put it into practical use as a disconnector for other than special purposes.

さらに、第11図から、従来品に比較して、し
や断性能が著しく(1.5倍を超える)向上する範
囲として、Ta量が5〜30重量%、Cr量がCuに対
して8〜33重量%、すなわち接点材料全体に対し
て8×0.7≒5〜33×0.9≒30重量%が望ましい。
Furthermore, from Figure 11, the range in which the shearing performance is significantly improved (more than 1.5 times) compared to the conventional product is that the Ta content is 5 to 30% by weight, and the Cr content is 8 to 33% by weight relative to Cu. % by weight, ie 8×0.7≒5 to 33×0.9≈30% by weight based on the entire contact material.

さらに、第11図から接点材料全体に対する
CrとTaの合計が10重量%以上で効果があり、そ
れより少なくなるとしや断性能は向上しなかつ
た。さらに、第11図から逆に接点材料全体に対
するCrとTaの合計がだんだん多くなると製造が
困難になり、65重量%以上になると製造方法にも
よるが充分なしや断性能が期待できなくなる。
Furthermore, from Fig. 11, for the entire contact material,
It was effective when the total content of Cr and Ta was 10% by weight or more, and when it was less than that, the shear cutting performance did not improve. Furthermore, as shown in FIG. 11, as the total content of Cr and Ta in the entire contact material gradually increases, it becomes difficult to manufacture, and when it exceeds 65% by weight, sufficient breaking performance and breaking performance cannot be expected, although it depends on the manufacturing method.

なお、前記第6図〜第11図の実験例ではCr
とTaからなる金属間化合物、即ち、Cr2Taを形
成しており、Cu中にCr,TaおよびCr2Taが均一
微細に分布した合金の諸特性について示したが、
焼結温度を低くし、Cu,Cr,Taがほとんど単体
として分布している合金においても、ほぼ同様の
傾向を示し、従来のCu―25重量%Cr合金に比較
して著しく大きなしや断性能を有する。しかし、
同一の配合で混合,成形,焼結されたCu―Cr―
Ta合金ではCr,Taの金属間化合物を形成してい
るものの方がしや断性能に優れていることがわか
つた。
In addition, in the experimental examples shown in FIGS. 6 to 11, Cr
The intermetallic compound consisting of Cu and Ta, that is, Cr 2 Ta, is formed, and various properties of the alloy in which Cr, Ta, and Cr 2 Ta are uniformly and finely distributed in Cu are shown.
An alloy in which the sintering temperature is lowered and Cu, Cr, and Ta are distributed almost as single elements shows almost the same tendency, and has significantly greater shearing performance than the conventional Cu-25 wt% Cr alloy. has. but,
Cu―Cr― mixed, formed, and sintered with the same composition
It was found that Ta alloys that form intermetallic compounds of Cr and Ta have better cutting performance.

また、図示しないが、上記合金にBi,Te,
Sb,Tl,Pb,Se,Ce及びCaの低融点金属、そ
れらの合金、並びにそれらの金属間化合物のうち
少なくとも1種以上を20重量%以下添加した低さ
い断真空しや断器用接点においても、前記実験例
と同様にしや断性能や耐電圧性能を上昇させる効
果があることを確認している。
Although not shown in the figure, Bi, Te,
Low melting point metals such as Sb, Tl, Pb, Se, Ce, and Ca, alloys thereof, and intermetallic compounds thereof can be added in an amount of 20% by weight or less for low-sintering vacuum shields and breaker contacts. It has been confirmed that, as in the above experimental example, there is an effect of increasing the shearing performance and withstand voltage performance.

なお、低融点金属、それらの合金、並びにそれ
らの金属間化合物のうち少なくとも1種以上を20
重量%以上添加した場合には著しく、しや断性能
が低下した。又、低融点金属がCeあるいはCaの
場合は、若干特性が落ちた。
In addition, at least one of low melting point metals, alloys thereof, and intermetallic compounds thereof
When more than % by weight was added, the shearing performance decreased significantly. Furthermore, when the low melting point metal was Ce or Ca, the properties were slightly degraded.

以上のように、この発明によれば、銅を含有す
ると共に、他の成分としてクロムが35重量%以下
及びタンタルが50重量%以下で、クロムとタンタ
ルの合計が10重量%以上の範囲含有することを特
徴とするものであるので、しや断性能に優れ、か
つ、高耐電圧性能を有する真空しや断器用接点材
料が得られる効果がある。
As described above, according to the present invention, in addition to containing copper, other components include chromium of 35% by weight or less and tantalum of 50% by weight or less, and the total of chromium and tantalum is 10% by weight or more. Because of this feature, it is possible to obtain a contact material for a vacuum shield breaker which has excellent shear breaking performance and high withstand voltage performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を適用する真空ス
イツチ管の構造を示す断面図、第2図はその第1
図の電極部分の拡大断面図である。第3図は焼結
法により製造した従来のCu―25重量%Cr接点合
金の100倍の金属組織写真、第4図は高温で焼結
したこの発明の一実施例によるCu―25重量%Cr
の母合金にTaを10重量%添加した接点合金の100
倍の金属組織写真、第5図はこの発明の他の実施
例による低温で焼結した第4図と同様の配合を持
つ接点合金の100倍の金属組織写真、第6図はこ
の発明の接点材料におけるCuに対するCrの重量
比率を75:25に固定した合金に対してTa添加量
を変化させた時の電気伝導度の変化を示す特性
図、第7図はこの発明の接点材料におけるCuに
対するCrの重量比率を75:25に固定した合金に
対してTa添加量を変化させた時の接触抵抗の変
化を示す特性図、第8図はこの発明の接点材料に
おけるCuに対するCrの重量比率を75:25に固定
した合金に対してTa添加量を変化させた時のし
や断容量の変化を示す特性図、第9図はこの発明
の接点材料におけるCuに対するCrの重量比率を
75:25に固定した合金に対してTa添加量を変化
させた時の耐電圧性能の変化を示す特性図、第1
0図はこの発明の接点材料における合金中のTa
量を30重量%に固定した場合のCuに対するCrの
重量比率を変化させた時の電気伝導度の変化を示
す特性図、第11図はこの発明の接点材料におけ
るTa量を0,1,3,5,7,10,15,30,40,
50,60重量%に各々固定した場合のCuに対する
Crの重量比率を変化させた合金のしや断容量の
変化を示す特性図、第12図は参考に示し、Cu
―Ta二元合金においてTa量と電気伝導度の関係
を示す特性図、第13図は参考に示し、Cu―Cr
二元合金においてCr量と電気伝導度の関係を示
す特性図である。 1…真空絶縁容器、2,3…端板、4,5…電
極、6,7…電極棒、8…ベローズ、9,10…
シールド、51…ろう材、なお、図中同一符号は
各々同一又は相当部分を示す。
FIG. 1 is a sectional view showing the structure of a vacuum switch tube to which an embodiment of the present invention is applied, and FIG.
It is an enlarged sectional view of the electrode part of a figure. Figure 3 is a 100x metallographic photograph of a conventional Cu-25wt%Cr contact alloy produced by a sintering method, and Figure 4 is a Cu-25wt%Cr contact alloy produced by an embodiment of the present invention sintered at high temperature.
100 of the contact alloy with 10% by weight of Ta added to the mother alloy.
Fig. 5 is a 100x photo of the metallographic structure of a contact alloy having the same composition as Fig. 4 sintered at low temperature according to another embodiment of the present invention, and Fig. 6 is a photo of the contact of the present invention. A characteristic diagram showing the change in electrical conductivity when the amount of Ta added is changed for an alloy in which the weight ratio of Cr to Cu in the material is fixed at 75:25. A characteristic diagram showing the change in contact resistance when the amount of Ta added is changed for an alloy with a fixed Cr weight ratio of 75:25. Figure 8 shows the weight ratio of Cr to Cu in the contact material of this invention. A characteristic diagram showing the change in shear capacity when the amount of Ta added is changed for an alloy fixed at 75:25. Figure 9 shows the weight ratio of Cr to Cu in the contact material of this invention.
Characteristic diagram showing the change in withstand voltage performance when the Ta addition amount is changed for an alloy fixed at 75:25, 1st
Figure 0 shows Ta in the alloy in the contact material of this invention.
Figure 11 is a characteristic diagram showing the change in electrical conductivity when the weight ratio of Cr to Cu is changed when the amount is fixed at 30% by weight. ,5,7,10,15,30,40,
Regarding Cu when fixed at 50 and 60% by weight, respectively
Figure 12 is a characteristic diagram showing changes in shear capacity of alloys with varying weight ratios of Cr, and is shown for reference.
-Characteristic diagram showing the relationship between Ta content and electrical conductivity in Ta binary alloy, Figure 13 is shown for reference, and Cu-Cr
FIG. 2 is a characteristic diagram showing the relationship between Cr content and electrical conductivity in a binary alloy. DESCRIPTION OF SYMBOLS 1... Vacuum insulation container, 2, 3... End plate, 4, 5... Electrode, 6, 7... Electrode rod, 8... Bellows, 9, 10...
Shield, 51...brazing material, and the same reference numerals in the drawings indicate the same or corresponding parts, respectively.

Claims (1)

【特許請求の範囲】 1 銅を含有すると共に、他の成分としてクロム
が35重量%以下及びタンタルが50重量%以下で、
クロムとタンタルの合計が10重量%以上の範囲含
有することを特徴とする真空しや断器用接点材
料。 2 クロムとタンタルの合計が65重量%以下の範
囲含有する特許請求の範囲第1項記載の真空しや
断器用接点材料。 3 クロムが5〜30重量%、及びタンタルが5〜
30重量%の範囲にあることを特徴とする特許請求
の範囲第1項記載の真空しや断器用接点材料。 4 銅、クロム、及びタンタルが、各々単体金
属、三者もしくは二者の合金、三者もしくは二者
の金属間化合物、又はそれらの複合体として分布
していることを特徴とする特許請求の範囲第1項
ないし第3項のいずれかに記載の真空しや断器用
接点材料。 5 ビスマス、テルル、アンチモン、タリウム、
鉛、セレン、セリウム及びカルシウムの低融点金
属、それらの合金、並びにそれらの金属間化合物
のうち少なくとも1種以上を20重量%以下含有し
ていることを特徴とする特許請求の範囲第1項な
いし第4項のいずれかに記載の真空しや断器用接
点材料。
[Claims] 1 Contains copper, and other components include 35% by weight or less of chromium and 50% by weight or less of tantalum,
A contact material for vacuum shields and disconnectors characterized by containing a total of chromium and tantalum in a range of 10% by weight or more. 2. The contact material for a vacuum shield or breaker according to claim 1, which contains a total of chromium and tantalum in a range of 65% by weight or less. 3 5 to 30% by weight of chromium and 5 to 30% of tantalum
A contact material for a vacuum shield or breaker according to claim 1, characterized in that the content is in the range of 30% by weight. 4. Claims characterized in that copper, chromium, and tantalum are each distributed as a single metal, a tri- or di-metallic alloy, a tri- or di-metallic compound, or a composite thereof. The contact material for a vacuum shield or disconnector according to any one of Items 1 to 3. 5 Bismuth, tellurium, antimony, thallium,
Claims 1 to 3 contain at least 20% by weight of at least one of low melting point metals such as lead, selenium, cerium, and calcium, alloys thereof, and intermetallic compounds thereof. The contact material for a vacuum shield or disconnector according to any one of Item 4.
JP19278582A 1982-11-01 1982-11-01 Contact material for vacuum breaker Granted JPS5981816A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19278582A JPS5981816A (en) 1982-11-01 1982-11-01 Contact material for vacuum breaker
US06/547,218 US4517033A (en) 1982-11-01 1983-10-31 Contact material for vacuum circuit breaker
DE8383110920T DE3378088D1 (en) 1982-11-01 1983-11-02 Contact material for vacuum circuit breaker
EP83110920A EP0110176B1 (en) 1982-11-01 1983-11-02 Contact material for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19278582A JPS5981816A (en) 1982-11-01 1982-11-01 Contact material for vacuum breaker

Publications (2)

Publication Number Publication Date
JPS5981816A JPS5981816A (en) 1984-05-11
JPS6336089B2 true JPS6336089B2 (en) 1988-07-19

Family

ID=16296953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19278582A Granted JPS5981816A (en) 1982-11-01 1982-11-01 Contact material for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS5981816A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0170052B1 (en) * 1994-02-21 1999-02-18 사또 후미오 Contact material for vacuum valve & method of manufacturing the same
JP6253494B2 (en) * 2014-04-21 2017-12-27 三菱電機株式会社 Contact material for vacuum valve and vacuum valve

Also Published As

Publication number Publication date
JPS5981816A (en) 1984-05-11

Similar Documents

Publication Publication Date Title
US4486631A (en) Contact for vacuum circuit breaker
EP0110176B1 (en) Contact material for vacuum circuit breaker
EP0109088B1 (en) Contact material for vacuum circuit breaker
US4853184A (en) Contact material for vacuum interrupter
JPS6142828A (en) Contact material for vacuum contactor and method of producing same and contactor for vacuum contact
JPS6336089B2 (en)
EP0126347B1 (en) Contact material for vacuum circuit interrupter, contact member of such material, a vacuum circuit interrupter and the use of such material
JPS6357896B2 (en)
JPS6336090B2 (en)
US4129760A (en) Vacuum circuit breaker
JPH0133011B2 (en)
JPS6336092B2 (en)
JPH0449734B2 (en)
JPH0449733B2 (en)
JPS59201334A (en) Contact material for vacuum breaker
JPS60170122A (en) Contact material for vacuum breaker
JPS59186218A (en) Contact material for vacuum breaker
JPS59201336A (en) Contact material for vacuum breaker
JPS59167925A (en) Contact material for vacuum breaker
JPS59201335A (en) Contact material for vacuum breaker
JPH0133012B2 (en)
JPS59214121A (en) Contact material for vacuum breaker
JPS60170123A (en) Contact material for vacuum breaker
JPH0145171B2 (en)
JPH0143971B2 (en)