JPS6336090B2 - - Google Patents
Info
- Publication number
- JPS6336090B2 JPS6336090B2 JP20253082A JP20253082A JPS6336090B2 JP S6336090 B2 JPS6336090 B2 JP S6336090B2 JP 20253082 A JP20253082 A JP 20253082A JP 20253082 A JP20253082 A JP 20253082A JP S6336090 B2 JPS6336090 B2 JP S6336090B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- vacuum
- performance
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 43
- 239000000956 alloy Substances 0.000 claims description 43
- 229910052804 chromium Inorganic materials 0.000 claims description 27
- 229910052758 niobium Inorganic materials 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 150000002739 metals Chemical class 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 229910000765 intermetallic Inorganic materials 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 7
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- 229910052716 thallium Inorganic materials 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 5
- 239000011651 chromium Substances 0.000 claims 5
- 239000010955 niobium Substances 0.000 claims 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 2
- 239000010949 copper Substances 0.000 claims 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- 229910052684 Cerium Inorganic materials 0.000 claims 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- 239000011575 calcium Substances 0.000 claims 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims 1
- 239000011669 selenium Substances 0.000 claims 1
- 229910052711 selenium Inorganic materials 0.000 claims 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims 1
- 238000010008 shearing Methods 0.000 description 15
- 229910000599 Cr alloy Inorganic materials 0.000 description 9
- 229910017813 Cu—Cr Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 229910002056 binary alloy Inorganic materials 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 229910001257 Nb alloy Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- -1 Cu-Co-Bi Inorganic materials 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- QAAXRTPGRLVPFH-UHFFFAOYSA-N [Bi].[Cu] Chemical compound [Bi].[Cu] QAAXRTPGRLVPFH-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
【発明の詳細な説明】
この発明は、大電流特性に優れ、かつ高耐電圧
性能を有する真空しや断器用接点に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum shield contact having excellent large current characteristics and high withstand voltage performance.
真空しや断器は、その無保守,無公害性,優れ
たしや断性能等の利点を持つため、適用範囲が急
速に拡大して来ている。また、それに伴いより高
耐圧化,大電流化の要求がきびしくなつて来てい
る。一方、真空しや断器の性能は真空容器内の接
点材料によつて決定される要素がきわめて大であ
る。 Vacuum sheath breakers have advantages such as maintenance-free, non-polluting properties, and excellent sheath breaker performance, so the scope of their application is rapidly expanding. In addition, along with this, demands for higher voltage resistance and larger current are becoming more severe. On the other hand, the performance of a vacuum shield breaker is determined to a large extent by the contact material inside the vacuum container.
真空しや断器用接点の満足すべき特性として、
(1)しや断容量が大きいこと、(2)耐電圧が高いこ
と、(3)接触抵抗が小さいこと、(4)溶着力が小さい
こと、(5)接点消耗量が小さいこと、(6)さい断電流
値が小さいこと、(7)加工性が良いこと、(8)十分な
機械的強度を有すること、等がある。 Satisfactory characteristics of the vacuum shield and disconnection contacts include:
(1) Large shearing capacity, (2) High withstand voltage, (3) Low contact resistance, (4) Low welding force, (5) Low contact wear, (6) ) have a small cutting current value, (7) have good workability, and (8) have sufficient mechanical strength.
実際の接点では、これらの特性を全て満足させ
ることは、かなり困難であつて、一般には用途に
応じて特に重要な特性を満足させ、他の特性をあ
る程度犠牲にした材料を使用しているのが実状で
ある。 In actual contacts, it is quite difficult to satisfy all of these characteristics, and in general, materials are used that satisfy particularly important characteristics depending on the application, sacrificing other characteristics to some extent. is the actual situation.
従来、この種の接点として銅―ビスマス(以下
Cu―Biと表示する。他の元素および元素の組み
合せからなる合金についても同様に元素記号で表
示する。)、Cu―Cr―Bi、Cu―Co―Bi、Cu―Cr
等が使用されていた。 Conventionally, this type of contact has been made using copper-bismuth (hereinafter referred to as
Displayed as Cu―Bi. Alloys made of other elements and combinations of elements are similarly indicated by element symbols. ), Cu-Cr-Bi, Cu-Co-Bi, Cu-Cr
etc. were used.
しかし、Cu―Biなどの低融点金属を含有する
合金接点では排気工程中の高温加熱により、その
一部が接点内から拡散、蒸発し、真空容器内の金
属シールドや絶縁容器に付着する。これが真空し
や断器の耐電圧を劣化させる大きな因子のひとつ
になつている。また、負荷開閉や大電流しや断時
にも低融点金属の蒸発,飛散が生じて耐電圧の劣
化,しや断性能の低下が見られる。上記の欠点を
除くために真空耐電圧に優れたCr,Coなどを添
加したCu―Cr―Biなどにおいても、低融点金属
による上記の欠点は根本的に解決されず、高電
圧,大電流には対応できない。一方、Cu―Crな
どのように真空耐電圧に優れた金属(Cr,Coな
ど)と電気伝導度に優れたCuとの組み合せから
なる材料は耐溶着性能に関しては低融点金属を含
有する接点に比較して、やや劣るが、しや断性能
や耐電圧性能が優れているため、高電圧,大電流
域ではよく使用されている。さらに、Cu―Cr合
金などにおいても、しや断性能には限界があるた
めに、接点の形状を工夫し、接点部の電流経路を
操作することで、磁場を発生させ、この力で大電
流アークを強制駆動して、しや断性能を上げる努
力がなされていた。 However, in the case of alloy contacts containing low-melting point metals such as Cu-Bi, some of the metals diffuse and evaporate from within the contacts due to the high temperature heating during the evacuation process, and adhere to the metal shield or insulating container inside the vacuum container. This is one of the major factors that degrades the withstand voltage of vacuum shields and disconnectors. In addition, when the load is switched on and off or when a large current is interrupted, evaporation and scattering of low-melting point metals occur, resulting in deterioration of withstand voltage and deterioration of shearing performance. Even though Cu-Cr-Bi is added with Cr, Co, etc., which have excellent vacuum withstand voltage, to eliminate the above-mentioned drawbacks, the above-mentioned drawbacks due to low melting point metals are not fundamentally solved, and it cannot be used at high voltages and large currents. cannot be handled. On the other hand, materials such as Cu-Cr, which are made of a combination of metals (Cr, Co, etc.) with excellent vacuum withstand voltage and Cu, which has excellent electrical conductivity, are inferior to contacts containing low-melting point metals in terms of welding resistance. Although it is slightly inferior in comparison, it is often used in high voltage and large current ranges because it has excellent shearing performance and withstand voltage performance. Furthermore, since there is a limit to the shearing performance of Cu-Cr alloys, we can create a magnetic field by devising the shape of the contact and manipulating the current path of the contact, and this force can generate a large current. Efforts have been made to forcefully drive the arc to improve shearing performance.
しかし、高電圧化,大電流化への要求はさらに
きびしく、従来の接点では要求性能を十分満足さ
せることが困難となつている。又、真空しや断器
の小型化に対しても同様に従来の接点性能では十
分でなく、より優れた性能を持つ接点材料が求め
られていた。 However, the demands for higher voltage and larger current have become even more demanding, making it difficult for conventional contacts to sufficiently satisfy the required performance. Furthermore, in order to reduce the size of vacuum shields and disconnectors, conventional contact performance is not sufficient, and there is a need for contact materials with even superior performance.
この発明は上記のような従来のものの欠点を除
去するためになされたもので、大電流特性に優
れ、かつ高耐電圧性能を有する真空しや断器用接
点を提供することを目的としている。 The present invention was made to eliminate the above-mentioned drawbacks of the conventional products, and its object is to provide a contact for a vacuum circuit breaker that has excellent large current characteristics and high withstand voltage performance.
我々はCuに種々の金属,合金,金属間化合物
を添加した接点材料を試作し、真空しや断器に組
み込んで種々の実験を行なつた。この結果、
「Cu、Cr、Nb」が単体金属あるいは「三者もし
くは二者」の合金、あるいは「三者もしくは二
者」の金属間化合物、またはそれらの複合体とし
て分布している接点合金は非常にしや断性能が優
れていることがわかつた。この発明による真空し
や断器用接点は「Cuを第1成分とし、他の成分
としてCrを35重量%以下Nbを40重量%以下」の
範囲にあり、「Cu、Cr、Nb」が各々単体金属あ
るいは「三者もしくは二者」の合金、あるいは
「三者もしくは二者」の金属間化合物として、ま
たはそれらの複合体として分布していることを特
徴としている。 We fabricated prototype contact materials by adding various metals, alloys, and intermetallic compounds to Cu, and conducted various experiments by incorporating them into vacuum shields and disconnectors. As a result,
Contact alloys in which “Cu, Cr, and Nb” are distributed as single metals, “ternary or binary” alloys, “ternary or binary” intermetallic compounds, or composites thereof are extremely sensitive. It was found that the cutting performance was excellent. The vacuum shield contact of the present invention has Cu as the first component, and other components include Cr of 35% by weight or less and Nb of 40% by weight or less, and each of Cu, Cr, and Nb is It is characterized by being distributed as a metal, a ``ternary or binary'' alloy, a ``tripartite or binary'' intermetallic compound, or a complex thereof.
以下、本発明の一実施例を図について説明す
る。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
第1図は真空スイツチ管の構造図で、1真空絶
縁容器、前記真空絶縁容器1の両端を閉塞する端
板2および3とにより形成された容器内部に電極
4および5が、それぞれ電極棒6および7の一端
に、お互いが対向するよう配置されている。前記
電極7は、ベローズ8を介して前記端板3に気密
を損うことなく軸方向の動作が可能なように接合
されている。シールド9および10がアークによ
り発生する蒸気で真空絶縁容器1の内面及びベロ
ーズ8が汚染されることがないよう、それぞれ前
記真空絶縁容器1の内面および前記ベローズ8を
覆つている。電極4および5の構成を第2図に示
す。電極5はその背面で電極棒7にろう材51を
介挿してろう付されている。前記電極4,5は本
発明に係るCu―Cr―Nb系合金から成つている。 FIG. 1 is a structural diagram of a vacuum switch tube, in which electrodes 4 and 5 are installed inside a container formed by a vacuum insulating container 1 and end plates 2 and 3 that close both ends of the vacuum insulating container 1, and an electrode rod 6, respectively. and 7 are arranged to face each other at one end. The electrode 7 is joined to the end plate 3 via a bellows 8 so as to be movable in the axial direction without compromising airtightness. Shields 9 and 10 cover the inner surface of the vacuum insulating container 1 and the bellows 8, respectively, so that the inner surface of the vacuum insulating container 1 and the bellows 8 are not contaminated by vapor generated by the arc. The structure of electrodes 4 and 5 is shown in FIG. The electrode 5 is brazed to the electrode rod 7 on the back side thereof with a brazing material 51 inserted therein. The electrodes 4 and 5 are made of a Cu--Cr--Nb alloy according to the present invention.
第3図は比較例として従来のCu―Cr合金接点
の金属組織写真を示す。これはCu粉とCr粉をそ
れぞれ75重量%、25重量%で混合、成形して焼結
し得られたCu―Cr合金である。 Figure 3 shows a photograph of the metallographic structure of a conventional Cu-Cr alloy contact as a comparative example. This is a Cu-Cr alloy obtained by mixing Cu powder and Cr powder at 75% by weight and 25% by weight, molding, and sintering.
第4図は本発明の一実施例としてCu―Cr―Nb
合金の金属組織写真を示す。これはCu粉とCr粉
の配合を各々75重量%、25重量%とした混合粉末
にNbを5重量%加えたものを混合、成形、焼結
して得られたCu―Cr―Nb合金である。なお、焼
結は1100℃程度で行ない、CrおよびNbの一部が
反応してCr2Nbを形成する条件とした。 Figure 4 shows Cu-Cr-Nb as an example of the present invention.
A photograph of the metallographic structure of the alloy is shown. This is a Cu-Cr-Nb alloy obtained by mixing, molding, and sintering a mixed powder containing Cu powder and Cr powder of 75% by weight and 25% by weight, respectively, and 5% by weight of Nb. be. Note that sintering was performed at about 1100° C. under conditions such that part of Cr and Nb reacted to form Cr 2 Nb.
第5図は本発明の一実施例としてCu―Cr―Nb
合金をCrとNbが合金あるいは金属間化合物を形
成し難い程度の比較的低温で焼結した場合の金属
組織写真を示す。これは、第4図に示した実施例
と同一の配合比からなるCu―Cr―Nb混合粉末を
成形、焼結して得られる合金である。第4図の合
金はCu中にCr,Nb,Cr2Nbが均一微細に分布し
ていることがわかる。また、第5図の合金はCu
中にCr,Nbが主として単体金属で分布し、
Cr2Nbはほとんど見られない。 Figure 5 shows Cu-Cr-Nb as an example of the present invention.
This figure shows a photograph of the metallographic structure of an alloy sintered at a relatively low temperature that makes it difficult for Cr and Nb to form an alloy or an intermetallic compound. This is an alloy obtained by molding and sintering a Cu--Cr--Nb mixed powder having the same blending ratio as the example shown in FIG. It can be seen that in the alloy shown in Figure 4, Cr, Nb, and Cr 2 Nb are uniformly and finely distributed in Cu. Also, the alloy in Figure 5 is Cu
Cr and Nb are mainly distributed as single metals,
Cr2Nb is rarely seen.
以下に種々の測定あるいは試験を行なつた結果
について説明する。 The results of various measurements or tests will be explained below.
まず、我々の実験の結果から、Cu,Crの二元
合金からなる接点合金ではCr量が20〜30重量%
の範囲で各種の性能が非常に優れていることを確
認しているので、接点材料中のCuとCrの重量比
を常に一定(75:25)とし、これに添加するNb
量を種々変化させた場合の合金の諸特性の変化に
ついて示す。 First, from our experimental results, we found that in a contact alloy consisting of a binary alloy of Cu and Cr, the amount of Cr is 20 to 30% by weight.
We have confirmed that various types of performance are extremely excellent in the range of
The changes in various properties of the alloy when the amount is varied are shown.
第6図は合金のCuとCrの重量比率を75:25に
固定したものに添加したNb量と電気伝導の関係
を示したものであり、Nb量の増加とともに電気
伝導度が低下しているが、合金中のCuとCrの重
量比率を75:25に固定した場合、Nb量を20重量
%まで増加させても実用上問題はない。なお、第
6図の縦軸はCu―Crの電気伝導度を1とした時
の比、横軸はNb添加量を示す。第7図は合金中
のCuとCrの重量比率を75:25に固定したものに
添加したNb量と接触抵抗の関係を示したもので、
電気伝導度と同様の傾向を示す。なお、第7図の
縦軸は、従来品のCu―25重量%Cr合金の値を1
とした比率を示す。第8図は合金中のCuとCrの
重量比率を75:25に固定したものに添加したNb
量としや断容量の関係を示しており、Nbを添加
したものは従来品(Cu―25重量%Cr合金)に比
較して著しくしや断性能が上昇していることがわ
かる。 Figure 6 shows the relationship between the amount of Nb added to an alloy with a fixed weight ratio of 75:25 and electrical conductivity, and shows that the electrical conductivity decreases as the amount of Nb increases. However, if the weight ratio of Cu and Cr in the alloy is fixed at 75:25, there is no practical problem even if the amount of Nb is increased to 20% by weight. Note that the vertical axis in FIG. 6 shows the ratio when the electric conductivity of Cu-Cr is set to 1, and the horizontal axis shows the amount of Nb added. Figure 7 shows the relationship between the amount of Nb added and the contact resistance when the weight ratio of Cu and Cr in the alloy was fixed at 75:25.
It shows the same tendency as electrical conductivity. The vertical axis in Figure 7 shows the value of the conventional Cu-25%Cr alloy by 1.
The ratio is shown below. Figure 8 shows Nb added to an alloy with a fixed weight ratio of Cu and Cr at 75:25.
It shows the relationship between the amount of shearing capacity and the shearing capacity, and it can be seen that the shearing performance of the Nb-added product is significantly improved compared to the conventional product (Cu-25 wt% Cr alloy).
なお、第8図の縦軸は従来品のCu―25重量%
Crの合金の値を1とした比率を示す。第8図か
ら明らかなようにNb添加量の増加とともに、し
や断容量は増加し、5重量%Nbでは従来品の1.8
倍に達し、それ以上Nbを加えると逆にしや断容
量の低下が生じる。即ち、NbとCrが共存して、
その相互作用により、しや断性能を上昇させる
が、ある程度以上NbとCrを増加させると合金中
において、良導電性のCuが減少して合金の電気
伝導度や熱伝導度が低下し、アークによる熱入力
をすみやかに放散することが困難になり、逆にし
や断性能を悪くさせるためである。第9図は同様
にNb添加量と耐電圧性能の関係を示すものであ
る。図から明らかなようにNb量が3重量%以下
では従来品(Cu―25重量%Cr合金)と差が見ら
れないが、それ以上添加すれば、Nb添加量の増
加とともに耐電圧性能の上昇が見られる。 The vertical axis in Figure 8 is Cu-25% by weight of the conventional product.
The ratio is shown with the value of Cr alloy as 1. As is clear from Figure 8, as the amount of Nb added increases, the shearing capacity increases, and at 5 wt% Nb, it is 1.8
If Nb is added beyond this point, the shear shear capacity will decrease. That is, Nb and Cr coexist,
This interaction increases the shearing performance, but when Nb and Cr are increased beyond a certain level, Cu, which has good conductivity, decreases in the alloy, reducing the electrical conductivity and thermal conductivity of the alloy, causing an arc This is because it becomes difficult to quickly dissipate the heat input caused by this, and conversely, the shear breaking performance deteriorates. FIG. 9 similarly shows the relationship between the amount of Nb added and the withstand voltage performance. As is clear from the figure, when the amount of Nb is 3% by weight or less, there is no difference from the conventional product (Cu-25% by weight Cr alloy), but if more than that is added, the withstand voltage performance increases as the amount of Nb added increases. can be seen.
次に合金中のNb量を25重量%に固定したもの
のCuに対するCrの重量比率を変化させた場合の
合金の特性の変化について示す。第10図はCu
に対するCrの重量比率と電気伝導度の関係を示
す。 Next, we will show how the characteristics of the alloy change when the weight ratio of Cr to Cu is changed while the amount of Nb in the alloy is fixed at 25% by weight. Figure 10 shows Cu
The relationship between the weight ratio of Cr and electrical conductivity is shown.
次に合金中のNb添加量を0,1.3,5,10,
20,30,40重量%で各々固定とし、各合金での
Cuに対するCrの重量比率を変化させた場合のし
や断性能とCr重量比率の関係について、第11
図に示す。なお、縦軸は従来品(Cu―25重量%
Cr合金)の値を1とした比率を示し、横軸はCu
に対するCrの重量比率を示す。図からわかるよ
うに、従来品のCu―Cr二元合金ではCr量が20〜
30重量%の範囲にしや断容量のピークがあり、
Nb量を1〜5重量%に固定した場合も同様の傾
向がある。またNb量を5重量%に固定した場合
には、Crの重量比率が11重量%程度から、従来
品(Cu―25重量%Cr合金)を上回り、25重量%
程度まで著しいしや断性能の上昇が見られる。一
方、Nb量を20重量%に固定した場合にはしや断
容量のピークはCrの重量比率が5〜15重量%の
範囲にあり、そのピーク値はNb量が5重量%の
合金よりやや劣る。 Next, the amount of Nb added in the alloy was changed to 0, 1.3, 5, 10,
Fixed at 20, 30, and 40% by weight, and
Regarding the relationship between shearing performance and Cr weight ratio when changing the weight ratio of Cr to Cu, the 11th article
As shown in the figure. The vertical axis is the conventional product (Cu-25% by weight)
The horizontal axis shows the ratio with the value of Cu (Cr alloy) as 1.
Shows the weight ratio of Cr to As can be seen from the figure, the conventional Cu-Cr binary alloy has a Cr content of 20~
There is a peak of shear shear capacity in the 30% weight range.
A similar tendency exists when the amount of Nb is fixed at 1 to 5% by weight. Furthermore, when the Nb amount is fixed at 5% by weight, the Cr weight ratio increases from about 11% by weight to 25% by weight, exceeding that of the conventional product (Cu-25% Cr alloy).
A remarkable increase in the shear cutting performance can be seen. On the other hand, when the Nb content is fixed at 20% by weight, the peak of the shear breaking capacity is in the range of 5 to 15% by weight of Cr, and the peak value is slightly higher than that of alloys with 5% by weight of Nb. Inferior.
第12図はCuとNbの二元合金において、Nb
量と電気伝導度の関係を示し、第13図はCuと
Crの二元合金においてCr量と電気電導度の関係
を示す。両図からNb,Crの各々が増加するに従
い電気伝導度が低下し、Nbでは40重量%程度で、
またCrでは40重量%で一般にしや断器用接点と
して要求される電気伝導度の限界に達し、それ以
上Nb,Crを増加させると通電,しや断などから
実用上悪影響を及ぼす。また、第11図から明ら
かなように、Nbと共存する場合はCr量が35重量
%以下の範囲でしや断性能の改善が見られ、それ
以上Cr量を増加しても効果が得られない。一方、
Nbに関しては、Crとの共存によつて少量の添加
でもしや断性能の改善が見られ、Nb量が40重量
%以下で実用的である。なお、Nb量は40重量%
以上でも、しや断性能からみて有効な範囲がある
と思われるが、まず、製造上、通常の焼結法では
得難いこと、次に第12図から明らかなように40
重量%Nb以上では電気伝導度が低く、接触抵抗
なども上昇し、特殊用途以外のしや断器には実用
化が難しい。 Figure 12 shows that in a binary alloy of Cu and Nb, Nb
Figure 13 shows the relationship between Cu and electrical conductivity.
The relationship between Cr content and electrical conductivity in a binary Cr alloy is shown. Both figures show that as Nb and Cr increase, the electrical conductivity decreases, and for Nb, it decreases at about 40% by weight.
Furthermore, at 40% by weight, Cr reaches the limit of the electrical conductivity generally required for a contact for a breaker, and increasing Nb and Cr beyond this point will have a negative effect on current conduction, rupture, etc. in practice. Furthermore, as is clear from Fig. 11, when coexisting with Nb, an improvement in shear cutting performance is seen when the amount of Cr is 35% by weight or less, and no effect can be obtained even if the amount of Cr is increased beyond that. do not have. on the other hand,
As for Nb, when it coexists with Cr, even a small amount of addition can improve the cracking performance, and it is practical when the amount of Nb is 40% by weight or less. In addition, the amount of Nb is 40% by weight.
The above seems to have an effective range in terms of shearing performance, but firstly, it is difficult to achieve with the normal sintering method due to manufacturing reasons, and secondly, as is clear from Figure 12, 40
If the weight% Nb or more is used, the electrical conductivity is low and the contact resistance increases, making it difficult to put it into practical use as a circuit breaker for other than special purposes.
さらに、第11図から、従来品に比較して、し
や断性能が著しく(1.5倍を超える)向上する範
囲として、Cr量が 〜33重量%、Nb量が1〜30
重量%が望しい。 Furthermore, from Figure 11, the range in which the shearing performance is significantly improved (more than 1.5 times) compared to the conventional product is when the Cr content is ~33% by weight and the Nb content is 1 to 30% by weight.
% by weight is preferred.
なお、前記実施例ではCrとNbからなる金属間
化合物、即ち、Cr2Nbを形成しており、Cu中に
Cr,NbおよびCr2Nbが均一微細に分布した合金
の諸特性について示したが、焼結温度を低くし、
Cu,Cr,Nbがほとんど単体として分布している
合金においても、ほぼ同様の傾向を示し、従来の
Cu―25重量%Cr合金に比較して著しく大きなし
や断性能を有する。しかし、同一の配合で混合,
成形,焼結されたCu―Cr―Nb合金ではCr,Nb
の金属間化合物を形成しているものの方がしや断
性能に優れていることがわかつた。 In the above example, an intermetallic compound consisting of Cr and Nb, that is, Cr 2 Nb, is formed, and Cu contains
We have shown various properties of alloys in which Cr, Nb and Cr 2 Nb are uniformly and finely distributed.
Alloys in which Cu, Cr, and Nb are distributed almost as single substances show almost the same tendency, and compared to conventional
It has significantly greater shearing performance than Cu-25wt% Cr alloy. However, when mixed with the same composition,
In the formed and sintered Cu-Cr-Nb alloy, Cr and Nb
It was found that those that form intermetallic compounds have better cutting performance.
また、図示しないが、上記合金にBi,Te,
Sb,Tl,Pb,Se,Ce及びCa等の低融点金属あ
るいは、これらの合金、金属間化合物を各々単独
もしくは複合して添加した低さい断真空しや断器
用接点においても、前記実施例と同様にしや断性
能や耐電圧性能を上昇させる効果があることを確
認している。なお、低融点金属もしくはそれらの
合金または金属間化合物を各々単独もしくは複合
して20重量%以上添加した場合は著しく、しや断
性能が低下した。 Although not shown in the figure, Bi, Te,
The above-mentioned example can also be applied to low-sintering vacuum shields and breaker contacts to which low-melting point metals such as Sb, Tl, Pb, Se, Ce, and Ca, alloys, and intermetallic compounds of these are added individually or in combination. It has also been confirmed that it has the effect of increasing shrunken performance and withstand voltage performance. Note that when 20% by weight or more of low melting point metals, alloys thereof, or intermetallic compounds were added individually or in combination, the shearing performance was significantly reduced.
以上のように、この発明によれば、Cuを第1
成分とし、その他の成分として、Cr,Nbを含有
し、Cu,Cr,Nbが各々単体金属またはこれら三
者もしくは二者の合金、またはこれら三者もしく
は二者の金属間化合物として、またはそれらの複
合した次態で分布する構成にしたので、しや断性
能に優れ、かつ、高耐電圧性能を有する真空しや
断用接点が得られる効果がある。 As described above, according to the present invention, Cu is
Cu, Cr, and Nb are each contained as a single metal, an alloy of these three or two, or an intermetallic compound of these three or two, or as other components. Since it is configured to be distributed in a composite state, it is possible to obtain a vacuum shear breaking contact which has excellent shear breaking performance and high withstand voltage performance.
第1図は、真空スイツチ間の構造図、第2図
は、電極部分の拡大断面図、第3図は焼結法によ
り製造した従来のCu―25重量%Cr合金の金属組
織写真、第4図は高温で焼結した本発明の一実施
例によるCu―25重量%Crの母合金にNbを5重量
%添加した合金の金属組織写真、第5図は低温で
焼結した第4図と同様の配合を持つ合金組織写
真、第6図はCuに対するCrの重量比率を75:25
に固定した合金に対してNb添加量を変化させた
時の電気伝導度の変化を示す特性図、第7図は
Cuに対するCrの重量比率を75:25に固定した合
金に対してNb添加量を変化させた時の接触抵抗
の変化を示す特性図、第8図はCu対するCrの重
量比率を75:25に固定した合金に対してNb添加
量を変化させた時のしや断容量の変化を示す特性
図、第9図はCuに対するCrの重量比率を75:25
に固定した合金に対してNb添加量を変化させた
時の耐電圧性能の変化を示す特性図である。第1
0図は合金中のNb量を25重量%に固定した場合
のCuに対するCrの重量比率を変化させた時の電
気伝導度の変化を示す特性図である。第11図は
Nb量を0,1,3,5,10,20,30,40重量%
に各々固定した場合のCuに対するCrの重量比率
を変化させた合金のしや断容量の変化を示す特性
図である。第12図は、Cu―Nb二元合金におい
てNb量と電気伝導度の関係を示し、第13図は
Cu―Cr二元合金においてCr量と電気伝導度の関
係を示す。
1…真空絶縁容器、2,3…端板、4,5…電
極、6,7…電極棒、8…ベローズ、9,10…
シールド、51…ろう材。なお、図中同一符号は
各々同一又は相当部分を示す。
Figure 1 is a structural diagram between vacuum switches, Figure 2 is an enlarged sectional view of the electrode part, Figure 3 is a photograph of the metallographic structure of a conventional Cu-25 wt% Cr alloy manufactured by the sintering method, and Figure 4 The figure shows a metallographic photograph of an alloy in which 5% by weight of Nb is added to a Cu-25% by weight Cr mother alloy according to an embodiment of the present invention sintered at a high temperature. An alloy structure photograph with a similar composition, Figure 6 shows a weight ratio of Cr to Cu of 75:25.
Figure 7 is a characteristic diagram showing the change in electrical conductivity when the amount of Nb added is changed for an alloy fixed at
A characteristic diagram showing the change in contact resistance when the amount of Nb added is changed for an alloy in which the weight ratio of Cr to Cu is fixed at 75:25. Figure 8 shows the change in contact resistance when the weight ratio of Cr to Cu is fixed at 75:25. A characteristic diagram showing the change in shear capacity when changing the amount of Nb added to a fixed alloy. Figure 9 shows the weight ratio of Cr to Cu at 75:25.
FIG. 3 is a characteristic diagram showing changes in withstand voltage performance when the amount of Nb added is changed for an alloy fixed at . 1st
Figure 0 is a characteristic diagram showing the change in electrical conductivity when the weight ratio of Cr to Cu is changed when the amount of Nb in the alloy is fixed at 25% by weight. Figure 11 is
Nb amount 0, 1, 3, 5, 10, 20, 30, 40% by weight
FIG. 3 is a characteristic diagram showing the change in shear capacity of the alloy when the weight ratio of Cr to Cu is changed when each is fixed to . Figure 12 shows the relationship between the amount of Nb and electrical conductivity in a Cu-Nb binary alloy, and Figure 13 shows the relationship between the amount of Nb and electrical conductivity.
The relationship between Cr content and electrical conductivity in a Cu-Cr binary alloy is shown. DESCRIPTION OF SYMBOLS 1... Vacuum insulation container, 2, 3... End plate, 4, 5... Electrode, 6, 7... Electrode rod, 8... Bellows, 9, 10...
Shield, 51...brazing material. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
35重量%以下、ニオブを40重量%以下(0を除
く)で、クロムとニオブの合計が10重量%以上の
範囲にある材料から成ることを特徴とする真空し
や断器用接点。 2 クロムが32重量%以下、ニオブが1〜30重量
%の範囲にあることを特徴とする特許請求の範囲
第1項に記載の真空しや断器用接点。 3 銅、クロム、ニオブが各々単体、もしくはこ
れら三者もしくは二者の合金、または、これら三
者もしくは二者の金属間化合物として、または、
それらの複合体として分布していることを特徴と
する特許請求範囲第1項もしくは第2項に記載の
真空しや断器用接点。 4 ビスマス、テルル、アンチモン、タリウム、
鉛、セレン、セリウム及びカルシウムの低融点金
属、もしくはそれらの合金、又はそれらの金属間
化合物のうち少なくとも1つを20重量%以下含有
したことを特徴とする特許請求範囲第1項、第2
項又は第3項のいずれかに記載の真空しや断器用
接点。[Claims] 1 Copper is the first component, and chromium is the other component.
A contact for a vacuum shield, characterized in that it is made of a material in which the total content of chromium and niobium is 35% by weight or less, 40% by weight or less (excluding 0) of niobium, and 10% by weight or more of chromium and niobium. 2. The vacuum shield breaker contact according to claim 1, wherein the chromium content is 32% by weight or less, and the niobium content is in the range of 1 to 30% by weight. 3 Copper, chromium, and niobium each as a single substance, an alloy of these three or two, or an intermetallic compound of these three or two, or
The vacuum shield contact according to claim 1 or 2, characterized in that the contact is distributed as a composite. 4 Bismuth, tellurium, antimony, thallium,
Claims 1 and 2 contain at least 20% by weight of at least one of low melting point metals such as lead, selenium, cerium, and calcium, alloys thereof, or intermetallic compounds thereof.
3. The vacuum breaker contact according to any one of paragraphs 1 and 3.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20253082A JPS5991617A (en) | 1982-11-16 | 1982-11-16 | Contact for vacuum breaker |
EP83111417A EP0109088B1 (en) | 1982-11-16 | 1983-11-15 | Contact material for vacuum circuit breaker |
DE8383111417T DE3362624D1 (en) | 1982-11-16 | 1983-11-15 | Contact material for vacuum circuit breaker |
US06/552,442 US4575451A (en) | 1982-11-16 | 1983-11-16 | Contact material for vacuum circuit breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20253082A JPS5991617A (en) | 1982-11-16 | 1982-11-16 | Contact for vacuum breaker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5991617A JPS5991617A (en) | 1984-05-26 |
JPS6336090B2 true JPS6336090B2 (en) | 1988-07-19 |
Family
ID=16459016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20253082A Granted JPS5991617A (en) | 1982-11-16 | 1982-11-16 | Contact for vacuum breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5991617A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2777479B2 (en) * | 1990-11-30 | 1998-07-16 | 株式会社日立製作所 | Electrode material for vacuum circuit breaker and vacuum circuit breaker |
EP0668599B1 (en) * | 1994-02-21 | 2001-04-25 | Kabushiki Kaisha Toshiba | Contact material for vacuum valve and method of manufacturing the same |
JP6253494B2 (en) * | 2014-04-21 | 2017-12-27 | 三菱電機株式会社 | Contact material for vacuum valve and vacuum valve |
-
1982
- 1982-11-16 JP JP20253082A patent/JPS5991617A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5991617A (en) | 1984-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0083245B1 (en) | A sintered contact material for a vacuum circuit breaker | |
EP0083200B1 (en) | Electrode composition for vacuum switch | |
CA1327131C (en) | Electrical contacts for vacuum interrupter devices | |
EP0110176B1 (en) | Contact material for vacuum circuit breaker | |
EP0109088B1 (en) | Contact material for vacuum circuit breaker | |
JPH0156490B2 (en) | ||
JPS6336090B2 (en) | ||
EP0126347B2 (en) | Contact material for vacuum circuit interrupter, contact member of such material, a vacuum circuit interrupter and the use of such material | |
US4129760A (en) | Vacuum circuit breaker | |
JPS6336089B2 (en) | ||
JPH0133011B2 (en) | ||
EP0178796B1 (en) | Manufacture of vacuum interrupter contacts | |
JPS6336092B2 (en) | ||
JPH0449733B2 (en) | ||
JPS59201334A (en) | Contact material for vacuum breaker | |
JPH0449734B2 (en) | ||
JPS59201335A (en) | Contact material for vacuum breaker | |
JPS59167925A (en) | Contact material for vacuum breaker | |
JPS59201336A (en) | Contact material for vacuum breaker | |
JPS59186218A (en) | Contact material for vacuum breaker | |
JPH0133012B2 (en) | ||
JPS60170122A (en) | Contact material for vacuum breaker | |
JPS59214121A (en) | Contact material for vacuum breaker | |
JPS60170123A (en) | Contact material for vacuum breaker | |
JPS59169012A (en) | Contact material for vacuum breaker |