JPH0449734B2 - - Google Patents

Info

Publication number
JPH0449734B2
JPH0449734B2 JP7661783A JP7661783A JPH0449734B2 JP H0449734 B2 JPH0449734 B2 JP H0449734B2 JP 7661783 A JP7661783 A JP 7661783A JP 7661783 A JP7661783 A JP 7661783A JP H0449734 B2 JPH0449734 B2 JP H0449734B2
Authority
JP
Japan
Prior art keywords
weight
amount
performance
range
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7661783A
Other languages
Japanese (ja)
Other versions
JPS59201333A (en
Inventor
Mitsuhiro Okumura
Eizo Naya
Michinosuke Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7661783A priority Critical patent/JPS59201333A/en
Priority to US06/547,218 priority patent/US4517033A/en
Priority to DE8383110920T priority patent/DE3378088D1/en
Priority to EP83110920A priority patent/EP0110176B1/en
Publication of JPS59201333A publication Critical patent/JPS59201333A/en
Publication of JPH0449734B2 publication Critical patent/JPH0449734B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、大電流しや断性能に優れ、かつ耐
電圧性能の良好な真空しや断器用接点材料に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a contact material for a vacuum shield which has excellent large current breaking performance and good withstand voltage performance.

真空しや断器は、その無保守、無公害性、優れ
たしや断性能等の利点を持つため、適用範囲が急
速に拡大して来ている。また、それに伴い、より
大きなしや断容量や高い耐電圧が要求されてい
る。一方、真空しや断器の性能は真空容器内の接
点材料によつて決定される要素がきわめて大であ
る。
Vacuum sheath breakers have advantages such as maintenance-free, non-polluting properties, and excellent sheath breaker performance, so the scope of their application is rapidly expanding. In addition, along with this, a larger shearing capacity and a higher withstand voltage are required. On the other hand, the performance of a vacuum shield breaker is determined to a large extent by the contact material inside the vacuum container.

真空しや断器用接点材料の満足すべき特性とし
て、(1)しや断容量が大きいこと、(2)耐電圧が高い
こと、(3)接触抵抗が小さいこと、(4)溶着力が小さ
いこと、(5)接点消耗量が小さいこと、(6)さい断電
流値が小さいこと、(7)加工性が良いこと、(8)十分
な機械的強度を有すること、等がある。
Satisfactory characteristics of contact materials for vacuum shield disconnectors include (1) large shield breaking capacity, (2) high withstand voltage, (3) low contact resistance, and (4) low welding force. (5) low contact wear, (6) low cutting current, (7) good workability, and (8) sufficient mechanical strength.

実際の接点材料では、これらの特性を全て満足
させることは、かなり困難であつて、一般には用
途に応じて特に重要な特性を満足させ、他の特性
をある程度犠性にした材料を使用しているのが実
状である。
In actual contact materials, it is quite difficult to satisfy all of these properties, and in general, materials that satisfy particularly important properties depending on the application and sacrifice other properties to some extent are used. The reality is that there are.

従来、この種の接点材料として銅−ビスマス
(以下Cu−Biと表示する。他の元素および元素の
組み合せからなる材料についても同様に元素記号
で表示する)、Cu−Cr−Bi、Cu−Cp−Bi、Cu−Cr
等が使用されていた。しかし、Cu−Bi等の低融点
金属を含有する接点では排気工程中の高温加熱に
より、その一部が接点内から拡散、蒸発し、真空
容器内の金属シールドや絶縁容器に付着する。こ
れが真空しや断器の耐電圧を劣化させる大きな因
子の一つになつている。また、負荷開閉や大電流
しや断時にも低融点金属の蒸発、飛散が生じて耐
電圧の劣化、しや断性能の低下が見られる。上記
の欠点を除くために真空耐電圧に優れたCr、Cp
どを添加したCu−Cr−Biなどにおいても低融点金
属による上記の欠点は根本的に解決されず、高電
圧、大電流には対応できない。一方、Cu−Cr
どのように真空耐電圧に優れた金属(Cr、Cp
ど)と電気伝導度に優れたCuとの組み合せから
なる材料は耐溶着性能に関しては低融点金属を含
有する接点材料に比較して、やや劣るが、しや断
性能や耐電圧性能が優れているため、高電圧、大
電流域ではよく使用されている。さらに、Cu
Crなどにおいても、しや断性能には限界があるた
めに接点の形状を工夫し、接点部の電流経路を操
作することで、磁場を発生させ、この力で大電流
アークを強制駆動して、しや断性能を上げる努力
がなされていた。
Conventionally, this type of contact material has been copper-bismuth (hereinafter referred to as C u -B i . Materials made of other elements and combinations of elements are also indicated by element symbols), C u -C r -B i , C u −C p −B i , C u −C r
etc. were used. However, in a contact containing a low melting point metal such as C u -B i , a portion of the metal diffuses and evaporates from within the contact due to high temperature heating during the evacuation process, and adheres to the metal shield or insulating container in the vacuum container. This is one of the major factors that degrades the withstand voltage of vacuum shields and disconnectors. In addition, low-melting point metals evaporate and scatter when a load is switched on and off or when a large current is interrupted, resulting in deterioration of withstand voltage and deterioration of shearing performance. In order to eliminate the above-mentioned disadvantages, C u −C r −B i , etc., which are added with C r , C p , etc., which have excellent vacuum withstand voltage, do not fundamentally solve the above-mentioned disadvantages due to low melting point metals, and high voltage , cannot handle large currents. On the other hand, materials such as C u −C r , which are made of a combination of metals with excellent vacuum withstand voltage (C r , C p, etc.) and C u with excellent electrical conductivity, have low melting point metals in terms of welding resistance. Although it is slightly inferior to contact materials containing , it has excellent shearing performance and withstand voltage performance, so it is often used in high voltage and large current ranges. Furthermore, C u
Since there is a limit to the shearing performance of C r , etc., by devising the shape of the contact and manipulating the current path of the contact, a magnetic field is generated, and this force is used to forcibly drive a large current arc. Therefore, efforts were being made to improve the shearing performance.

しかし、大電流化、高電圧化への要求はさらに
きびしく、従来の接点材料では要求性能を十分満
足させることが困難となつている。又、真空しや
断器の小型化に対しても同様に従来の接点性能で
は十分でなく、より優れた性能を持つ接点材料が
求められていた。
However, the demands for larger currents and higher voltages have become even more demanding, and it has become difficult to fully satisfy the required performance with conventional contact materials. Furthermore, in order to reduce the size of vacuum shields and disconnectors, conventional contact performance is not sufficient, and there is a need for contact materials with even superior performance.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、大電流しや断性能
に優れ、かつ耐電圧性能の良好な真空しや断器用
接点材料を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional products as described above, and the purpose is to provide a contact material for vacuum shields and circuit breakers that has excellent large current breaking performance and good withstand voltage performance. It is said that

発明者等はCuに種々の金属、合金、金属間化
合物を添加した接点材料を試作し、真空スイツチ
管に組み込んで種々の実験を行なつた。これまで
に、先行技術(特願昭57−192785号明細書)とし
て、Cu、Cr、Taから構成されている材料のしや
断性能が従来品(Cu−25重量%Cr合金)に比較
して非常に優れていることを見出しているが、従
来品のしや断容量に対して1.5倍のしや断容量を
得るためにはTaを5〜25重量%の範囲添加させ
なければならなかつた。
The inventors prototyped contact materials by adding various metals, alloys, and intermetallic compounds to Cu , and conducted various experiments by incorporating them into vacuum switch tubes. As a prior art (Japanese Patent Application No. 192785/1985), it has been reported that the shearing performance of a material composed of C u , C r , and T a is higher than that of a conventional product (C u −25% by weight C r However, in order to obtain a shearing capacity 1.5 times that of conventional products, T a must be in the range of 5 to 25% by weight. I had to add it.

そこで、この一般に高価な材料であるTaの添
加量をできるだけ少なくして、有効にしや断性能
を向上させるために種々の実験を行なつた。この
結果、Cu、Cr、Taを主成分として、Zrを少量添
加した場合にTa量を少なくしても非常にしや断
性能が優れ、耐電圧性能が良好であることがわか
つた。さらに、少量のZr添加によつてTa量のあ
る範囲でZrを添加しない場合に比べて著しく、し
や断性能が向上することも見出した。この発明の
真空しや断器用接点材料はCuを含有すると共に、
他の成分としてCrが10〜35重量%、Taが20重量
%以下で、かつZrが2重量%以下の範囲含有する
ことを特徴としている。
Therefore, various experiments were conducted in order to reduce the amount of T a , which is generally an expensive material, added as much as possible to improve the effective shear cutting performance. The results show that when C u , C r , and Ta are the main components, and a small amount of Z r is added, even if the amount of Ta is small, the damping performance is excellent and the withstand voltage performance is good. Ta. Furthermore, we have also found that by adding a small amount of Zr , the shearing performance is significantly improved compared to when no Zr is added within a certain range of Ta . The contact material for vacuum shield and disconnection of this invention contains Cu , and
It is characterized by containing, as other components, Cr in a range of 10 to 35% by weight, T a in a range of 20% by weight or less, and Z r in a range of 2% by weight or less.

以下、この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は真空スイツチ管の構造図で、真空絶縁
容器1とこの真空絶縁容器1の両端を閉塞する端
板2および3とにより形成された容器内部に電極
4および5が、それぞれ電極棒6および7の一端
に、お互いが対向するよう配置されている。前記
電極7は、ベローズ8を介して前記端板3に気密
を損うことなく軸方向の動作が可能なように接合
されている。シールド9および10がアークによ
り発生する蒸気で汚染されることがないよう、そ
れぞれ前記真空絶縁容器1の内面および前記ベロ
ーズ8を覆つている。電極5は第2図のように、
その背面で電極棒7にろう材51を介挿してろう
付されている。前記電極4,5はこの発明のCu
−Cr−Ta−Zr系接点材料から成つている。
FIG. 1 is a structural diagram of a vacuum switch tube, in which electrodes 4 and 5 are installed inside a container formed by a vacuum insulating container 1 and end plates 2 and 3 that close both ends of the vacuum insulating container 1, and an electrode rod 6, respectively. and 7 are arranged to face each other at one end. The electrode 7 is joined to the end plate 3 via a bellows 8 so as to be movable in the axial direction without compromising airtightness. The shields 9 and 10 cover the inner surface of the vacuum insulating container 1 and the bellows 8, respectively, so that they are not contaminated by vapor generated by the arc. The electrode 5 is as shown in FIG.
A brazing material 51 is inserted and brazed to the electrode rod 7 on the back side thereof. The electrodes 4 and 5 are C u of this invention.
−C r −T a −Z Consists of r- based contact material.

第3図は合金中のCr量を25重量%に固定し、さ
らにTa量を0,1,5,10,15,20,25重量%
に固定した合金に添加したZr量としや断容量の関
係を示したものである。図の縦軸は従来品(Cu
−25Cr品)のしや断容量を1とした場合の比率を
示し、横軸は、Zrの添加量を示す。図中Aは従来
品(Cu−25Cr品)のしや断容量である。図から
わかるように各Ta量に対してZrの添加量は0.4重
量%のとき、しや断容量のピークがあり、Zrの添
加によつてしや断性能の向上が見られるが、Ta
量が20重量%以上になるとZrの効果がなくなり、
むしろ、しや断性能の低下が生じる。また、Zr
加の効果はTa量が少ないほど有効であり、Ta
は1重量%に対してZrを0.4重量%加えた場合は
従来品(Cu−25重量%Cr品)の1.35倍のしや断容
量を示す。また、Ta量が10重量%の場合にはZr
量0.5重量%添加することにより、従来品の1.9倍
近いしや断容量が得られる。即ち、Ta量の比較
的少ない場合にはZrが他の元素と適度に反応して
形成される合金や化合物が均一微細に分散して、
しや断性能を著しく上昇させ、しかもCu量が十
分にあるので電気伝導度や熱伝導度を低下させる
こともないので、アークによる熱入力をすみやか
に放散することができる。しかしTa量が多くな
ると、必然的にCu量の割合が低下するので、そ
のCuとZrが反応して形成される化合物そのものは
しや断性能を上昇させる要素を持つていても電気
伝導度や熱伝導度を低下させる悪影響のほうが大
きくなり、Zrと他の元素の反応で生じるしや断性
能向上要素を打ち消して、トータルとしてのしや
断性能が向上しないためであると思われる。又同
じTa量ではZrが効果を示す適度な量を越えて多
量になるとやはり電気伝導度や熱伝導度が著しく
低下するので好ましくない。また、各Taに対し
て、しや断性能から見ると、Zrは0.4重量%添加
するのが最も好ましい。なお、この実験に使用し
た、Cu−Cr−Ta−Zr合金はCu、Cr、Ta、Zr粉を
各々必要量配合した混合粉を成形、焼結して得ら
れたものである。
Figure 3 shows that the amount of C r in the alloy is fixed at 25% by weight, and the amount of Ta is 0, 1, 5, 10, 15, 20, and 25% by weight.
This figure shows the relationship between the amount of Zr added to the alloy fixed at and the shear shear capacity. The vertical axis of the figure is the conventional product (C u
The ratio is shown when the shearing capacity of -25C r product) is taken as 1, and the horizontal axis shows the amount of Zr added. A in the figure is the shear capacity of the conventional product (C u -25C r product). As can be seen from the figure, the shearing capacity peaks when the amount of Zr added is 0.4% by weight for each amount of T a , and the addition of Zr shows an improvement in the shearing performance. , T a
When the amount exceeds 20% by weight, the effect of Z r disappears,
Rather, a decrease in shearing performance occurs. Furthermore, the effect of Z r addition is more effective as the amount of T a is smaller, and when the amount of T a is 1 wt % and 0.4 wt % of Z r is added, the conventional product (C u -25 wt % C r product) ) shows a shearing capacity of 1.35 times. Also, when the amount of T a is 10% by weight, Z r
By adding 0.5% by weight, a shearing capacity nearly 1.9 times that of conventional products can be obtained. That is, when the amount of T a is relatively small, alloys and compounds formed by moderate reaction of Z r with other elements are uniformly and finely dispersed.
The insulation performance is significantly improved, and since the amount of Cu is sufficient, the electrical conductivity and thermal conductivity are not reduced, so that the heat input by the arc can be quickly dissipated. However, as the amount of T a increases, the ratio of the amount of C u inevitably decreases, so even if the compound formed by the reaction of C u and Z r itself has elements that increase the cutting performance. This is because the negative effect of reducing electrical conductivity and thermal conductivity becomes greater, canceling out the element that improves shearing performance caused by the reaction between Zr and other elements, and preventing the overall shearing and shearing performance from improving. Seem. Furthermore, for the same amount of T a , if the amount of Z r exceeds a moderate amount that exhibits an effect, the electrical conductivity and thermal conductivity will decrease significantly, which is not preferable. Furthermore, from the viewpoint of shearing performance, it is most preferable to add 0.4% by weight of Zr to each T a . The C u −C r −T a −Z r alloy used in this experiment was obtained by molding and sintering a mixed powder containing the required amounts of C u , C r , T a , and Z r powders. It is something that

なお、第3図の縦軸は従来品(Cu−25Cr品)
のしや断容量を1とした場合の比率を示し、横軸
はZrの添加量を示す。図中Aは従来品(Cu−25Cr
品)のしや断容量である。
The vertical axis in Figure 3 is the conventional product (C u −25C r product).
The ratio is shown when the shedding capacity is taken as 1, and the horizontal axis shows the amount of Zr added. In the figure, A is the conventional product (C u −25C r
product) and the shear capacity.

第4図は合金中のCr量を25重量%に固定し、さ
らに、Zr量を0,0.4,1.0,2.0重量%に固定した
場合のTa量としや断容量との関係を示したもの
であり、図の縦軸は従来品(Cu−25Cr品)のし
や断容量を1とした場合の比率を示し、横軸は
Taの添加量を示す。第4図からわかるように、
Zr量が0.4重量%のときZr添加によるしや断容量
増大の効果が見られるのはTa量が20重量%以下
で最も広範囲である。一方、Zr添加量はTa量が
非常に少ない場合(2重量%以下)には2重量%
以下の範囲で効果的であるが、2重量%を越える
としや断性能や接触抵抗などが低下して好ましく
ない。
Figure 4 shows the relationship between the amount of T a and shear shear capacity when the amount of C r in the alloy is fixed at 25% by weight and the amount of Z r is further fixed at 0, 0.4, 1.0, and 2.0% by weight. The vertical axis of the figure shows the ratio when the shearing capacity of the conventional product (C u -25C r product) is taken as 1, and the horizontal axis shows the ratio.
Indicates the amount of T a added. As can be seen from Figure 4,
When the amount of Zr is 0.4% by weight, the effect of increasing the shear capacity due to the addition of Zr is seen in the widest range when the amount of Ta is 20% by weight or less. On the other hand, the amount of Zr added is 2% by weight when the amount of T a is very small (2% by weight or less).
It is effective in the following range, but if it exceeds 2% by weight, the welding performance and contact resistance deteriorate, which is not preferable.

以上の結果からCu−Cr−Taの3元合金に対し
て、Tiを添加することによつて3元合金のしや断
性能をより向上させるためにはZrは0.65重量%以
下、Ta量は4.5〜18重量%の範囲が望ましい。さ
らに、Taの添加量をできるだけ低減して、優れ
たしや断性能を得る条件としてはTa量が15重量
%以下の範囲が望ましい。
From the above results, in order to further improve the shearing performance of the ternary alloy of C u -C r -T a by adding Ti , Zr should be 0.65% by weight. Hereinafter, the amount of T a is preferably in the range of 4.5 to 18% by weight. Furthermore, as a condition for obtaining excellent shear cutting performance by reducing the amount of Ta added as much as possible, it is desirable that the amount of Ta be in a range of 15% by weight or less.

発明者らは第3図、第4図に示すような実験を
Cr量を種々変化させて行なつたが、Cr量が10〜35
重量%の範囲でTi添加によるしや断性能の向上が
見られたが、Cr量が10重量%より少ない範囲では
Tiを添加しても変化はなく、逆にCr量が35重量%
を越えるとしや断性能の低下も生じる。
The inventors conducted experiments as shown in Figures 3 and 4.
The experiment was carried out by varying the amount of C r , but the amount of C r was 10 to 35.
An improvement in shear cutting performance was observed with the addition of Ti within a range of Cr content of less than 10% by weight.
There is no change even if T i is added, and on the contrary, the amount of C r is 35% by weight.
Exceeding this also results in a decrease in shear cutting performance.

一方、Cu−Cr−Ta−Zr系合金でCrを10〜35%、
Taを20重量%以下、Zrを2重量%以下の範囲含
有する接点材料は従来品(Cu−25Cr品)と比較
して、接触抵抗も劣ることはなく、耐電圧性能も
同等に良好であることを図示しないが種々の実験
で確認している。
On the other hand, in C u −C r −T a −Z r alloy, C r is 10 to 35%,
Contact materials that contain T a up to 20% by weight and Z r up to 2% by weight have no inferiority in contact resistance and have the same voltage resistance performance as conventional products (C u -25C r products). It has been confirmed through various experiments (not shown) that it has good performance.

また、図示しないが、上記合金にBi、Te、Sb
Tl、Pb、Se、Ce及びCaのうちの少なくとも1つ
の低融点金属、その合金、その金属間化合物、並
びにその酸化物のうち少なくとも1種を20重量%
以下添加した低さい断真空しや断器用接点におい
ても、前記実施例と同様にしや断性を上昇させる
効果があることを確認している。
Although not shown, the above alloy has B i , T e , S b ,
20% by weight of at least one low melting point metal of Tl, P b , S e , C e and Ca , its alloy, its intermetallic compound, and its oxide
It has been confirmed that the low shear vacuum insulation and breaker contacts added below have the same effect of increasing the insulation resistance as in the above example.

なお、低融点金属、その合金、その金属間化合
物、並びにその酸化物のうち少なくとも1種を20
重量%以上添加した場合には著しく、しや断性能
が低下した。又、低融点金属がCeあるいはCa
場合は若干特性が劣る。
In addition, at least one of the low melting point metals, their alloys, their intermetallic compounds, and their oxides is 20%
When more than % by weight was added, the shearing performance decreased significantly. Furthermore, when the low melting point metal is C e or C a , the properties are slightly inferior.

なお、上記実施例では、この発明をCu−Cr
Ta−Zr合金により説明したが、上記合金の各元
素が単体、四者、三者もしくは二者の合金、四
者、三者もしくは二者の金属間化合物又はそれら
の複合体として分布している場合にも所期の目的
を達することは明らかである。
In addition, in the above embodiment, this invention is described as C u −C r
Although the explanation has been made using the T a -Z r alloy, each element in the above alloy may be distributed as a single element, a quaternary, tri- or bi-metallic alloy, a quaternary, tri- or bi-metallic compound, or a composite thereof. It is clear that the intended purpose can be achieved even if

以上のように、この発明によれば、銅を含有す
ると共に他の成分としてクロムが10〜35重量%タ
ンタルが20重量%以下で、かつジルコニウムが2
重量%以下の範囲含有することを特徴とするもの
であるので、Ta量を少なくしても、しや断性能
に優れ、かつ良好な耐電圧性能を有する真空しや
断器用接点材料が得られる効果がある。
As described above, according to the present invention, the present invention contains copper, chromium is 10 to 35% by weight, tantalum is 20% by weight or less, and zirconium is 20% by weight or less as other components.
Since it is characterized by containing within the range of % by weight or less, it is possible to obtain a contact material for vacuum shield breakers that has excellent shearing performance and good withstand voltage performance even if the amount of Ta is small. It has the effect of

さらにタンタルを4.5〜18重量%、ジルコニウ
ムを0.65重量%以下の範囲に限定すると、チタン
を添加しない場合よりしや断性能が向上する。
Further, when tantalum is limited to 4.5 to 18% by weight and zirconium is limited to 0.65% by weight or less, the shearing performance is improved compared to the case where titanium is not added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な真空スイツチ管の構造を示す
断面図、第2図はその第1図の電極部分の拡大断
面図、第3図はこの発明の実施例の接点材料にお
けるCr量を25重量%に固定し、Ta量を0,1,
5,10,15,20,25重量%に固定した合金に対し
てZr添加量を変化させた時のしや断容量の変化を
示す特性図、第4図はこの発明の実施例の接点材
料におけるCr量を25重量%に固定し、Zr量を0,
0.4,1.0,2.0重量%に固定した合金に対してTa
を変化させた時のしや断容量の変化を示す特性図
である。 図において、1は真空絶縁容器、2,3は端
板、4,5は電極、6,7は電極棒、8はベロー
ズ、9,10はシールド、51はろう材、Aは従
来品(Cu−25Cr品)のしや断容量である。
Fig. 1 is a sectional view showing the structure of a general vacuum switch tube, Fig. 2 is an enlarged sectional view of the electrode portion of Fig. 1, and Fig. 3 shows the amount of Cr in the contact material of the embodiment of this invention. It is fixed at 25% by weight, and the amount of T a is set to 0, 1,
A characteristic diagram showing the change in shear capacity when the Zr addition amount is changed for alloys fixed at 5, 10, 15, 20, and 25% by weight. Figure 4 shows the contact point of the embodiment of this invention. The amount of C r in the material was fixed at 25% by weight, and the amount of Z r was set to 0,
It is a characteristic diagram showing the change in shear capacity when the Ta content is changed for alloys fixed at 0.4, 1.0, and 2.0% by weight. In the figure, 1 is a vacuum insulated container, 2 and 3 are end plates, 4 and 5 are electrodes, 6 and 7 are electrode rods, 8 is a bellows, 9 and 10 are shields, 51 is a brazing material, and A is a conventional product (C u −25C r product).

Claims (1)

【特許請求の範囲】 1 銅を含有すると共に、他の成分としてクロム
が10〜35重量%、タンタルが20重量以下で、かつ
ジルコニウムが2重量%以下の範囲含有すること
を特徴とする真空しや断器用接点材料。 2 ジルコニウムが0.65重量%以下の範囲含有す
ることを特徴とする特許請求の範囲第1項記載の
真空しや断器用接点材料。 3 タンタルが4.5〜18重量%の範囲含有するこ
とを特徴とする特許請求の範囲第1項又は第2項
に記載の真空しや断器用接点材料。 4 タンタルが4.5〜15重量%の範囲含有するこ
とを特徴とする特許請求の範囲第1項又は第2項
に記載の真空しや断器用接点材料。 5 ビスマス、テルル、アンチモン、タリウム、
鉛、セレン、セリウム及びカルシウムのうち少な
くとも1つの低融点金属、その合金、その金属間
化合物、並びにその酸化物のうちの少なくとも1
種を20重量%以下含有していることを特徴とする
特許請求の範囲第1項ないし第4項のいずれかに
記載の真空しや断器用接点材料。
[Scope of Claims] 1. A vacuum chamber characterized by containing copper and, as other components, chromium in a range of 10 to 35% by weight, tantalum in a range of 20% by weight or less, and zirconium in a range of 2% by weight or less. and contact materials for disconnectors. 2. The contact material for a vacuum shield or breaker according to claim 1, which contains zirconium in a range of 0.65% by weight or less. 3. The contact material for a vacuum shield or breaker according to claim 1 or 2, which contains tantalum in a range of 4.5 to 18% by weight. 4. The contact material for vacuum shield breakers according to claim 1 or 2, which contains tantalum in a range of 4.5 to 15% by weight. 5 Bismuth, tellurium, antimony, thallium,
At least one low melting point metal of lead, selenium, cerium, and calcium, an alloy thereof, an intermetallic compound thereof, and an oxide thereof
The contact material for a vacuum shield or disconnection switch according to any one of claims 1 to 4, characterized in that it contains 20% by weight or less of seeds.
JP7661783A 1982-11-01 1983-04-28 Contact material for vacuum breaker Granted JPS59201333A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7661783A JPS59201333A (en) 1983-04-28 1983-04-28 Contact material for vacuum breaker
US06/547,218 US4517033A (en) 1982-11-01 1983-10-31 Contact material for vacuum circuit breaker
DE8383110920T DE3378088D1 (en) 1982-11-01 1983-11-02 Contact material for vacuum circuit breaker
EP83110920A EP0110176B1 (en) 1982-11-01 1983-11-02 Contact material for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7661783A JPS59201333A (en) 1983-04-28 1983-04-28 Contact material for vacuum breaker

Publications (2)

Publication Number Publication Date
JPS59201333A JPS59201333A (en) 1984-11-14
JPH0449734B2 true JPH0449734B2 (en) 1992-08-12

Family

ID=13610307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7661783A Granted JPS59201333A (en) 1982-11-01 1983-04-28 Contact material for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS59201333A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766441B2 (en) * 1993-02-02 1998-06-18 株式会社東芝 Contact material for vacuum valve

Also Published As

Publication number Publication date
JPS59201333A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
US3246979A (en) Vacuum circuit interrupter contacts
EP0083245B1 (en) A sintered contact material for a vacuum circuit breaker
EP0110176B1 (en) Contact material for vacuum circuit breaker
EP0109088B1 (en) Contact material for vacuum circuit breaker
JPH0156490B2 (en)
JPH0449734B2 (en)
EP0126347B1 (en) Contact material for vacuum circuit interrupter, contact member of such material, a vacuum circuit interrupter and the use of such material
US4129760A (en) Vacuum circuit breaker
JPH0449733B2 (en)
JPH0133011B2 (en)
JPS59201334A (en) Contact material for vacuum breaker
JPS6336092B2 (en)
JPS6336090B2 (en)
JPS59201335A (en) Contact material for vacuum breaker
JPS6336089B2 (en)
JPS59201336A (en) Contact material for vacuum breaker
JPS59186218A (en) Contact material for vacuum breaker
EP0175349A2 (en) Vacuum circuit breaker
JPS60170122A (en) Contact material for vacuum breaker
US4129761A (en) Vacuum circuit breaker
JPH0133012B2 (en)
JPS59167925A (en) Contact material for vacuum breaker
JPS59214121A (en) Contact material for vacuum breaker
JPS59169012A (en) Contact material for vacuum breaker
JPS61179827A (en) Contact for material for vacuum preaker