JPS60170123A - Contact material for vacuum breaker - Google Patents

Contact material for vacuum breaker

Info

Publication number
JPS60170123A
JPS60170123A JP2646784A JP2646784A JPS60170123A JP S60170123 A JPS60170123 A JP S60170123A JP 2646784 A JP2646784 A JP 2646784A JP 2646784 A JP2646784 A JP 2646784A JP S60170123 A JPS60170123 A JP S60170123A
Authority
JP
Japan
Prior art keywords
weight
amount
contact material
contact
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2646784A
Other languages
Japanese (ja)
Inventor
奥村 光弘
納谷 榮造
朝川 茂季
永田 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2646784A priority Critical patent/JPS60170123A/en
Publication of JPS60170123A publication Critical patent/JPS60170123A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、大電流しゃ断時性に優れ、かつ高耐圧性能
會■する冥空しゃ断器用接点材料に関するものでめる口 [従来技術〕 X空しゃ断器は、その無保守、無公害性、優れたしゃ断
性能等の利点ケ持つため、適用範囲が急速に拡大して米
ている。また、それに伴い、より高耐圧化、しや断電流
の大容重化の要求がきひしくなって米ている。−万、真
空しゃ断器の性能は真空容器内の接点材料によって決定
される要素がきわめて大でめる。 真空しゃ断器用級Jf科の満足すべき特性として、ti
ll、や断容量が大きいこと、(21耐電圧が高いこと
、(31接触抵抗が小さいこと、(4)溶着力が小さい
こと、(5)接点消耗量が小さいこと、(61さい断電
流値が小さいこと、(ア)加工性が良いこと、(8)十
分な機械的強度’に!すること、等がめる□笑際の接点
材料では、これらの特性全音て満足させることは、かな
り困難でめって、一般には用途に応じて特に重要な特性
音満足させ、他の特性葡ある程度犠牲にした材料?使用
しているのが実状でるる。 従来、この種の接点′$I科として銅−ビスマス(以下
Cu−(3iと表示する。他の元素および元素の組み合
せからなる合金についても同様に元素記号で表示する。 ) 、Cu−Cr−B15Cu−co −Bl、Cu−
Cr等が使用されていた。しかし、Cu Bi等の低融
点金属全含有する合金接点では排気工程中の高温加熱に
より、その一部が接点部から拡散、蒸発し、真空容器内
の金属シールドや絶縁容器に付着する。 これが真空しゃ断器の耐電圧全劣化させる大@な因子の
ひとつになっている。また、負荷開閉や大電流しゃ断時
VC′%低融点金属の蒸発、飛散が生じて耐電圧の劣化
、しゃ断性能の低下が見られる。 上記の欠点r除くために真空耐電圧に優れたCr。 Coなど會添加したCu−Cr−B1 ’fxどにおい
ても、低融点金属による上記の欠点は根本的に解決され
ず、高電圧、大′亀流には対応できない。−万、Cu 
−Crなとのように真空耐電圧に優れた金属(cr s
 coなど)と電気伝導度に浚れたCuとの組み合せか
らなる材料は耐溶着性能に関しては低融点金属全含有す
る妥点材料に比較して、やや劣るが、しゃ断性能や耐電
圧性能が優れているため、高電圧、大電流域ではよく使
用てれている。さらに、Cu−Cr合金などにおいて%
、Lや断性能には限界があるために、接点の形状?工夫
し、接点部の電流経路全操作することで、磁場全発生さ
せ、この力で大電流アーク會強制駆動して、しゃ断性能
を上げる努力がなされていた。 しかし、高電圧化、大電流化への要求はさらにさびしく
、従来の接点材料では要求性能全十分満足させることが
困難となっている。又、真空しゃ断器の小型化に対して
も同様に従来の接点性能では十分でなく、より優りた性
籠全持つ接点材料がめられていた。 [発明の概要〕 この発明は上記のような従来のものの欠点全除去するた
めKなされたもので、大電流しゃ所持性に優れ、かつ高
耐電圧性罷奮有する冥窒しゃ断器用接点材料を提供する
こと全目的としている。 我々はCuVC種々の金属、合金、金属間化合物全部〃
口した接点材料全試作し、真空しゃ断器に組み込んで種
々の実験全行なった。この結果、Cu中に他の取分とし
てCOおよびF、の内の少なくと%1種、並びにA/全
含有し、各々単体金属、合金、金属間化合物およびそh
らの複合体として分布している接点材料は非常にしゃ断
性能が優れていることがわかった。この発明の真空しゃ
断器用接点材料は、Cuk含有すると共に、他の取分と
して、 CoおよびpgO内の少なくとも1種全5〜3
0:11%の範囲含有し、かつA7が3重量%以下の範
囲含有していること?特徴としている。
[Technical Field of the Invention] This invention relates to a contact material for a void breaker that has excellent large current cutoff properties and high voltage resistance performance [Prior art] Due to its advantages such as non-polluting properties and excellent shutoff performance, its range of applications is rapidly expanding. In addition, along with this, there is a growing demand for higher voltage resistance and larger shear current capacity. - The performance of a vacuum breaker is greatly determined by the contact material inside the vacuum container. As a satisfactory characteristic of vacuum breaker grade Jf class, ti
ll, large breaking capacity, (21 high withstand voltage, (31 small contact resistance, (4) small welding force, (5) small contact wear, (61 breaking current value) (a) Good workability, (8) Sufficient mechanical strength! It is quite difficult to satisfy all of these characteristics with standard contact materials. In general, materials are used that satisfy the characteristic sound that is particularly important depending on the application, while sacrificing other characteristics to some extent. Conventionally, this type of contact has been made of copper. - Bismuth (Cu- (hereinafter expressed as 3i). Alloys consisting of other elements and combinations of elements are similarly expressed with element symbols.), Cu-Cr-B15Cu-co -Bl, Cu-
Cr etc. were used. However, in the case of an alloy contact entirely containing a low melting point metal such as Cu Bi, a part of it diffuses and evaporates from the contact part due to high temperature heating during the evacuation process, and adheres to the metal shield or insulating container in the vacuum container. This is one of the major factors that cause the vacuum breaker to completely deteriorate withstand voltage. Furthermore, during load switching or large current interruption, evaporation and scattering of the VC'% low melting point metal occur, resulting in deterioration of withstand voltage and deterioration of interruption performance. Cr has excellent vacuum withstand voltage to eliminate the above drawbacks. Even in Cu-Cr-B1'fx with additives such as Co, the above-mentioned drawbacks due to low melting point metals cannot be fundamentally solved, and high voltages and large currents cannot be handled. -10,000, Cu
-Metals with excellent vacuum withstand voltage such as Cr (Cr s
A material consisting of a combination of copper (co, etc.) and Cu, which has high electrical conductivity, is slightly inferior to a material containing all low melting point metals in terms of welding resistance, but it has excellent breaking performance and withstand voltage performance. Therefore, it is often used in high voltage and large current ranges. Furthermore, in Cu-Cr alloy etc.
, Since there are limits to L and breaking performance, the shape of the contact? Efforts have been made to improve the breaking performance by manipulating the entire current path of the contact to generate a full magnetic field and using this force to forcefully drive a large current arc. However, the demand for higher voltages and higher currents is even more severe, and it has become difficult to fully satisfy all of the required performance with conventional contact materials. Furthermore, in order to reduce the size of vacuum breakers, conventional contact performance is not sufficient, and contact materials with superior properties have been sought. [Summary of the Invention] This invention was made to eliminate all of the drawbacks of the conventional products as described above, and provides a contact material for a nitrous nitride breaker that has excellent large current blocking properties and high withstand voltage properties. The entire purpose is to do so. We handle CuVC, various metals, alloys, and intermetallic compounds.
We made prototypes of all of the contact materials we had developed, incorporated them into a vacuum breaker, and conducted a variety of experiments. As a result, Cu contains at least 1% of CO and F as other fractions, as well as A/total, each containing elemental metals, alloys, intermetallic compounds, and
It was found that the contact material distributed as a composite of these materials has extremely excellent breaking performance. The contact material for a vacuum breaker of the present invention contains Cuk, and also contains at least one of Co and pgO in total of 5 to 3
0: Contains in the range of 11%, and contains A7 in the range of 3% by weight or less? It is a feature.

【発明の実施例】[Embodiments of the invention]

以下、この発明の一笑凡例會図について説明する。 第1図は冥をスイッチ管の構造歯で、真空絶縁容器(1
」、この真空絶縁容器+11の両端全閉塞する端板(2
1および(31とにより形成された容器内部に電極14
)訃よび(81が、それぞれ電極棒161および(7)
の一端に、お互いが対問するよう配置されている。前記
電極(7)は、ベローズ(81r介して前記端板131
に気密全損うことなく軸方向の動作が可能なよう[接合
されている。シール)++i++および(101がアー
クにより発生する蒸気で汚染されることがないよう、そ
れぞれ前記真空絶縁容器+11の内面および前記ベロー
ズ(81會覆っている。電極141および(6)のW[
k第2図に示す。電極(6:はその背面で電極棒(7)
にろう材(51) 會介挿してろう付されている。前記
電極(41゜(51はこの発明に係るCu系接点材料か
ら成っている。 以下Vcs々の測定めるいは試験全行なった結果につい
て説明する。 第3図は合金中のCo lk f 20重量%に固定し
たものに添加したAf量としゃ断容量の関係を示したt
のでめり、A/量が3重量%以下の範囲で従来品(Cu
−26重量%Co合金)に比較してしゃ断性能が著しく
上昇していることがわかる◎klの添加量としては1重
量%以下の範囲でビーク會示し、それ以上添m:tv増
加するとしや’I!tr谷量は減少の傾同會示す◎即ち
、Cu中にCoとAI!が共存して、その相互作用によ
り、しゃ断性能全上昇させるが、ある程度以上AI!f
fi増加させるとCuとAI!が化合物など全多量に生
じてCuマトリックスの電気伝導度や熱伝導度が著しく
低下し、アークによる熱入力をすみやかに放散すること
が困難になる。しかも、CuとAlから、なる合金では
AI!量の増加と共に融点が低下する傾向1/Cめり、
接点表面からの金属蒸発が過剰になる。これらの要因が
撞々重なってしゃ断性In低下させるためでるる。この
現象は特にAl量が3重量%?越えると非常VC顕著に
なる。 大電流用に使用する場合、AI!量として、し、や断容
量がピーク(即ち、従来品の1.5〜1.6倍ン?示す
0.5〜1M量%の範囲が最も望ましい。 なお、第3図の縦軸は従来品のcu −20重量%C。 合金のしゃ断容量の値i1とした比率全示し、横軸はA
I!添加量を示す。 第4図は同様にM添7IrI量と電気伝導度の関係會示
すものでるる。図から明らかなようにAlitが1重量
%以下では従来品(Cu−20重量%Co合金)とほと
んど差がないが、添加量がl’ifi%以上になると低
下傾向が見られ3N量%會越えるとがなり悪くなる。即
ち、AI!量が3重量%會越夕ると負荷開閉中及びしゃ
断器の通電にt悪影q9會及ぼすことrCなるためAl
の添カロ塩としては3重量%以下が望ましい。さらに、
望ましくはほとんど電気伝導度の低下の見らhない1重
量%以下の範囲でめる。 なお、4JS4図の縦軸は従来品(Cu−20重量%C
o合金)の電気伝導度の値全1とした比率會示す0 第5図は同様1cAj?添加量と硬度性能体)及び耐電
圧性1(B)との関係?示すものである。図から明らか
なようIcAl!itか1重i%以下では硬度の上昇は
ごくわずかであり、1重量96盆越えるとしだいに硬度
が上昇する。これはAJ化合物の生成量がA11ili
量96ケ越えると接点表面のマクロな硬度上昇に寄与す
る程に増加していることt示すものである。−万、耐電
圧性能は硬度の上昇曲線とは関係な(Al愈の増加と共
に性能が同上している。これはhp化合物の生成量がそ
れほど著しくない範囲(AJ量IN量%以下)でも接点
全得底する各元素からなるミクロな組成及び組織が耐電
圧性能には影響していること全示すものである。 なお、AI!量が1重量%全越える範囲での耐電圧性能
はマクロな硬度上昇に起因するものかも知れない。しか
し、耐電圧性能の上昇曲線はAf’ 3重量%以下の急
激な上昇に比べ、3N量%奮越えてからの上昇はだんだ
ん鈍化している。なお第5図の縦軸は従来品(Cu−2
0fi量%CO合金)の硬度及び耐電圧の値’klとし
た比率全示す。 発明者らは第3図に示したよう72 Al添加量としゃ
断容量の関係y2c6量を種々変化させた合金について
も実験したが、CO量が40重量%以下の範囲でAI!
量0,5〜IN量%程度がしゃ断容量のピークであるこ
と?見出した。そこでAI!in0.7重量%に固定し
て、CaH2に変化させた実験から次のことが明らかV
Cなった。即ち、C0ff1が30g量%以下の範囲で
従来品(cll−20重量%Co合金)のしゃ断性能全
上昇る結果が得られたが、−万〇〇量が51量%未満の
場合には、耐溶着性、耐電圧が不十分でしゃ断器用接点
として不適でめった。従って、CO量は5〜30重量%
の範囲が望ましい。 また、以上のような実験會Coの一部または全部kFe
1cmき換えて行なったがほぼ同様の結果が得られた。 従ってS COおよびFeの内の少なくと41種の望ま
しい範囲は5〜3ON量%でるる。 また、図示しないが、上記合金に−B 1 % Te 
s 5bsTl、Pb 、 Ss%Ce及びCaのうち
の少なくと%、1つの低融点単体金属、その合金、その
金属間化合物、並びにその酸化物のうち少なくと%、1
種2zo重量%以下添加した低ざい断真空しゃ断器用接
点においても、前記笑尾例と同様にしゃ断性を上昇させ
る効果があることケ確認している。 なお、低融点金属、その合金、その金属間化合物、並び
にその酸化物のうち少なくとも1種?20重量%以上添
加した場合には著しく、しゃ断性能が低下した。又、低
融点金属がceるるいはCaの場合は若干特性が劣る。 なお、発明者らはこの発明の真空しゃ断器用接点材料全
真空中、非酸化性雰囲気中、還元性雰囲気中のいずれに
おいても上記金属を所足量配合した混合粉?焼結するこ
とにより得ることができ、かつそのものが上記緒特性?
有していること全確認した。真空中、非酸化性雰囲気中
、還元性雰囲気中のいずれにおいても焼結法として加圧
焼結法、押出性全適用すると、上記緒特性がより一層効
果的に得られることも確認した。即ち、加圧焼結法は具
体的にはホットプレス、熱間静水圧プレス法などによっ
て行なったもので、極めて高@度の接点材料が得られ、
しゃ断性能、耐電圧性籠全より効果的に高めることがで
きるためでるる。また、押出法によれば接点材料の組織
デ押出万同にそろえることも可能で、添刀口物の種類や
量によっても効果の大小はめるが、しゃ断性能や耐電圧
性能、電気伝導度など種々の性罷會より効果的に高めら
れる。 〔発明の効果〕 以上のように、この発明によれば、調音含有すると共に
、他の部分として、Coおよびpeの円の少なくとも1
種全5〜30重量%の範囲含有し、かつ、A/’13重
量%以下の範囲含有すること葡特徴とするものでめるの
でしゃ断性能に優れ、かつ、高耐電圧性能盆肩する真空
しゃ断器用接点材料が得られる効果がめる。
Hereinafter, the one-smile legend meeting diagram of this invention will be explained. Figure 1 shows the structural teeth of the switch tube, and the vacuum insulation container (1
”, the end plate (2
1 and (31).
) and (81) are electrode rods 161 and (7), respectively.
They are arranged at one end so that they interrogate each other. The electrode (7) is connected to the end plate 131 via a bellows (81r).
The joints are joined to allow axial movement without complete loss of airtightness. The inner surface of the vacuum insulating container +11 and the bellows (81) are covered, respectively, so that the seals)++i++ and (101) are not contaminated with vapor generated by the arc.
k Shown in Figure 2. Electrode (6: is the electrode rod (7) on the back side
Brazing material (51) is inserted and brazed. The electrode (41° (51 is made of the Cu-based contact material according to the present invention). The results of the Vcs measurements and all tests will be explained below. Figure 3 shows the weight of Co lk f 20 in the alloy. t showing the relationship between the amount of Af added and the cutting capacity fixed at %
Therefore, conventional products (Cu
It can be seen that the breaking performance is significantly improved compared to the 26 wt% Co alloy. 'I! The trough amount shows a decreasing trend ◎ That is, Co and AI in Cu! coexist and their interaction completely increases the cutting performance, but beyond a certain level AI! f
When fi increases, Cu and AI! is generated in large amounts, such as compounds, and the electrical conductivity and thermal conductivity of the Cu matrix are significantly reduced, making it difficult to quickly dissipate the heat input by the arc. Moreover, the alloy made of Cu and Al is AI! The tendency for the melting point to decrease as the amount increases, 1/C
Excessive metal evaporation from contact surfaces. This occurs because these factors combine to reduce the interrupting property In. This phenomenon is especially true when the Al content is 3% by weight? If it exceeds it, VC becomes very noticeable. When using for large current, AI! The most desirable range is 0.5 to 1 M%, where the shear capacity is at its peak (i.e., 1.5 to 1.6 times that of the conventional product). Cu of the product -20% by weight C. All ratios are shown with the value i1 of the breaking capacity of the alloy, and the horizontal axis is A
I! Indicates the amount added. FIG. 4 similarly shows the relationship between the amount of M addition 7IrI and the electrical conductivity. As is clear from the figure, when Alit is less than 1% by weight, there is almost no difference from the conventional product (Cu-20% by weight Co alloy), but when the amount added is more than l'ifi%, there is a tendency to decrease, and the amount of 3N is less than 3%. If you exceed it, it will get worse. In other words, AI! If the amount exceeds 3% by weight, it will have an adverse effect on the load switching and energization of the circuit breaker.
The amount of Calo salt added is preferably 3% by weight or less. moreover,
It is preferably contained within a range of 1% by weight or less, where there is almost no decrease in electrical conductivity. In addition, the vertical axis of Figure 4JS4 is the conventional product (Cu-20 wt%C
Figure 5 shows the same 1cAj? What is the relationship between the amount added and hardness performance (Hardness Performance Body) and Voltage Resistance 1 (B)? It shows. As is clear from the figure, IcAl! When it is less than 1% by weight, the hardness increases only slightly, and when it exceeds 1% by weight, the hardness gradually increases. This means that the amount of AJ compound produced is A11ili.
This shows that when the amount exceeds 96, the hardness increases to the extent that it contributes to an increase in the macroscopic hardness of the contact surface. - 10,000, voltage resistance performance is unrelated to the hardness increasing curve (the performance increases as the Al content increases. This shows that even in the range where the amount of HP compound produced is not so significant (AJ amount IN amount % or less), the contact point This clearly shows that the microscopic composition and structure consisting of each element in the total bottom have an influence on the withstand voltage performance.In addition, the withstand voltage performance in the range where the amount of AI! exceeds 1% by weight is the macroscopic one. This may be due to the increase in hardness. However, the increase curve of withstand voltage performance shows that compared to the rapid increase below Af' of 3% by weight, the increase after exceeding 3% by weight of Af' gradually slows down. The vertical axis in Figure 5 is the conventional product (Cu-2
All ratios are shown as hardness and withstand voltage values 'kl of 0fi amount % CO alloy). The inventors also experimented with alloys in which the amount of y2c6 was varied as shown in Figure 3.
Is the peak of the breaking capacity between 0.5% and 0.5% of the IN amount? I found it. So AI! From experiments in which CaH2 was fixed at 0.7% by weight, it was clear that V
It became C. In other words, it was found that the breaking performance of the conventional product (cll-20 wt% Co alloy) was completely improved when C0ff1 was 30 g% by weight or less, but when -1000% was less than 51% by weight, Due to insufficient welding resistance and withstand voltage, it was unsuitable for use as a breaker contact. Therefore, the amount of CO is 5 to 30% by weight.
range is desirable. In addition, some or all of the above experimental Co
Almost the same results were obtained by changing the length by 1 cm. Therefore, the desirable range for at least 41 species of SCO and Fe is 5 to 3% ON. Although not shown, -B 1 % Te is added to the above alloy.
s5bsAt least % of Tl, Pb, Ss%Ce and Ca, at least % of one low melting point elemental metal, its alloy, its intermetallic compound, and its oxide, 1
It has been confirmed that a contact for a low shear vacuum breaker in which less than 2% by weight of seeds is added has the same effect of increasing the breaking performance as in the above-mentioned example. At least one of a low melting point metal, its alloy, its intermetallic compound, and its oxide? When it was added in an amount of 20% by weight or more, the breaking performance decreased significantly. Further, when the low melting point metal is Ce Rui or Ca, the properties are slightly inferior. In addition, the inventors have prepared a mixed powder containing a sufficient amount of the above-mentioned metals for the contact material for a vacuum breaker of the present invention in a total vacuum, in a non-oxidizing atmosphere, and in a reducing atmosphere. Can it be obtained by sintering, and does it have the above characteristics?
I fully confirmed that I have it. It has also been confirmed that the above characteristics can be obtained even more effectively when pressure sintering and extrusion are all applied as sintering methods in vacuum, in a non-oxidizing atmosphere, and in a reducing atmosphere. That is, the pressure sintering method is specifically carried out by hot pressing, hot isostatic pressing, etc., and it is possible to obtain a contact material with extremely high hardness.
This is because it can effectively improve the breaking performance and voltage resistance of the entire cage. In addition, the extrusion method allows the structure of the contact material to be uniformly extruded, and the effectiveness can be determined depending on the type and amount of the attachment material, but various factors such as breaking performance, withstand voltage performance, and electrical conductivity can be achieved. It is more effective than sexual competition. [Effects of the Invention] As described above, according to the present invention, at least one of the circles of Co and pe contains articulation and other parts.
Contains a total of 5 to 30% by weight of seeds and 13% by weight or less of A/'. The benefits of contact materials for circuit breakers can be seen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な真空スイッチ管の構造奮示す断面図、
第2図はその4M1図の電極部分の拡大断面図、第3図
はこの発明の一実施例の接点材料におけるCoの重量盆
20重量%に固定した場合のAl添加量としゃ断容量の
変化?示す特性図、gKJ図はこの発明の一実施例の接
点材料におけるCoの重量全20重量%に固定した場合
のAI!添加量と電気伝導度の変化會示す特性図、第5
図はこの発明の一実施例の接点材料iCおけるCOの重
ffi’に20jt量%に固定した場合のAl添加量と
硬度及び耐電圧の変化?示す特性図でるる。 図において、111・・・真空絶縁容器% +21.1
31・・・端板、141 、151・・電極、161 
、171・・・電極棒、(8)・・・ベローズ、191
゜(Iol・・・シールF、(51)・・・ろう材、(
A)・・・硬度特性、(B)・・耐電圧特性である。 なお、図中同一符号は各々ロー又は相当部分?示す〇 代理人 大岩増雄 第1図 第2図 第3図 AQ汐〃υ1(1障) 1/!−4力171 (tf *) 第5図 Al榛加童(1ト)
Figure 1 is a cross-sectional view showing the structure of a typical vacuum switch tube.
Fig. 2 is an enlarged cross-sectional view of the electrode part in Fig. 4M1, and Fig. 3 shows changes in the amount of Al added and the cutoff capacity when the weight of Co is fixed at 20% by weight in the contact material of one embodiment of the present invention. The characteristic diagram and gKJ diagram shown are AI when the total weight of Co in the contact material of one embodiment of this invention is fixed at 20% by weight! Characteristic diagram showing changes in addition amount and electrical conductivity, No. 5
The figure shows changes in the amount of Al added and the hardness and withstand voltage when the weight of CO in iC of the contact material iC according to an embodiment of the present invention is fixed at 20jt%. The characteristic diagram shown is Ruru. In the figure, 111...Vacuum insulation container% +21.1
31... End plate, 141, 151... Electrode, 161
, 171... Electrode rod, (8)... Bellows, 191
゜(Iol... Seal F, (51)... Brazing metal, (
A)...Hardness properties, (B)... Voltage resistance properties. In addition, do the same symbols in the figure represent rows or corresponding parts? Show ○ Agent Masuo Oiwa Figure 1 Figure 2 Figure 3 AQ Ushio〃υ1 (1 obstacle) 1/! -4 force 171 (tf *) Fig. 5 Al Harukado (1t)

Claims (1)

【特許請求の範囲】 il+ 調音含有すると共に、他の取分としてコバルト
及び鉄の円の少なくとも1種?5〜303(童%並びに
アルミニウムフコ重童%以下の範囲含有すること7重徴
とする真空しゃ断器用接点材料。 (2) アルミニウム會0.5〜1重童ミニ範囲含Mす
ること7重徴とする特許請求の範囲第1項記載の真空し
ゃ断器用接点材料。 (31ビスマス、テルル、アンチモン、タリウム、鉛、
セレン、セリウム及ヒカルシウムのうちの少なくとも1
つの低融点単体金属、その合金、その金属間化合物、並
びにその酸化物のうちの少なくと%、1種會20重!9
6以下含有していることvi−特徴とする特許請求の範
囲第1項又は第2項記載の真空しゃ断器用接点材料。
[Claims] il+ Contains articulation and at least one of cobalt and iron circles as other components? 5 to 303 (7-point material containing 0.5-303% of aluminum and a range of 0.5 to 1% aluminum or less) for vacuum breaker contact material. A contact material for a vacuum breaker according to claim 1. (31 bismuth, tellurium, antimony, thallium, lead,
At least one of selenium, cerium and hycalcium
At least % of low melting point single metals, their alloys, their intermetallic compounds, and their oxides, 1st class 20%! 9
The contact material for a vacuum breaker according to claim 1 or 2, characterized in that it contains 6 or less vi.
JP2646784A 1984-02-13 1984-02-13 Contact material for vacuum breaker Pending JPS60170123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2646784A JPS60170123A (en) 1984-02-13 1984-02-13 Contact material for vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2646784A JPS60170123A (en) 1984-02-13 1984-02-13 Contact material for vacuum breaker

Publications (1)

Publication Number Publication Date
JPS60170123A true JPS60170123A (en) 1985-09-03

Family

ID=12194317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2646784A Pending JPS60170123A (en) 1984-02-13 1984-02-13 Contact material for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS60170123A (en)

Similar Documents

Publication Publication Date Title
EP0083245A2 (en) A sintered contact material for a vacuum circuit breaker
JPH01111832A (en) Electrode material for vacuum switch
JPH0156490B2 (en)
JP3495770B2 (en) Brazing filler metal for ceramics
JPS60170123A (en) Contact material for vacuum breaker
US4129760A (en) Vacuum circuit breaker
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
JPS59214123A (en) Contact material for vacuum breaker
JPS63118032A (en) Contact material for vacuum circuit breaker
JPS6336090B2 (en)
JPS59201334A (en) Contact material for vacuum breaker
US5828941A (en) Electrical contact compositions and novel manufacturing method
JPH0449733B2 (en)
JPS59201331A (en) Contact material for vacuum breaker
JPH0133011B2 (en)
JPH0449734B2 (en)
JPS6336089B2 (en)
JPS59201335A (en) Contact material for vacuum breaker
JPS59201336A (en) Contact material for vacuum breaker
JPS59186218A (en) Contact material for vacuum breaker
JPS60170122A (en) Contact material for vacuum breaker
JPS5867840A (en) Contact axis for vacuum circuit interrupter and manufacture
JPS59214121A (en) Contact material for vacuum breaker
JPS59167925A (en) Contact material for vacuum breaker
JPS59169012A (en) Contact material for vacuum breaker