JPH06109455A - Measuring device for straightness of long material - Google Patents

Measuring device for straightness of long material

Info

Publication number
JPH06109455A
JPH06109455A JP25481792A JP25481792A JPH06109455A JP H06109455 A JPH06109455 A JP H06109455A JP 25481792 A JP25481792 A JP 25481792A JP 25481792 A JP25481792 A JP 25481792A JP H06109455 A JPH06109455 A JP H06109455A
Authority
JP
Japan
Prior art keywords
long material
measuring device
straightness
reference pattern
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25481792A
Other languages
Japanese (ja)
Inventor
Daizo Mizuguchi
口 大 三 水
Tsutomu Makino
野 勉 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25481792A priority Critical patent/JPH06109455A/en
Publication of JPH06109455A publication Critical patent/JPH06109455A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the straightness of a long material with high accuracy by calculating the positional shift quantity of the center-of-gravity position of a reference pattern from a reference origin and correcting detected strain quantity on the basis of the positional shift quantity. CONSTITUTION:When a measuring device 2 is made self-propelled in parallel to the long material 1 positioned at a measuring position to perform measurement, displacement measuring devices 7a, 7b continuously detect the relative displacement with the long material to store the same in an operation device 23 as strain quantity data. In parallel to this, a television camera 21 takes an image grasping a reference pattern at each measuring point and outputs the image signal thereof to an image processing device 22. The device 22 calculates the center-of-gravity position G of the reference pattern on the basis of the image data obtained at each measuring point and calculates the positional shift quantity in the X- and Y-axis directions between the position G and a preliminarily stored center-of-gravity position origin GO. The data on this positional shift quantity is inputted to the operation device 23, the measuring devices 7a, 7b correct actually measured strain data on the basis of the data, and the corrected result is calculated as the strain quantity at each measuring point. Therefore, the accurate straightness of the long material 1 can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、比較的一方向に長い棒
材や帯材などの長尺材の曲りや反り(以下、歪みとい
う。)をカメラで取り込んだ基準パターンの重心位置を
測定基準とすることにより、長尺材に沿って移動する変
位測定器で歪みを高精度に測定できるようにした長尺材
真直度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the position of the center of gravity of a reference pattern in which a camera captures the bending and warping (hereinafter referred to as distortion) of a long material such as a bar or strip that is relatively long in one direction. The present invention relates to a long material straightness measuring device capable of measuring strain with high accuracy by a displacement measuring device that moves along a long material by using it as a reference.

【0002】[0002]

【従来の技術】長尺材を機械装置の構造部材として利用
する場合、その真直度が問題となることがある。もし、
長尺材に歪みがあると、その用途によってはその利用価
値が無きに等しくなってしまうからである。このため、
歪みのある長尺材に対しては、予め使用条件に合致する
ように矯正加工を施して歪みを取り除かなければならな
い。この矯正加工を効果的に行なうにあたっては、長尺
材の歪み量の大きさ、分布等を数値的に把握しておくこ
とが不可欠の前提となり、この意味で、長尺材の真直度
を高精度に測定する技術が重要となってくる。従来、長
尺材の真直度の測定は、磁気センサやレーザ変位計のよ
うな非接触型の変位測定器を備えた測定装置を長尺材に
沿って平行に走行させ、あるいは、逆に長尺材を測定装
置に平行に移動させることにより、計測している。その
際には、測定基準として、測定装置の走行方向に張った
ピアノ線などの鋼線を基準として使用している。この鋼
線によって、測定装置が走行したときの鋼線からのずれ
を鋼線位置測定器を用いて測定し、この測定結果と、変
位測定器の測定結果とを相互に比較、分析することによ
って、長尺材の真直度の測定精度の向上を図っている。
When a long material is used as a structural member of a mechanical device, its straightness sometimes becomes a problem. if,
If the long material is distorted, its utility value becomes equal depending on its use. For this reason,
For a long material having a distortion, it is necessary to perform a straightening process in advance so as to meet the usage conditions and remove the distortion. In order to carry out this straightening process effectively, it is indispensable to grasp the magnitude and distribution of the strain amount of the long material numerically. In this sense, the straightness of the long material should be high. The technology to measure accurately becomes important. Conventionally, the straightness of a long material is measured by running a measuring device equipped with a non-contact type displacement measuring device such as a magnetic sensor or a laser displacement meter in parallel along the long material, or conversely Measurement is performed by moving the scale material in parallel with the measuring device. At that time, a steel wire such as a piano wire stretched in the traveling direction of the measuring device is used as a measurement standard. With this steel wire, the deviation from the steel wire when the measuring device travels is measured using the steel wire position measuring device, and this measurement result and the measurement result of the displacement measuring device are mutually compared and analyzed. , We are trying to improve the accuracy of measuring the straightness of long materials.

【0003】そこで、かかる自動計測に使用される従来
の装置について図6を参照して説明する。同図におい
て、符号1は測定対象である長尺材を示し、ここでは、
長尺材1はレールとして使用される部材である。符号2
は、長尺材1に平行に走行可能な測定装置を示す。この
測定装置2は、走行台3の上面において長尺材と平行に
敷設された一組のガイドレール4a、4bに沿ってこれ
を案内として自走するように構成されている。この従来
例では、駆動源としてサーボモータ5を設け、このサー
ボモータ5によって回転駆動されるピニオン(図示せ
ず)がガイドレール4a、4bの間に敷設されたラック
6に噛み合っている。また、この測定装置2は、非接触
型の変位測定器7を備えており、この変位測定器7はシ
リンダ8によって走行方向とは直交する方向に移動可能
であって、長尺材1の側面に対して所定の測定位置まで
接近できるようになっている。一方、走行台3上には、
真直度の測定基準としてガイドレール4a、4bと平行
に鋼線9が張架されている。この鋼線9には、滑車10
a、10bを介して錘11によって真直ぐになるように
張力が付与されている。これに対して、測定装置2の台
車2aには、走行方向と直交するx軸(水平方向)、y
軸(鉛直方向)について、鋼線9と、この測定装置2と
の相対位置を測定する鋼線位置測定器12a、12bが
配設されている。なお、図中、符号位置13は長尺材1
を搬入、搬出するためのローラ装置を示し、符号14
は、長尺材1を測定位置に固定するためのクランプ装置
を示している。
Therefore, a conventional apparatus used for such automatic measurement will be described with reference to FIG. In the figure, reference numeral 1 indicates a long material to be measured, and here,
The long material 1 is a member used as a rail. Code 2
Shows a measuring device capable of running parallel to the long material 1. The measuring device 2 is configured to be self-propelled along a pair of guide rails 4a and 4b laid in parallel with the long material on the upper surface of the traveling table 3 using the guide rails as guides. In this conventional example, a servo motor 5 is provided as a drive source, and a pinion (not shown) rotationally driven by the servo motor 5 meshes with a rack 6 laid between the guide rails 4a and 4b. Further, the measuring device 2 is provided with a non-contact type displacement measuring device 7, which is movable by a cylinder 8 in a direction orthogonal to the traveling direction, and a side surface of the long material 1. It is possible to approach to a predetermined measurement position. On the other hand, on the platform 3,
As a straightness measurement standard, a steel wire 9 is stretched in parallel with the guide rails 4a and 4b. This steel wire 9 has a pulley 10
The tension is applied by the weight 11 so as to be straight through a and 10b. On the other hand, the carriage 2a of the measuring device 2 has an x-axis (horizontal direction) orthogonal to the traveling direction, y
Steel wire position measuring devices 12a and 12b for measuring the relative position of the steel wire 9 and the measuring device 2 with respect to the axis (vertical direction) are provided. In the figure, reference numeral 13 indicates the long material 1.
A roller device for loading and unloading is indicated by reference numeral 14
Shows a clamp device for fixing the long member 1 at a measurement position.

【0004】以上のような構成において、測定装置2が
ガイドレール4a、4bに沿って長尺材1に平行に移動
すると、変位測定器7は長尺材1との間の相対変位を検
出する。そのとき同時に鋼線位置測定器12a、12b
によって、測定基準となる鋼線9に対しての変位測定器
7の相対的な位置ずれが測定され、この位置ずれ量で変
位量を補正することによって、長尺材1の歪み量が計測
される。
In the above-mentioned structure, when the measuring device 2 moves in parallel with the long material 1 along the guide rails 4a and 4b, the displacement measuring device 7 detects the relative displacement between the long material 1. . At the same time, steel wire position measuring devices 12a and 12b
The relative displacement of the displacement measuring device 7 with respect to the steel wire 9 serving as a measurement standard is measured, and the amount of strain of the long material 1 is measured by correcting the amount of displacement with this amount of displacement. It

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
従来技術では、測定基準となる鋼線9に撓みや、測定装
置2の自走に伴う振動が少なからず生じるため、実際に
は図3に示すように、撓みのない理想上の鋼線9aのよ
うにはならず、撓みのある鋼線9bのようになってしま
う。図4は、鋼線位置測定器12a、12bとの関係に
おいて、鋼線9が撓んだり、振れたときの位置を示した
もので、本来の測定基準としての鋼線9の位置がx軸方
向にx1、y軸方向にy1とすると、実際の鋼線9の位
置は、x軸方向がx2、y軸方向がy2へとずれてしま
う。この結果、鋼線位置測定器12a、12bによって
測定された変位測定器7を含む走行系の相対位置は、x
軸方向では、|x2−x1|、y軸方向では、|y2−
y1|だけ誤差を生じてしまっていることになる。従っ
て、真直度の測定結果にもその分の誤差が含まれること
になる。すなわち、図5に示すように、測定時の長尺材
1と、変位測定器7との相対的な位置関係にずれが生じ
るために、実際のx軸方向の位置間隔をS1とすると、
鋼線9に撓みが生じることによって実際には、|S0−
S1|だけ誤差が生じている。また、変位測定器7の対
象測定範囲が対象測定面の幅Uを越えると、変位測定器
7の正しい動作が保証されず、Tだけ変位測定器の位置
がy軸方向へずれると誤った測定結果を得る原因となっ
ていた。
However, in the above-mentioned prior art, since the steel wire 9 as the measurement reference is bent and the vibration caused by the free running of the measuring device 2 is not a little generated, it is actually shown in FIG. Thus, it does not look like an ideal steel wire 9a without bending, but becomes like a steel wire 9b with bending. FIG. 4 shows the position when the steel wire 9 is bent or shaken in relation to the steel wire position measuring devices 12a and 12b, and the position of the steel wire 9 as the original measurement reference is the x-axis. If the direction is x1 and the y-axis direction is y1, the actual position of the steel wire 9 is shifted to x2 in the x-axis direction and y2 in the y-axis direction. As a result, the relative position of the traveling system including the displacement measuring device 7 measured by the steel wire position measuring devices 12a and 12b is x
| X2-x1 | in the axial direction and | y2- in the y-axis direction
An error has occurred only by y1 |. Therefore, the straightness measurement result also includes the error. That is, as shown in FIG. 5, since there is a deviation in the relative positional relationship between the long material 1 and the displacement measuring device 7 at the time of measurement, if the actual position interval in the x-axis direction is S1,
The bending of the steel wire 9 actually causes | S0-
There is an error of S1 |. Further, if the target measurement range of the displacement measuring instrument 7 exceeds the width U of the target measuring surface, the correct operation of the displacement measuring instrument 7 is not guaranteed, and if the position of the displacement measuring instrument is displaced by T in the y-axis direction, erroneous measurement is performed. It was the cause of getting the result.

【0006】そこで、本発明は、上記従来技術の有する
問題点を解消し、測定基準に対する位置ずれを正確に補
正して精度の高い長尺材の真直度を測定できるようにし
た長尺材真直度測定装置を提供することを目的とする。
Therefore, the present invention solves the above-mentioned problems of the prior art, and corrects the positional deviation with respect to the measurement reference to measure the straightness of a long material with high accuracy. An object is to provide a degree measuring device.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、真直度が測定される長尺材の側方に配置
される走行台と、この走行台上に配置され前記長尺材と
平行にその長さ方向に走行自在であり変位測定器により
前記長尺材との間の相対距離を検出する測定装置とを備
えた長尺材真直度測定装置において、測定装置、走行台
のいずれか一方に設けられ測定の基準原点を定める基準
パターンと、前記変位測定器とともに基準パターンに対
して相対移動するように設置され、前記基準パターンを
受像して画像信号に変換するテレビカメラと、前記画像
信号に基づき基準パターンの重心位置と、この重心位置
の基準原点からの位置ずれ量を算出し、この位置ずれ量
を出力する画像処理装置と、変位測定器によって検出し
た歪み量を前記画像処理装置より与えられた位置ずれ量
で補正して長尺材全体にわたって長尺材の真直度を算出
する演算装置とを設けて構成したものである。
In order to achieve the above-mentioned object, the present invention provides a traveling platform which is disposed laterally of a long member whose straightness is measured, and the long platform which is disposed on the traveling platform. In a long material straightness measuring device equipped with a measuring device capable of traveling in parallel with the long material in its length direction and detecting a relative distance between the long material by a displacement measuring device, A reference pattern provided on either one of the bases and defining a reference origin for measurement, and a television camera installed so as to move relative to the reference pattern together with the displacement measuring device, which receives the reference pattern and converts it into an image signal. A barycentric position of the reference pattern based on the image signal, and an amount of displacement of the barycentric position from the reference origin, and an image processing device that outputs this amount of displacement, and the amount of distortion detected by the displacement measuring device. The picture And corrected by the positional shift amount given by the processing device is constructed by providing an arithmetic unit for calculating a straightness of the long material over the entire long material.

【0008】[0008]

【作用】変位測定器が長尺材に沿って移動している間、
基準パターンをテレビカメラが画像としてとらえ、各測
定点における画像信号に変換して画像処理装置に出力す
る。この画像処理装置は、テレビカメラから与えられた
画像信号から基準パターンの重心位置を算出するととも
に、その重心位置について予め記憶されている重心基準
原点からの位置ずれ量を演算装置に出力するので、変位
測定器で検出された歪み量が変位測定器の位置ずれ量で
補正される。
[Operation] While the displacement measuring device is moving along the long material,
The television camera captures the reference pattern as an image, converts it into an image signal at each measurement point, and outputs it to the image processing apparatus. This image processing device calculates the barycentric position of the reference pattern from the image signal given from the television camera, and outputs the positional deviation amount from the barycenter reference origin previously stored for the barycentric position to the arithmetic device. The amount of strain detected by the displacement measuring device is corrected by the amount of displacement of the displacement measuring device.

【0009】[0009]

【実施例】以下、本発明による長尺材真直度測定装置の
一実施例について添付の図面を参照して説明する。な
お、図6の構成要素と同一の構成要素には同一の参照符
号を付して、その詳細な説明は省略する。この実施例で
は、測定装置2の変位測定器としては、長尺材1との間
のx軸方向の相対変位を検出する変位測定器7aと、y
軸方向の相対変位を検出する変位測定器7bとがその台
車2aに設けられている。また、この台車2a上には、
従来の測定基準のピアノ線の替りに基準台20が固定さ
れている。この基準台20には、測定の基準原点を定め
る基準パターンとして、例えば、円形の印が描かれてい
る。このような基準台20と向かい合うようにして走行
台3の反対側の端側には、基準パターンを含む映像24
(図2参照)を受像し、この基準パターンの画像をその
2次元的に配列された撮像素子によって電気信号に変換
するテレビカメラ21が設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the straightness measuring apparatus for long material according to the present invention will be described below with reference to the accompanying drawings. The same components as those of FIG. 6 are designated by the same reference numerals, and detailed description thereof will be omitted. In this embodiment, as the displacement measuring device of the measuring device 2, a displacement measuring device 7a for detecting relative displacement in the x-axis direction between the long material 1 and y is used.
The carriage 2a is provided with a displacement measuring device 7b for detecting relative displacement in the axial direction. In addition, on this trolley 2a,
The reference stand 20 is fixed instead of the conventional measurement standard piano wire. A circular mark, for example, is drawn on the reference table 20 as a reference pattern that determines the reference origin of measurement. An image 24 including a reference pattern is provided on the opposite end side of the traveling table 3 so as to face the reference table 20.
A television camera 21 that receives an image (see FIG. 2) and converts the image of the reference pattern into an electric signal by the two-dimensionally arranged image pickup device is installed.

【0010】このテレビカメラ21から出力された画像
信号は、画像処理装置22に入力される。この画像処理
装置22は、各測定点ごとに入力された画像データを処
理して基準パターンの重心位置Gを求め、この重心位置
Gについて、予め記憶されている重心位置原点G0から
の位置ずれ量を算出してこのデータを演算装置23に出
力する。演算装置23は、変位測定器7a、7bを介し
て入力される各測定点における歪み量に上記位置ずれ量
を補正して長尺材1の実際の歪み量を算出する。
The image signal output from the television camera 21 is input to the image processing device 22. The image processing device 22 processes the image data input for each measurement point to obtain the barycentric position G of the reference pattern, and the position of the barycentric position G from the prestored barycentric position origin G0. Is calculated and this data is output to the arithmetic unit 23. The arithmetic device 23 calculates the actual strain amount of the long material 1 by correcting the positional deviation amount to the strain amount at each measurement point input via the displacement measuring instruments 7a and 7b.

【0011】しかして、まず、被測定物である長尺材1
をローラ装置13の上を転がして搬入した後、クランプ
装置14を用いて長尺材1を所定の測定位置に位置決め
する。なお、長尺材1をクランプしたままでは、長尺材
1に歪みが生じて実測値に誤差が生ずるので、これを防
止するために、実際の測定はクランプ装置14を開放し
て行なう。
First, the long material 1 which is the object to be measured.
Is rolled on the roller device 13 and carried in, and then the long material 1 is positioned at a predetermined measurement position using the clamp device 14. If the long material 1 is clamped, distortion occurs in the long material 1 and an error occurs in the actual measurement value. Therefore, in order to prevent this, the actual measurement is performed by opening the clamp device 14.

【0012】そこで、長尺材1に沿って平行に測定装置
2を自走させて測定を行なうと、変位測定器7a,7b
によって、長尺材1と、それぞれ変位測定器7a,7b
との相対変位が連続的に検出され、歪み量データとして
演算装置23に記憶される。一方、これと並行して、テ
レビカメラ21によって、基準パターンをとらえた画像
が各測定点において撮像され、その画像信号は画像処理
装置22に出力される。
Therefore, when the measuring device 2 is self-propelled along the long material 1 to perform the measurement, the displacement measuring devices 7a and 7b are measured.
The long material 1 and the displacement measuring devices 7a and 7b, respectively.
Relative displacements of and are continuously detected and stored in the computing device 23 as strain amount data. On the other hand, in parallel with this, the television camera 21 captures an image of the reference pattern at each measurement point, and the image signal is output to the image processing device 22.

【0013】画像処理装置22は、各測定点で得られた
画像データに基づき、図2に示されるように、基準パタ
ーンの重心位置Gを求め、この重心位置Gと、予め記憶
されている重心位置原点G0との間のx軸方向、y軸方
向それぞれの位置ずれ量x3、y3を算出して、この位
置ずれ量についてのデータを演算装置23に出力する。
演算装置23は、前記位置ずれ量データx3、y3に基
づいて変位測定器7a,7bによって実測した歪みデー
タを補正した結果を各測定点における歪み量として算出
する。このようにして基準パターンの重心位置を測定基
準としているので、従来のようにピアノ線を測定基準に
使用することなく、長尺材1の真直度を測定することが
出来る。しかも、基準パターンの重心を求めて重心基準
位置とのずれ量で測定結果を補正しているので、測定装
置2の走行系の誤差を補正できるので、長尺材1につい
ての正確な真直度を測定することができる。
The image processing device 22 obtains the barycentric position G of the reference pattern as shown in FIG. 2 based on the image data obtained at each measurement point, and the barycentric position G and the barycentric center stored in advance. The positional shift amounts x3 and y3 between the position origin G0 and the x-axis direction and the y-axis direction are calculated, and the data regarding the positional shift amounts are output to the arithmetic unit 23.
The arithmetic unit 23 calculates the result of correcting the strain data measured by the displacement measuring instruments 7a and 7b based on the position shift amount data x3 and y3 as the strain amount at each measurement point. Since the position of the center of gravity of the reference pattern is used as the measurement reference in this manner, the straightness of the long material 1 can be measured without using a piano wire as the measurement reference as in the conventional case. Moreover, since the center of gravity of the reference pattern is obtained and the measurement result is corrected by the amount of deviation from the center of gravity reference position, the error of the traveling system of the measuring device 2 can be corrected, and therefore the correct straightness of the long material 1 can be improved. Can be measured.

【0014】なお、以上の実施例では、基準パターンを
設けた基準台20を測定装置2の台車2aに取り付けて
いるが、テレビカメラ21を測定装置21の台車2aに
取り付け(図示せず)、走行台3の一端に配置した基準
台20の基準パターンを受像させるよう構成することも
できる。
In the above embodiment, the reference table 20 provided with the reference pattern is attached to the dolly 2a of the measuring device 2, but the television camera 21 is attached to the dolly 2a of the measuring device 21 (not shown), It can also be configured to receive the reference pattern of the reference platform 20 arranged at one end of the traveling platform 3.

【0015】[0015]

【発明の効果】以上の説明から明らかなように、本発明
によれば、測定装置、走行台のいずれか一方に設けられ
測定の基準原点を定める基準パターンと、前記変位測定
器とともに基準パターンに対して相対移動するように設
置され、前記基準パターンを受像して画像信号に変換す
るテレビカメラと、前記画像信号に基づき基準パターン
の重心位置と、この重心位置の基準原点からの位置ずれ
量を算出し、この位置ずれ量を出力する画像処理装置
と、変位測定器によって検出した歪み量を前記画像処理
装置より与えられた位置ずれ量で補正して長尺材全体に
わたって長尺材の真直度を算出する演算装置とを設けて
構成しているので、基準パターンの重心位置を測定の基
準として、従来のようにピアノ線などの誤差の生じ易い
基準を使用することなく、測定出来るとともに、重心位
置と重心基準位置とのずれ量で走行系の震動などによる
変位測定器の位置ずれを補正出来るので、長尺材につい
ての歪みを正確に測定することが出来る。
As is apparent from the above description, according to the present invention, a reference pattern provided on either one of the measuring device and the traveling platform to determine the reference origin of measurement, and the reference pattern together with the displacement measuring device are used. A television camera installed so as to move relative to each other, which receives the reference pattern and converts it into an image signal, the center of gravity position of the reference pattern based on the image signal, and the amount of displacement of the center of gravity position from the reference origin. The straightness of the long material is calculated over the entire long material by correcting the distortion amount detected by the displacement measuring device with the image processing apparatus that calculates and outputs this positional deviation amount. Since it is configured with an arithmetic unit for calculating, the position of the center of gravity of the reference pattern should be used as a reference for measurement, and a conventional reference such as a piano wire that easily causes an error should be used. Ku, measured with it, since it corrects the positional deviation of the displacement measuring device due to vibration of the traveling system in the deviation amount between the position of the center of gravity and the center of gravity reference position, it is possible to accurately measure the distortion of the elongated workpiece.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による長尺材真直度測定装置の一実施例
を示す斜視図。
FIG. 1 is a perspective view showing an embodiment of a long material straightness measuring device according to the present invention.

【図2】基準パターンの重心位置の原点と、ある測定点
における基準パターンの重心位置との関係を表した説明
図。
FIG. 2 is an explanatory diagram showing the relationship between the origin of the center of gravity of the reference pattern and the center of gravity of the reference pattern at a certain measurement point.

【図3】従来技術による長尺材真直度測定装置におい
て、撓んだ状態にある鋼線で測定しているときの説明
図。
FIG. 3 is an explanatory view of a long material straightness measuring device according to the prior art when measuring with a steel wire in a bent state.

【図4】従来技術による長尺材真直度測定装置におい
て、撓みのない鋼線と、撓んだ鋼線とでの位置のずれを
示した説明図。
FIG. 4 is an explanatory view showing a positional deviation between a steel wire without bending and a bent steel wire in a long material straightness measuring device according to a conventional technique.

【図5】従来技術による長尺材真直度測定装置におい
て、撓みのない鋼線と撓んだ鋼線のそれぞれによって求
められる長尺材と変位測定器の相対的な位置ずれを説明
する図。
FIG. 5 is a view for explaining a relative positional deviation between a long material and a displacement measuring device, which is obtained by a steel wire without bending and a bent steel wire in a long material straightness measuring device according to a conventional technique.

【図6】従来技術による長尺材真直度測定装置を示した
斜視図。
FIG. 6 is a perspective view showing a long material straightness measuring device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 長尺材 3 走行測定装置 5 サーボモータ 7a、7b 変位測定器7a,7b 20 基準パターン 21 テレビカメラ 22 画像処理装置 23 演算装置 1 Long material 3 Running measuring device 5 Servo motors 7a, 7b Displacement measuring devices 7a, 7b 20 Reference pattern 21 Television camera 22 Image processing device 23 Computing device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真直度が測定される長尺材の側方に配置さ
れる走行台と、この走行台上に配置され前記長尺材と平
行にその長さ方向に走行自在であり変位測定器により前
記長尺材との間の相対距離を検出する測定装置とを備え
た長尺材真直度測定装置において、 測定装置、走行台のいずれか一方に設けられ測定の基準
原点を定める基準パターンと、 前記変位測定器とともに基準パターンに対して相対移動
するように設置され、前記基準パターンを受像して画像
信号に変換するテレビカメラと、 前記画像信号に基づき基準パターンの重心位置と、この
重心位置の基準原点からの位置ずれ量を算出し、この位
置ずれ量を出力する画像処理装置と、 変位測定器によって検出した歪み量を前記画像処理装置
より与えられた位置ずれ量で補正して長尺材全体にわた
って長尺材の真直度を算出する演算装置とを備えたこと
を特徴とする長尺材真直度測定装置。
1. A traveling platform which is disposed on the side of a long material whose straightness is measured, and which is disposed on the traveling platform and is capable of traveling parallel to the long material in its longitudinal direction and measuring displacement. In a long material straightness measuring device equipped with a measuring device that detects the relative distance between the long material and a measuring device, a reference pattern provided on either the measuring device or the traveling platform to determine the reference origin of measurement. A television camera which is installed together with the displacement measuring device so as to move relative to a reference pattern and which receives the reference pattern and converts it into an image signal; a barycentric position of the reference pattern based on the image signal; An image processing device that calculates the amount of positional deviation from the reference origin and outputs this amount of positional deviation, and the amount of distortion detected by the displacement measuring device are corrected by the amount of positional deviation provided by the image processing device and the length is corrected. Bar A long material straightness measuring device, comprising: an arithmetic device for calculating the straightness of a long material as a whole.
JP25481792A 1992-09-24 1992-09-24 Measuring device for straightness of long material Pending JPH06109455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25481792A JPH06109455A (en) 1992-09-24 1992-09-24 Measuring device for straightness of long material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25481792A JPH06109455A (en) 1992-09-24 1992-09-24 Measuring device for straightness of long material

Publications (1)

Publication Number Publication Date
JPH06109455A true JPH06109455A (en) 1994-04-19

Family

ID=17270293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25481792A Pending JPH06109455A (en) 1992-09-24 1992-09-24 Measuring device for straightness of long material

Country Status (1)

Country Link
JP (1) JPH06109455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351863A (en) * 2004-06-14 2005-12-22 Kenichi Ishikawa Measurement method of surface shape
JP2006010519A (en) * 2004-06-25 2006-01-12 Jfe Electrical & Control Systems Inc Measuring arrangement for profile of tabular product
CN105135989A (en) * 2015-09-10 2015-12-09 浙江新跃机床有限公司 Portable arc hole distance measuring instrument
CN105277166A (en) * 2015-11-27 2016-01-27 安徽马钢工程技术集团有限公司 Measuring device for perpendicularity and planeness of vertical type rail and measuring method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351863A (en) * 2004-06-14 2005-12-22 Kenichi Ishikawa Measurement method of surface shape
JP2006010519A (en) * 2004-06-25 2006-01-12 Jfe Electrical & Control Systems Inc Measuring arrangement for profile of tabular product
CN105135989A (en) * 2015-09-10 2015-12-09 浙江新跃机床有限公司 Portable arc hole distance measuring instrument
CN105277166A (en) * 2015-11-27 2016-01-27 安徽马钢工程技术集团有限公司 Measuring device for perpendicularity and planeness of vertical type rail and measuring method thereof

Similar Documents

Publication Publication Date Title
JP4452651B2 (en) Zero error correction method and zero error correction apparatus in sequential three-point method
JPS58113805A (en) Method and device for detecting and compensating error of guide
US7869970B2 (en) Probe straightness measuring method
JPS6232302A (en) Three-dimensional measuring method and device
JP2006105878A (en) Flatness measuring device of substrate and its shape dimension measuring device
JPH06109455A (en) Measuring device for straightness of long material
JPH0460528B2 (en)
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
JPH04369409A (en) Optical thickness measuring apparatus
JP2933187B2 (en) Three-dimensional measuring devices
JPH0979838A (en) Straightness measuring device
US20220397386A1 (en) Position measurement method
JP2932862B2 (en) Method and apparatus for measuring cross-sectional shape of plate
JP2935603B2 (en) Roundness measuring device with straightness measuring function
JPH06186028A (en) Measuring method for straightness of long member
JPH07116737A (en) Instrument for measuring bending angle
JPH09318321A (en) Length-measuring apparatus
JPH04291106A (en) Instrument for measuring straightness of long-size material
JPH08210803A (en) Straightness measuring instrument
JPH0727545A (en) Long material straightness measuring device
JP3078507B2 (en) Method and apparatus for measuring parallelism in mounting end plugs of nuclear fuel rods
JP4444531B2 (en) Simple inspection vehicle and calibration method thereof
JPH0428686A (en) Installation error measuring device for elevator guide rail
JP3350272B2 (en) Material testing equipment
JPH05264261A (en) Measuring device for waviness and height difference of crane rail