JP2006010519A - Measuring arrangement for profile of tabular product - Google Patents

Measuring arrangement for profile of tabular product Download PDF

Info

Publication number
JP2006010519A
JP2006010519A JP2004188458A JP2004188458A JP2006010519A JP 2006010519 A JP2006010519 A JP 2006010519A JP 2004188458 A JP2004188458 A JP 2004188458A JP 2004188458 A JP2004188458 A JP 2004188458A JP 2006010519 A JP2006010519 A JP 2006010519A
Authority
JP
Japan
Prior art keywords
distance
measurement
measuring
carriage
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004188458A
Other languages
Japanese (ja)
Other versions
JP4488806B2 (en
Inventor
Tsuneo Suyama
恒夫 陶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Denki Corp
Original Assignee
JFE Denki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Denki Corp filed Critical JFE Denki Corp
Priority to JP2004188458A priority Critical patent/JP4488806B2/en
Publication of JP2006010519A publication Critical patent/JP2006010519A/en
Application granted granted Critical
Publication of JP4488806B2 publication Critical patent/JP4488806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure curve, waviness and twist of tabular products at a low cost by correcting winding and wave caused even when a measuring arrangement itself runs. <P>SOLUTION: The arrangement is constituted by providing a measuring dolly 7 positioning above a stationary steel plate 1 and moving in the longitude direction of the steel plate, a PLG9 measuring the moving quantity of the dolly, three plane part distance meters 10c, 10d measuring the distance to the stationary steel plate surface, a piano wire 21b placed each side position of the measuring dolly, vertical position detectors 11c, 11d place on the measuring dolly and detecting variation quantity in the vertical direction to the piano wire. The arrangement also has a data analysis arithmetic processor 32 calculating for correcting the distance to the steel plate surface of each position in the longitudinal direction of the steel plate based on the measured values of PLG, plane part distance meters and the vertical position detectors so as to remove the effects of winding and wave caused when the measuring dolly runs. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、板状製品の鋼板・アルミ・ガラス・紙・特殊鋼等を生産するライン、検査ライン等において、高精度で且つ安価な板状製品のプロフィール計測装置に関するものである。   The present invention relates to a plate-like product profile measuring apparatus that is highly accurate and inexpensive in production lines, inspection lines, and the like for producing steel plates, aluminum, glass, paper, and special steel.

板状製品の鋼板・アルミ・ガラス・特殊鋼等を生産するラインや検査ライン等において、形状を計測する装置は、広く一般的に存在するが、高い精度を実現するには、被計測対象物までの距離を計測するセンサーの固有計測精度は勿論必要であるが、他に機械構造物の剛性、据付時の据付精度、距離計を搭載した台車の走行による動的位置変化、外乱による振動、環境による構造物の膨張、歪み等あらゆる要因が重なり、計測精度を維持することは極めて困難であった。   Equipment for measuring shapes is widely available in production lines and inspection lines for sheet steel products, aluminum, glass, special steel, etc., but in order to achieve high accuracy, the object to be measured Needless to say, the inherent measurement accuracy of the sensor that measures the distance up to, but the rigidity of the mechanical structure, the installation accuracy at the time of installation, the dynamic position change due to the traveling of the carriage equipped with the distance meter, the vibration due to disturbance, It was extremely difficult to maintain measurement accuracy because all factors such as expansion and distortion of the structure due to the environment overlapped.

従来より幅計や距離計を固定し被計測対象物を移動させながら計測する方法が知られている。
このようなものとしての従来の板の形状計は、板の幅を測定する幅計を一定間隔離して2台設置し、これら2台の幅計から得られる幅座標情報と板が上記一定間隔を走行する毎に発生する基準信号とから板のすべり量を演算し、一方の幅計で測定したデータを板の横すべり量で補正するようにしたものである(例えば、特許文献1参照。)。
Conventionally, a method is known in which a width meter or a distance meter is fixed and a measurement object is moved while moving.
As a conventional plate shape meter as such, two width meters for measuring the width of the plate are set apart from each other by a certain distance, and the width coordinate information obtained from these two width meters and the plate are spaced from each other by the above-mentioned distance. The slip amount of the plate is calculated from the reference signal generated every time the vehicle travels, and the data measured by one width meter is corrected by the lateral slip amount of the plate (see, for example, Patent Document 1). .

また、それ以外の従来の長尺物のプロフィール測定方法は、測定方法に沿って配列した少なくとも3台の距離計で、対向する長尺物表面までの各距離を測定し、その3点以上の距離測定値に基づき測定位置でのプロフィールを多次曲線に近似することを、測定方向に沿って順次、測定位置を変更して行い、順次求めた多次曲線から長尺物のプロフィールを測定するものである(例えば、特許文献2参照。)。
さらに、それ以外の従来の板状製品の反り計測方法は、板状製品の進行方向に対して直角となる線上に、光学距離計3台以上を、同製品より一定の距離を保って設置し、これにより得られる変位量の計測データをもって板状製品の反りを計測するものである(例えば、特許文献3参照。)。
In addition, other conventional long object profile measurement methods measure at least three distance meters arranged along the measurement method to measure each distance to the opposing long object surface, and the three or more points are measured. Approximating the profile at the measurement position to the multi-order curve based on the distance measurement value is performed by sequentially changing the measurement position along the measurement direction, and the profile of the long object is measured from the multi-order curve obtained sequentially. (For example, see Patent Document 2).
Furthermore, other conventional methods for measuring the warpage of a plate-shaped product are to install three or more optical distance meters on a line perpendicular to the traveling direction of the plate-shaped product, keeping a certain distance from the product. The warpage of the plate-like product is measured using the displacement measurement data obtained thereby (see, for example, Patent Document 3).

このように特許文献1〜3に示すものは、長尺物のうねり(平面度)や曲り(側面の直線性)の計測に対して、計測装置を固定して被計測対象物をライン内に通過させながら計測する方法であるが、それとは逆に、被計測対象物をライン内に静止させた状態で計測装置を走行させて計測する方法がある。
特開平59−44612号公報(第3頁、第3図) 特開平10−47950号公報(第2頁、第1図) 特開平06−82237号公報(第2頁、第1図)
As described above, in Patent Documents 1 to 3, the measurement device is fixed in the line by fixing the measuring device for the measurement of undulation (flatness) or bending (linearity of the side surface) of a long object. Although it is a method of measuring while passing, there is a method of measuring by running a measuring device while keeping the measurement object stationary in the line.
JP 59-44612 A (page 3, FIG. 3) Japanese Patent Laid-Open No. 10-47950 (2nd page, FIG. 1) Japanese Patent Laid-Open No. 06-82237 (2nd page, FIG. 1)

前者の計測装置を固定して被対象材をライン内に通過させながら計測する方法では、被計測対象物を搬送させるテーブルはローラテーブルや、コンベアテーブル等が一般的で、このようなテーブルでは、被計測対象物自身のうねり(平面度)や曲り(側面の直線性)に加えて、搬送中にテーブル上での上下変動が問題となる。   In the method of measuring while fixing the former measuring device and passing the material to be measured through the line, the table for conveying the object to be measured is generally a roller table, a conveyor table, etc. In addition to the waviness (flatness) and bend (linearity of the side surface) of the object to be measured, vertical fluctuations on the table during conveyance become a problem.

また、後者の被計測対象物をライン内に静止させた状態で計測装置を走行させて計測する方法では、計測装置を走行させるレールの芯出し精度もさることながら、気温や計測環境の違いによりレールの撓りや曲げ等が発生する。
また、計測装置自体の自重によっても計測装置を走行させることによって計測装置自体が直線的な動きをしない。つまり、これらの現象から計測装置自体が蛇行、うねりをもった動きとなり、絶対距離計測を要求される装置では、精度を充分に維持することができない。
このため、形状を計測する装置の周辺設備を含め、外乱である温度変化の除去、計測装置自身の蛇行、うねりを最小限に抑えるため、充分な環境外乱に対する保護と剛性が要求され、非常に大掛かりな装置となり、非常に高価となる問題がある。
In addition, in the latter method of measuring by running the measuring device while the object to be measured is stationary in the line, the centering accuracy of the rail on which the measuring device is driven is not only affected by the difference in temperature and measurement environment. Rail bending or bending occurs.
Further, the measuring device itself does not move linearly by running the measuring device due to its own weight. That is, due to these phenomena, the measuring device itself moves in a meandering and wavy manner, and accuracy cannot be sufficiently maintained in a device that requires absolute distance measurement.
For this reason, sufficient protection and rigidity against environmental disturbances are required to eliminate the temperature change that is a disturbance, including the peripheral equipment of the device that measures the shape, and to minimize the meandering and swell of the measuring device itself. There is a problem that the apparatus becomes large and very expensive.

そこで、本発明は、被計測対象物である板状製品をライン内に静止させた状態で計測装置を走行させて計測する場合に、計測装置自体が走行する時に生じる蛇行、うねりをがあっても、それを補正して板状製品の反りやうねり及びねじれの形状を精度良く計測できる安価な板状製品のプロフィール計測装置を提供することを目的とするものである。   Therefore, the present invention has meandering and undulation that occur when the measuring device itself travels when the measuring device is traveled and measured while the plate-like product that is the object to be measured is stationary in the line. It is another object of the present invention to provide an inexpensive profile measuring device for a plate-like product which can accurately measure the shape of warpage, undulation and twist of the plate-like product by correcting it.

本発明に係る板状製品のプロフィール計測装置は、静止した被計測対象物の上方に位置し、被計測対象物の長さ方向に移動する計測台車と、計測台車の移動量を計測する台車移動量計測装置と、計測台車に設置され、静止した被計測対象物表面までの距離を計測する複数の平面部距離計と、計測台車の側方位置に設けられた少なくとも1つの直線基準計測用基準線と、計測台車に設置され、直線基準計測用基準線に対して垂直方向の変動量を検出する垂直位置検出器と、台車移動量計測装置と複数の平面部距離計と垂直位置検出器との計測値に基づき、被計測対象物の長さ方向における各位置の被計測対象物表面までの距離を、計測台車が走行するときに生じる蛇行やうねりの影響を除去するように補正演算する演算手段とを備えて構成されている。   The profile measuring device for a plate-like product according to the present invention is a measurement carriage that is positioned above a stationary object to be measured and moves in the length direction of the object to be measured, and a carriage movement that measures the movement amount of the measurement carriage. A quantity measuring device, a plurality of flat surface area meters installed on a measuring carriage and measuring a distance to the surface of a stationary object to be measured, and at least one linear reference measuring reference provided at a side position of the measuring carriage A vertical position detector that is installed on a line, a measurement carriage, and detects a fluctuation amount in a vertical direction with respect to a reference line for straight-line reference measurement, a carriage movement amount measuring device, a plurality of flat surface distance meters, and a vertical position detector, Based on the measured value, the calculation to correct the distance to the surface of the object to be measured at each position in the length direction of the object to be measured so as to eliminate the influence of meandering and undulation that occurs when the measuring carriage travels Means and comprising There.

本発明においては、演算手段が、静止した被計測対象物の上方に位置し、被計測対象物の長さ方向に移動する計測台車の移動量を計測する台車移動量計測装置と、計測台車に設置され、静止した被計測対象物表面までの距離を計測する複数の平面部距離計と、計測台車に設置され、直線基準計測用基準線に対して垂直方向の変動量を検出する垂直位置検出器との計測値に基づき、被計測対象物の長さ方向における各位置の被計測対象物表面までの距離を、計測台車が走行するときに生じる蛇行やうねりの影響を除去するように補正演算するので、計測台車が走行したときに蛇行やうねりがあった場合にも、被計測対象物の長さ方向における各位置の被計測対象物表面までの距離を精度良く計測し、且つ安価な装置を提供することができる。
従って、被計測対象物の長さ方向における各位置の被計測対象物表面までの距離のデータに基づいて被計測対象物の反り、うねり及びねじれの少なくとも1つ以上を演算により求めることができる。
In the present invention, the calculation means is located above the stationary object to be measured, and the movement amount measuring device for measuring the movement amount of the measuring carriage that moves in the length direction of the object to be measured, and the measurement carriage. Vertical distance detection that detects the amount of fluctuation in the vertical direction with respect to the reference line for linear reference measurement, installed on a measurement carriage, and a plurality of flat area distance meters that measure the distance to the surface of the target object Based on the measured value with the measuring instrument, the distance to the surface of the object to be measured at each position in the length direction of the object to be measured is corrected so as to eliminate the influence of meandering and undulation that occurs when the measuring carriage travels Therefore, even if there is meandering or undulation when the measuring carriage travels, it is possible to accurately measure the distance to the surface of the object to be measured at each position in the length direction of the object to be measured, and an inexpensive device Can be provided.
Accordingly, at least one or more of warpage, undulation, and twist of the measurement target can be obtained by calculation based on the data of the distance to the measurement target surface at each position in the length direction of the measurement target.

図1は本発明の実施の形態に係る板状製品のプロフィール計測装置を示す平面図、図2は同板状製品のプロフィール計測装置を示す正面図、図3は同板状製品のプロフィール計測装置の計測台車の側面図、図4はピアノ線のカテナリーを示す説明図、図5はピアノ線の計算で求めたカテナリー量を示すグラフ、図6はピアノ線の張力制御の構成を示すブロック図、図7は同板状製品のプロフィール計測装置のシステム構成を示すブロック図、図8は垂直位置検出器の検出原理を示す説明図、図9は直線基準計測用基準線から被計測対象物の表面までの距離の補正方法を示す説明図、図10はエッジ部距離計の計測結果に基づき平面部距離計を追従させない状態を示す説明図、図11はエッジ部距離計の計測結果に基づき平面部距離計を追従させた状態を示す説明図、図12は計測台車自重による計測台車用梁の撓みを示す説明図、図13は計測台車の補正後の軌跡を示す説明図、図14は板状製品の反りを示す説明図、図15は板状製品のうねりを示す説明図、図16は板状製品のねじれを示す説明図である。   1 is a plan view showing a profile measuring device for a plate product according to an embodiment of the present invention, FIG. 2 is a front view showing the profile measuring device for the plate product, and FIG. 3 is a profile measuring device for the plate product. FIG. 4 is an explanatory view showing the catenary of the piano wire, FIG. 5 is a graph showing the amount of catenary obtained by calculating the piano wire, and FIG. 6 is a block diagram showing the configuration of the tension control of the piano wire. 7 is a block diagram showing the system configuration of the profile measuring apparatus for the plate-like product, FIG. 8 is an explanatory diagram showing the detection principle of the vertical position detector, and FIG. 9 is the surface of the object to be measured from the reference line for linear reference measurement. FIG. 10 is an explanatory diagram showing a state in which the planar distance meter does not follow based on the measurement result of the edge part distance meter, and FIG. 11 is a planar part based on the measurement result of the edge part distance meter. Followed distance meter FIG. 12 is an explanatory diagram showing the deflection of the beam for the measurement truck due to its own weight, FIG. 13 is an explanatory diagram showing the corrected trajectory of the measurement truck, and FIG. 14 shows the warpage of the plate product FIG. 15 is an explanatory view showing the undulation of the plate product, and FIG. 16 is an explanatory view showing the twist of the plate product.

図1〜図3において、1は被計測対象物である鋼板、2は鋼板1を搬送する搬送ローラである。搬送ローラ2により搬送される鋼板1は、自重により移動と共にその形状が変化するため、それを防止するために搬送ローラ2を極力密に配置する必要がある。
3は搬送ローラ2の両側上方に平行に架設された計測台車用梁で、左右4本の架台支柱4によって支持されている。5は両端に車輪6を有する走行軸で、その車輪6が計測台車用梁3に転接して計測台車用梁3上を走行する。
In FIG. 1 to FIG. 3, reference numeral 1 denotes a steel plate that is an object to be measured, and reference numeral 2 denotes a transport roller that transports the steel plate 1. Since the shape of the steel sheet 1 conveyed by the conveying roller 2 changes with movement due to its own weight, it is necessary to arrange the conveying rollers 2 as densely as possible to prevent this.
Reference numeral 3 denotes a beam for a measuring carriage which is installed in parallel above both sides of the transport roller 2 and is supported by four left and right mounting posts 4. Reference numeral 5 denotes a traveling shaft having wheels 6 at both ends, and the wheels 6 roll on the measuring cart beam 3 and travel on the measuring cart beam 3.

7は走行軸5の両端側から吊り下げられた門型の計測台車である。この計測台車7は水平な梁部材7aと梁部材7aの両端に接続された垂直な柱部材7bとで構成されている。その梁部材7aには走行用モータ8が設けられており、その走行用モータ8が図示省略の動力伝達機構を介して走行軸5を回転駆動する。   Reference numeral 7 denotes a gate-type measuring carriage suspended from both ends of the traveling shaft 5. The measuring carriage 7 includes a horizontal beam member 7a and vertical column members 7b connected to both ends of the beam member 7a. The beam member 7 a is provided with a traveling motor 8, and the traveling motor 8 rotationally drives the traveling shaft 5 via a power transmission mechanism (not shown).

9は走行用モータ8に直結されて、モータ回転数をパルスに変換するパルスジェネレータ(以下、PLGという)である。このPLG9は、この実施の形態では、計測台車7の通常停止(ホーム)位置から計測台車7の移動位置までの出力パルスをカウントすることでX座標位置を確定することができるものである。ここに、X座標位置とは被計測対象物1の長さ方向をX軸方向とした場合における被計測対象物1の長さ方向の座標位置をいう。なお、PLG9の出力単位はXX(mm/Pulse)であり、これによりX座標分解能が決定される。そして、被計測対象物1の幅方向はY軸方向である。   Reference numeral 9 denotes a pulse generator (hereinafter referred to as PLG) which is directly connected to the traveling motor 8 and converts the motor rotational speed into pulses. In this embodiment, the PLG 9 can determine the X coordinate position by counting output pulses from the normal stop (home) position of the measurement carriage 7 to the movement position of the measurement carriage 7. Here, the X coordinate position refers to the coordinate position in the length direction of the measurement target object 1 when the length direction of the measurement target object 1 is the X-axis direction. Note that the output unit of the PLG 9 is XX (mm / Pulse), which determines the X coordinate resolution. The width direction of the measurement target object 1 is the Y-axis direction.

10a、10bは計測台車7の柱部材7bの内側の下方位置に設けられ、被計測対象物1のエッジ部までの距離をそれぞれ計測する2つのエッジ部距離計、10cは計測台車7の梁部材7aの下面中央に設けられ、被計測対象物1の中央表面までの距離を計測する1つの平面部距離計、10dは計測台車7の梁部材7aの下面両側に設けられ、被計測対象物1の両側表面までの距離を計測する2つの平面部距離計である。
これらエッジ部距離計10a、10b、平面部距離計10c、10dには例えばCCDレーザ変位センサが用いられている。
Reference numerals 10 a and 10 b are provided at lower positions inside the column member 7 b of the measurement carriage 7, and two edge portion distance meters for measuring the distance to the edge portion of the measurement target object 1, 10 c are beam members of the measurement carriage 7. One flat part distance meter 10d provided at the center of the lower surface of the object 7 to measure the distance to the central surface of the object 1 to be measured is provided on both sides of the lower surface of the beam member 7a of the measuring carriage 7, and the object 1 to be measured 1 It is two plane part distance meters which measure the distance to the both-sides surface.
For example, a CCD laser displacement sensor is used for the edge portion distance meters 10a and 10b and the plane portion distance meters 10c and 10d.

これら3つの平面部距離計10c、10dは、計測台車7の梁部材7aの下面に設けられた3つのサーボ機構12aによってそれぞれY軸方向に移動させられる。各サーボ機構12aは位置検出器を内蔵しており、Y軸方向の座標位置を確定することができるものである。
また、エッジ部距離計10a、10bも図6に示すようにサーボ機構12bによって上下方向に移動させられる。従って、鋼板1の厚さ寸法が異なっても、サーボ機構12bによってエッジ部距離計10a、10bを上下動させることにより、鋼板1のエッジ部の距離計測に対応させることができる。
These three plane distance meters 10c and 10d are respectively moved in the Y-axis direction by three servo mechanisms 12a provided on the lower surface of the beam member 7a of the measurement carriage 7. Each servo mechanism 12a has a built-in position detector and can determine the coordinate position in the Y-axis direction.
Further, the edge distance meters 10a and 10b are also moved in the vertical direction by the servo mechanism 12b as shown in FIG. Therefore, even if the thickness dimension of the steel plate 1 is different, the distance measurement of the edge portion of the steel plate 1 can be handled by moving the edge portion distance meters 10a and 10b up and down by the servo mechanism 12b.

11a、11bは計測台車7の柱部材7bの外側の下方位置に設けられた水平位置検出器で、架台支柱4とは別に配置されたピアノ線支柱22の下方に渡され、水平に張ったピアノ線21aに対しての水平位置検出を行って計測台車7自身の蛇行やうねりを測定するものである。
11c、11dは計測台車7の柱部材7bの外側の上方位置に設けられた垂直位置検出器で、ピアノ線支柱22の上方に渡され、水平に張ったピアノ線21bに対しての垂直位置検出を行って計測台車7自身の上下方向の蛇行やうねりを測定するものである。
11a and 11b are horizontal position detectors provided at a lower position outside the column member 7b of the measuring carriage 7. The horizontal position detector is provided below the piano wire column 22 arranged separately from the gantry column 4 and stretched horizontally. The horizontal position of the line 21a is detected to measure the meandering and undulation of the measuring carriage 7 itself.
Reference numerals 11c and 11d denote vertical position detectors provided at positions above the outside of the column member 7b of the measuring carriage 7, which are passed above the piano wire column 22 and detect the vertical position with respect to the horizontally stretched piano wire 21b. To measure the meandering and undulation of the measuring carriage 7 itself.

これらのピアノ線21a、21bはその片端を左側のピアノ線支柱22に結束し、その他端側を右側のピアノ線支柱22に設けた滑車23に掛け回し、他端にカウンタウエイト24を取り付けて吊す構造としている。この場合、水平に張ったピアノ線21a、21bにはカテナリー(撓み)が生じる。このカテナリー量、即ち撓み量は、ワイヤの単位長さ当たり重量、間隔、ワイヤに掛かる張力によって確定するが、これらの値は全て一定であるため、撓み量は温度変化やワイヤ自身の延びに影響を受けることなく一定となる。   These piano wires 21a and 21b are bound at one end to the left piano wire support 22, and the other end is hung on a pulley 23 provided on the right piano wire support 22, and a counterweight 24 is attached to the other end and suspended. It has a structure. In this case, catenary (bending) occurs in the horizontally stretched piano wires 21a and 21b. The amount of catenary, that is, the amount of bending, is determined by the weight per unit length of the wire, the distance, and the tension applied to the wire, but since these values are all constant, the amount of bending affects the temperature change and the elongation of the wire itself. It becomes constant without receiving.

図4はこの水平に張ったピアノ線21bのカテナリーを示しており、図5のグラフはφ0.5mmのピアノ線21bを8m水平に張った時のカテナリー量を演算した結果の一例を示している。このカテナリー量の演算は下記に示すカテナリー量演算式に基づいて行ったもので、カウンターウェイト24、即ち引っ張り応力が一定方向で且つ変化しなければ、カテナリー量演算式でも明白である通り、x軸座標におけるカテナリー量yは一定である。   FIG. 4 shows the catenary of the horizontally stretched piano wire 21b, and the graph of FIG. 5 shows an example of the result of calculating the amount of catenary when the piano wire 21b of φ0.5 mm is stretched horizontally by 8 m. . The calculation of the catenary amount is performed based on the following catenary amount calculation formula. If the counterweight 24, that is, if the tensile stress does not change in a certain direction and does not change, the x-axis The amount of catenary y in the coordinates is constant.

Figure 2006010519
Figure 2006010519

ここで、Hはピアノ線の水平張力Kgf、Wはピアノ線の単位長にかかる荷重Kgf/m、eは自然対数の底、xは0点を基準とした場合のx軸座標である。
なお、上記カテナリー量演算式はカテナリー量を求めるための一般的な式の例であり、これ以外にもカテナリー量を求めための種々の式があることが知られており、本実施の形態においてもカテナリー量を求める場合に上記カテナリー量演算式に限定されるものではない。
Here, H is the horizontal tension Kgf of the piano wire, W is the load Kgf / m applied to the unit length of the piano wire, e is the base of the natural logarithm, and x is the x-axis coordinate based on 0 point.
The catenary amount calculation formula is an example of a general formula for obtaining the catenary amount, and it is known that there are various formulas for obtaining the catenary amount in addition to this. In the case where the amount of catenary is obtained, it is not limited to the above formula for calculating the amount of catenary.

上記実施の形態では、ピアノ線21a又は21bの張力を一定にするために、ピアノ線の滑車に掛け回した他端にカウンタウエイト24を取り付けているが、図6に示すような張力制御の構成にしてもよい。
即ち、図6に示すように、ピアノ線21a又は21bの他端を滑車22に掛け回して固定し、その滑車22をモータ41で回転させてピアノ線の張力を調整するようにする。そして、ピアノ線の張力を滑車22に設けたロードセル42で計測し、そのロードセル42の計測値に応じて張力制御装置43がモータ41の回転を制御することにより、カウンタウエイト24の代わりにピアノ線の張力を一定に制御するようにしてもよい。
In the above embodiment, in order to make the tension of the piano wire 21a or 21b constant, the counterweight 24 is attached to the other end of the piano wire that is hung around the pulley, but the tension control configuration as shown in FIG. It may be.
That is, as shown in FIG. 6, the other end of the piano wire 21a or 21b is hung around the pulley 22 and fixed, and the pulley 22 is rotated by the motor 41 to adjust the tension of the piano wire. And the tension | tensile_strength of a piano wire is measured with the load cell 42 provided in the pulley 22, and the tension control apparatus 43 controls rotation of the motor 41 according to the measured value of the load cell 42, Therefore A piano wire is used instead of the counterweight 24. The tension may be controlled to be constant.

図7において、31はプロセス計算機で、計測結果を上位にある上位プロセス計算機や製品管理用に構築した計算機等にデータを送信して他の管理項目と同様に管理するシステムに用いるものである。また、逆に上位プロセス計算機や製品管理用計算機等から鋼板情報を事前に伝送して、予め平面部距離計10c、10d等の位置を幅方向に移動させておいてタイムラグを最小にしたり、単独であるいは上位情報と共にデータを管理するものである。なお、上位プロセス計算機との通信では、鋼板の種類、幅、厚み、材質、生産情報、鋼板No等の情報をやりとりする。   In FIG. 7, reference numeral 31 denotes a process computer, which is used in a system for transmitting data to a higher-level process computer, a computer constructed for product management, etc., and managing it in the same way as other management items. Conversely, steel plate information is transmitted in advance from the host process computer, product management computer, etc., and the position of the flat surface distance meters 10c, 10d, etc. is moved in the width direction in advance to minimize the time lag or independently. Or data together with the upper information. In communication with the host process computer, information such as the type, width, thickness, material, production information, and steel plate number of the steel plate is exchanged.

32は被計測対象物である鋼板1のプロフィールを演算処理したり、サーボ機構12a、12bを駆動制御するデータ解析演算装置である。このデータ解析演算装置32には、エッジ部距離計10a10b、平面部距離計10c、10d、ピアノ線水平位置検出器11a、11b及びピアノ線垂直位置検出器11c、11dの情報等が入力される。
33は被計測対象物1のPLG9の出力結果からX・Y座標を演算して走行用駆動モータ8を駆動制御して計測台車7を所定位置に移動させるシステム制御装置である。また、システム制御装置33はデータ解析演算装置32に鋼板1における計測台車7のXY座標の位置情報を入力する。
34はデータ解析演算装置32の演算結果を印刷する例えばプリンタ等の出力端末である。
Reference numeral 32 denotes a data analysis arithmetic device that performs arithmetic processing on the profile of the steel sheet 1 that is the object to be measured and drives and controls the servo mechanisms 12a and 12b. The data analysis calculation device 32 receives information on the edge part distance meters 10a10b, the plane part distance meters 10c, 10d, the piano line horizontal position detectors 11a, 11b, and the piano line vertical position detectors 11c, 11d.
Reference numeral 33 denotes a system control device that calculates the X and Y coordinates from the output result of the PLG 9 of the measurement target object 1 to drive and control the driving motor 8 to move the measurement carriage 7 to a predetermined position. Further, the system control device 33 inputs the position information of the XY coordinates of the measurement carriage 7 in the steel plate 1 to the data analysis calculation device 32.
Reference numeral 34 denotes an output terminal such as a printer for printing the calculation result of the data analysis calculation device 32.

次に、垂直位置検出器11c、11dの検出原理について図8に基づいて説明する。
この垂直位置検出器11c、11dとしては、例えばレーザ寸法測定器を用いており、図8の(a)に示すようにスリット状のレーザ光を照射する発光部100と、発光部100が照射したレーザ光を受光する受光部101とで構成され、受光部101にはレンズ102と、受光センサ103と、受光センサ103の出力を増幅するアンプ104とが設けられている。
そして、レーザ寸法測定器はその発光部100がスリット状のレーザ光を照射し、受光部101はその間に有る計測物であるピアノ線21が遮った部分の状態を受光して出力するものである。
Next, the detection principle of the vertical position detectors 11c and 11d will be described with reference to FIG.
As the vertical position detectors 11c and 11d, for example, a laser dimension measuring device is used. As shown in FIG. 8A, the light emitting unit 100 that irradiates slit-shaped laser light and the light emitting unit 100 irradiates. The light receiving unit 101 is provided with a lens 102, a light receiving sensor 103, and an amplifier 104 that amplifies the output of the light receiving sensor 103.
In the laser dimension measuring device, the light emitting unit 100 irradiates a slit-shaped laser beam, and the light receiving unit 101 receives and outputs the state of the portion blocked by the piano wire 21 which is a measurement object there between. .

従って、受光部101では、図8の(b)に示すように、ベースの基準面から光を遮った部分の中心までの距離A、ベースの基準面から光を遮った部分の下面までの距離B、ベースの基準面から光を遮った部分の上面までの距離C、光を遮った部分の範囲Dの出力が得られることとなる。
この実施の形態では、ピアノ線21bの位置計測を目的としているので、ベースの基準面から光を遮った部分の中心までの距離A、若しくはベースの基準面から光を遮った部分の下面までの距離Bを出力として用いる。これはピアノ線21bの上面以外にはホコリ等の異物が付着しにくいため、異物の付着の影響を考慮したからである。
Therefore, in the light receiving unit 101, as shown in FIG. 8B, the distance A from the reference surface of the base to the center of the portion that blocks light, and the distance from the reference surface of the base to the lower surface of the portion that blocks light. B, an output of a distance C from the reference surface of the base to the upper surface of the portion that blocks the light, and an output of the range D of the portion that blocks the light can be obtained.
In this embodiment, since the purpose is to measure the position of the piano wire 21b, the distance A from the reference plane of the base to the center of the portion that blocks the light, or the lower surface of the portion that blocks the light from the reference plane of the base. The distance B is used as an output. This is because foreign matter such as dust is difficult to adhere to other than the upper surface of the piano wire 21b, and the influence of the foreign matter is taken into consideration.

なお、水平位置検出器11a、11bについても、レーザ寸法測定器を用いており、垂直位置検出器11c、11dがピアノ線21bに対して水平に配置されているのに対し、水平位置検出器11a、11bがピアノ線21aに対して垂直に配置されている点が相違するだけであり、水平位置検出器11a、11bの検出原理は垂直位置検出器11c、11dと同様であるので、その説明は省略する。   The horizontal position detectors 11a and 11b also use laser dimension measuring devices, and the vertical position detectors 11c and 11d are arranged horizontally with respect to the piano wire 21b, whereas the horizontal position detector 11a. , 11b is different from the piano wire 21a in that the detection principle of the horizontal position detectors 11a, 11b is the same as that of the vertical position detectors 11c, 11d. Omitted.

次に、垂直位置検出器11c、11dでのピアノ線21bから平面部距離計10c、10dまでの距離Hcの計測原理について図9に基づいて説明する。
まず、垂直位置検出器11c、11dが設置されたベースの基準面から光を遮った部分であるピアノ線21bの中心までの距離A1の寸法計測は上述の通りである。F1の寸法はベースの基準面から平面部距離計10c、10dまでの距離であり、計測台車7に垂直位置検出器11c、11d及び平面部距離計10c、10dを組み込んだ時に決定されるもので、変化しないものである。
Next, the measurement principle of the distance Hc from the piano wire 21b to the flat surface distance meters 10c, 10d by the vertical position detectors 11c, 11d will be described with reference to FIG.
First, the dimension measurement of the distance A1 from the reference plane of the base where the vertical position detectors 11c and 11d are installed to the center of the piano wire 21b, which is a portion that blocks light, is as described above. The dimension of F1 is the distance from the reference plane of the base to the flat part distance meters 10c, 10d, and is determined when the vertical position detectors 11c, 11d and the flat part distance meters 10c, 10d are incorporated in the measurement carriage 7. It ’s something that does n’t change.

また、Hmは平面部距離計10c、10dから搬送ローラ2上の鋼板1の上面までの距離、即ち平面部距離計10c、10dが実測した値である。
従って、ピアノ線21bから平面部距離計10c、10dまでの距離HcはHc=A1+F1であり、基準となるピアノ線21bから鋼板1上面までの距離は、Hc+Hmで表わすことができる。
Hm is a distance from the plane distance meters 10c and 10d to the upper surface of the steel plate 1 on the conveying roller 2, that is, a value measured by the plane distance meters 10c and 10d.
Therefore, the distance Hc from the piano wire 21b to the flat surface distance meters 10c and 10d is Hc = A1 + F1, and the distance from the reference piano wire 21b to the upper surface of the steel plate 1 can be expressed as Hc + Hm.

但し、垂直位置検出器11c、11d及び平面部距離計10c、10dを組み込んだ計測台車7は走行に伴って上下動するため、ベースの基準面からピアノ線21bの中心までの距離A1は変化することとなる。また、ピアノ線21bはカテナリーを有するものの、各部位の位置は不変である。   However, since the measuring carriage 7 incorporating the vertical position detectors 11c and 11d and the flat surface distance meters 10c and 10d moves up and down as the vehicle travels, the distance A1 from the base reference surface to the center of the piano wire 21b changes. It will be. Moreover, although the piano wire 21b has catenary, the position of each part is unchanged.

従って、平面部距離計10c、10dで鋼板1の上面までの距離Hmを計測し、垂直位置検出器11c、11dでピアノ線21bまでの距離Hcを計測し、これらの計測結果を加算した値Hm+Hcがピアノ線21からの距離となる。この場合、あるX座標点でのピアノ線21のカテナリー量を補正することで、仮想基準直線面から鋼板1の上面までの距離Hsを算出することができることとなる。
従って、あるX座標点における計測台車7自身の上下方向のうねりがない場合の平面部距離計10c、10dが計測した鋼板1の上面までの距離Hmは次式で表すことができる。
Therefore, the distance Hm to the upper surface of the steel plate 1 is measured by the flat surface distance meters 10c and 10d, the distance Hc to the piano wire 21b is measured by the vertical position detectors 11c and 11d, and the value Hm + Hc obtained by adding these measurement results. Is the distance from the piano wire 21. In this case, the distance Hs from the virtual reference straight line surface to the upper surface of the steel plate 1 can be calculated by correcting the catenary amount of the piano wire 21 at a certain X coordinate point.
Therefore, the distance Hm to the upper surface of the steel plate 1 measured by the flat surface distance meters 10c and 10d when there is no vertical waviness of the measuring carriage 7 itself at a certain X coordinate point can be expressed by the following equation.

Hs−(カテナリー量+Hc[A1+F1])=Hm
そして、どのX座標点でも計測台車7自身の上下方向のうねりがない場合における上記式におけるHs、Hmは不変であるため、それぞれ基準値となる。また、A1はX座標点が変わることによってピアノ線21のカテナリー量によって相対的に変化する変数であるが、あるX座標点が決まれば計算によって求めたカテナリー量からA1の変化量を求めることができる。
そうすると、あるX座標点で計測台車7自身が上下方向のうねりによって変化した場合には、垂直位置検出器11c、11dが計測したベースの基準面からピアノ線21bの中心までの距離A1の変化値から変化したカテナリー量に基づくA1の変化量を差し引いたものが、計測台車7自身が上下方向のうねりによって変化した場合における実際のA1の変化量となる。
そこで、実際のA1の変化量を上記式で求めたHmから差し引くことにより、あるX座標点での真の距離Hmを求めることができることとなる。
Hs− (catenary amount + Hc [A1 + F1]) = Hm
And since Hs and Hm in the above formula in the case where there is no undulation in the vertical direction of the measuring carriage 7 itself at any X coordinate point, they become reference values, respectively. A1 is a variable that changes relative to the catenary amount of the piano wire 21 as the X coordinate point changes. If a certain X coordinate point is determined, the change amount of A1 can be obtained from the calculated catenary amount. it can.
Then, when the measurement carriage 7 itself changes due to vertical waviness at a certain X coordinate point, the change value of the distance A1 from the base reference plane measured by the vertical position detectors 11c and 11d to the center of the piano wire 21b. Subtracting the amount of change in A1 based on the changed amount of catenary from the actual amount of change in A1 when the measuring carriage 7 itself changes due to vertical undulations.
Therefore, the true distance Hm at a certain X coordinate point can be obtained by subtracting the actual change amount of A1 from Hm obtained by the above formula.

次に、水平位置検出器11a、11bでのピアノ線21aからエッジ部距離計10a、10bまでの距離Wcの計測原理について図9に基づいて説明する。
まず、A2は水平位置検出器11a、11bが設置されたベースの基準面から光を遮った部分であるピアノ線21の中心までの距離であり、F2の寸法はベースの基準面からエッジ部距離計10a、10bまでの距離であり、計測台車7に水平位置検出器11a、11b及びエッジ距離計10a、10bを組み込んだ時に決定されるもので、変化しないものである。
Next, the measurement principle of the distance Wc from the piano wire 21a to the edge portion distance meters 10a and 10b in the horizontal position detectors 11a and 11b will be described with reference to FIG.
First, A2 is the distance from the reference plane of the base where the horizontal position detectors 11a and 11b are installed to the center of the piano wire 21, which is a portion that blocks light, and the dimension of F2 is the distance from the base reference plane to the edge portion. The distance to the total 10a, 10b is determined when the horizontal position detectors 11a, 11b and the edge distance meters 10a, 10b are incorporated in the measurement carriage 7, and does not change.

また、Wmはエッジ部距離計10a、10bから搬送ローラ2上の鋼板1のエッジ部までの距離、即ちエッジ部部距離計10a、10bが実測した値である。
従って、ピアノ線21aからエッジ部距離計10a、10bまでの距離WcはHc=A2+F2であり、基準となるピアノ線21aから鋼板1のエッジ部までの距離は、Wc+Wmで表わすことができる。
Wm is a distance from the edge portion distance meters 10a and 10b to the edge portion of the steel plate 1 on the conveying roller 2, that is, a value actually measured by the edge portion distance meters 10a and 10b.
Therefore, the distance Wc from the piano wire 21a to the edge portion distance meters 10a and 10b is Hc = A2 + F2, and the distance from the reference piano wire 21a to the edge portion of the steel plate 1 can be represented by Wc + Wm.

但し、水平位置検出器11a、11b及びエッジ部距離計10a、10bを組み込んだ計測台車7は走行に伴って左右動するため、ベースの基準面からピアノ線21aの中心までの距離A2は変化することとなる。また、この場合は水平位置を検出するため、ピアノ線21aのカテナリーを考慮する必要はないため、各部位の位置は不変である。   However, since the measuring carriage 7 incorporating the horizontal position detectors 11a and 11b and the edge portion distance meters 10a and 10b moves left and right as the vehicle travels, the distance A2 from the reference plane of the base to the center of the piano wire 21a changes. It will be. Further, in this case, since the horizontal position is detected, there is no need to consider the catenary of the piano wire 21a, so the position of each part is unchanged.

従って、エッジ部距離計10a、10bで鋼板1のエッジ部までの距離Wmを計測し、水平位置検出器11a、11bでピアノ線21aまでの距離Wcを計測し、これらの計測結果を加算した値Wm+Wcがピアノ線21aの基準位置からの距離となる。この場合は、ピアノ線21aのカテナリー量を補正する必要はない。   Therefore, the distance Wm to the edge part of the steel plate 1 is measured by the edge part distance meters 10a and 10b, the distance Wc to the piano wire 21a is measured by the horizontal position detectors 11a and 11b, and these measurement results are added. Wm + Wc is the distance from the reference position of the piano wire 21a. In this case, it is not necessary to correct the catenary amount of the piano wire 21a.

ところで、上述したように、ベースの基準面からピアノ線21aの中心までの距離A2が、計測台車7自身の左右方向のうねりによって変化するため、計測台車7自身の左右方向のうねりがない当初のベースの基準面からピアノ線21aの中心までの距離A2の値を基準にし、このときのエッジ部距離計10a、10bが計測した鋼板1のエッジ部までの距離Wmを基準値に設定しておく。
そうすれば、計測台車7自身が左右方向のうねりによって変化した場合には、水平位置検出器11a、11bが計測したベースの基準面からピアノ線21aの中心までの距離Aの変化値をエッジ部距離計10a、10bが計測した鋼板1のエッジ部までの距離Wmから差し引くことにより、真の距離Wmを求めることができることとなる。
By the way, as mentioned above, since the distance A2 from the base reference plane to the center of the piano wire 21a changes depending on the horizontal waviness of the measuring carriage 7 itself, there is no initial waviness of the measuring carriage 7 itself. Based on the value of the distance A2 from the reference surface of the base to the center of the piano wire 21a, the distance Wm to the edge portion of the steel plate 1 measured by the edge distance meters 10a and 10b at this time is set as a reference value. .
Then, when the measurement carriage 7 itself changes due to the undulation in the left-right direction, the change value of the distance A from the reference plane of the base measured by the horizontal position detectors 11a and 11b to the center of the piano wire 21a is used as the edge portion. By subtracting from the distance Wm to the edge portion of the steel plate 1 measured by the distance meters 10a and 10b, the true distance Wm can be obtained.

次に、本発明の実施の形態に係る板状製品のプロフィール計測装置の動作について説明する。
まず、搬送ローラ2上に載置された被計測対象物である鋼板1を図1に示すように板状製品のプロフィール計測装置がある位置まで移送する。
次に、板状製品のプロフィール計測装置の右端にある計測台車7を鋼板1の流れ方向に移動させながら計測点1から計測点nまでの各計測点位置で鋼板1の上面までの距離を平面部距離計10c、10dで計測する。
Next, the operation of the profile measuring apparatus for plate products according to the embodiment of the present invention will be described.
First, the steel plate 1 that is the object to be measured placed on the transport roller 2 is transferred to a position where the profile measuring device for the plate-like product is located as shown in FIG.
Next, the distance from the measurement point 1 to the measurement point n at each measurement point position from the measurement point 1 to the measurement point n is flattened while the measurement carriage 7 at the right end of the profile measuring device for the plate-like product is moved in the flow direction. Measurement is performed with the distance meters 10c and 10d.

この場合、図10に示すように、鋼板1がその流れ方向と一致、即ち搬送ローラ2の中心線と鋼板1の中心線が略一致しているときには、各計測点は鋼板1のエッジ部から外れることはなく、また各平面部距離計10c、10dが対象とする計測点の位置からもずれることがないため、平面部距離計10c、10dを計測台車7の所定位置に固定したままとする。   In this case, as shown in FIG. 10, when the steel plate 1 coincides with the flow direction, that is, when the center line of the conveying roller 2 and the center line of the steel plate 1 are substantially coincident, each measurement point is from the edge portion of the steel plate 1. Since the plane distance meters 10c and 10d do not deviate from the positions of the target measurement points, the plane distance meters 10c and 10d remain fixed at predetermined positions on the measurement carriage 7. .

従って、各計測点でエッジ部距離計10a、10bは鋼板1のエッジ部までの距離を計測し、平面部距離計10c、10dは鋼板1の上面までの距離を計測し、水平位置検出器11a、11bはピアノ線21aに対する水平方向のズレ量を計測し、垂直位置検出器11c、11dはピアノ線21bに対する垂直方向のズレ量を計測し、これらの計測値はデータ解析演算装置32に入力されることとなる。   Accordingly, at each measurement point, the edge part distance meters 10a and 10b measure the distance to the edge part of the steel plate 1, the plane part distance meters 10c and 10d measure the distance to the upper surface of the steel sheet 1, and the horizontal position detector 11a. , 11b measure the amount of horizontal displacement with respect to the piano wire 21a, and the vertical position detectors 11c, 11d measure the amount of displacement in the vertical direction with respect to the piano wire 21b, and these measured values are input to the data analysis calculation device 32. The Rukoto.

しかし、図11に示すように、鋼板1がその流れ方向と一致しない、即ち搬送ローラ2の中心線に対して鋼板1の中心線が傾斜しているときには、各計測点は鋼板1のエッジ部から外れることとなり、また各平面部距離計10c、10dが対象とする計測点の位置からもずれることとなる。   However, as shown in FIG. 11, when the steel plate 1 does not coincide with the flow direction, that is, when the center line of the steel plate 1 is inclined with respect to the center line of the transport roller 2, each measurement point is an edge portion of the steel plate 1. And the distances from the measurement points targeted by the plane distance meters 10c and 10d are also shifted.

この場合には、データ解析演算装置32は各計測点でエッジ部距離計10a、10bが計測した鋼板1のエッジ部までの距離の計測値に基づいて、鋼板1のエッジ部より一定の値を保つように、また各平面部距離計10c、10dが対象とする計測点の位置に一致するように各平面部距離計10c、10dの移動量を演算し、その移動量だけ各々のサーボ機構12aを駆動して各平面部距離計10c、10dを移動させ、各平面部距離計10c、10dが対象とする計測点の位置に一致するように、各平面部距離計10c、10dの位置を追従させることができる。   In this case, the data analysis calculation device 32 obtains a constant value from the edge portion of the steel plate 1 based on the measured value of the distance to the edge portion of the steel plate 1 measured by the edge portion distance meters 10a and 10b at each measurement point. The amount of movement of each plane distance meter 10c, 10d is calculated so that each plane distance meter 10c, 10d matches the position of the target measurement point, and each servo mechanism 12a is calculated by the amount of movement. Is driven to move the plane distance meters 10c and 10d and follow the positions of the plane distance meters 10c and 10d so that the plane distance meters 10c and 10d coincide with the positions of the target measurement points. Can be made.

このように各平面部距離計10c、10dが対象とする計測点の位置に一致する状態における各計測点でのエッジ部距離計10a、10b、平面部距離計10c、10d、水平位置検出器11a、11b及び垂直位置検出器11c、11dの計測値がデータ解析演算装置32に入力されるようになる。   As described above, the edge portion distance meters 10a and 10b, the plane portion distance meters 10c and 10d, and the horizontal position detector 11a at the respective measurement points in a state in which the respective plane portion distance meters 10c and 10d coincide with the positions of the target measurement points. , 11b and the measured values of the vertical position detectors 11c, 11d are input to the data analysis calculation device 32.

そして、データ解析演算装置32では各計測点毎に、各平面部距離計10c、10dの計測値で鋼板1の上面までの距離Hm、各エッジ部距離計10a、10bの計測値で鋼板1のエッジ部までの距離Wm、水平位置検出器11a、11bの検出値でピアノ線21に対する水平方向のズレ量A2、即ち計測台車7自身の蛇行性うねり、垂直位置検出器11c、11dの検出値でピアノ線21に対する垂直方向のズレ量A1、即ち計測台車6自身の上下方向のうねりを演算する。   And in the data analysis arithmetic unit 32, for each measurement point, the distance Hm to the upper surface of the steel plate 1 with the measured values of the flat surface distance meters 10c, 10d, and the measured values of the steel plate 1 with the measured values of the edge distance meters 10a, 10b. The distance Wm to the edge portion, the detection value of the horizontal position detectors 11a and 11b, the horizontal shift amount A2 with respect to the piano wire 21, that is, the meandering undulation of the measuring carriage 7 itself, the detection value of the vertical position detectors 11c and 11d. The vertical deviation A1 with respect to the piano wire 21, that is, the vertical waviness of the measuring carriage 6 itself is calculated.

そして、これら垂直方向のズレ量A1及び水平方向のズレ量A2が演算により求まることから、データ解析演算装置32では、上述したように平面部距離計10c、10dが計測した鋼板1の上面までの距離Hmから垂直方向のズレ量A1(カテナリー量に基づくズレ量A1の変化量がある場合は、ズレ量A1からその変化量を差し引いた実際のズレ量A1)を差し引く演算をすることにより、真の距離Hmを求めることができることとなる。   Since the vertical deviation A1 and the horizontal deviation A2 are obtained by calculation, in the data analysis calculation device 32, as described above, the flat portion distance meters 10c and 10d are measured up to the upper surface of the steel plate 1. By calculating by subtracting the vertical shift amount A1 (the actual shift amount A1 obtained by subtracting the change amount from the shift amount A1 if there is a change amount of the shift amount A1 based on the catenary amount) from the distance Hm. The distance Hm can be obtained.

図12は架台支柱4が計測台車7の台車重量によって歪み、計測台車用梁3が大きく撓んだ場合を図示したものである。
また、データ解析演算装置32では、上述したようにエッジ部距離計10a、10bが計測した鋼板1のエッジ部までの距離Wmから水平方向のズレ量A2を差し引く演算をすることにより、真の距離Wmを求めることができることとなる。
FIG. 12 illustrates a case where the gantry support column 4 is distorted by the weight of the measurement carriage 7 and the measurement carriage beam 3 is greatly bent.
Further, in the data analysis calculation device 32, as described above, the true distance is obtained by subtracting the horizontal deviation amount A2 from the distance Wm to the edge portion of the steel plate 1 measured by the edge portion distance meters 10a and 10b. Wm can be obtained.

図13は計測台車7、即ち垂直位置検出器11c、11dの直線移動が補正されて仮想の直線移動の線と、1つの平面部距離計11cのこの間における各測定点で得られた各座標V1からVnに相当する位置での真の距離計測値H1からHnをプロフィールとして示したものである。   FIG. 13 shows the coordinates V1 obtained at each measurement point in the meantime between the imaginary linear movement line and one plane distance meter 11c by correcting the linear movement of the measuring carriage 7, that is, the vertical position detectors 11c and 11d. The true distance measurement values H1 to Hn at positions corresponding to Vn to Vn are shown as profiles.

この実施の形態の板状製品のプロフィール計測装置では、3つの平面部距離計11c、11dを用いているので、鋼板1の幅方向の中心と両エッジ部側のプロフィールを得ることができる。
従って、これらのプロフィールのデータから鋼板1の反りやうねりやねじれを演算により求めることができる。
なお、平面部距離計の数を増やせば、鋼板1の幅方向においてそれだけ数多くのプロフィールを得ることができ、反りやうねりやねじれについてきめ細かく計測できることはいうまでもない。
In the profile measuring apparatus for plate-like products of this embodiment, since the three flat part distance meters 11c and 11d are used, the profile in the center in the width direction of the steel sheet 1 and both edge parts can be obtained.
Therefore, warpage, undulation, and twist of the steel plate 1 can be obtained by calculation from the data of these profiles.
Needless to say, if the number of flat surface distance meters is increased, a large number of profiles can be obtained in the width direction of the steel sheet 1, and warpage, undulation, and twist can be meticulously measured.

ここで、鋼板1の反りとは、図14に示すように鋼板1の平坦な中心部に対して端部が上側に曲がることをいう。なお、下側に曲がる場合も含まれる。
そして、端部が上側に曲がった反りの場合、反りの程度は図14に示すように、例えば、鋼板1の左端の反りは鋼板1の平坦な中心部でのTに対するTsとして、Ts/Tとして表すことができ、鋼板1の右端の反りはBに対するBsとして、Bs/Bとして表すことができる。Ts、Bsの値は3つの平面部距離計11c、11dの計測値を演算することにより求めることができるから、反りの程度を求めることができる。
Here, the warp of the steel plate 1 means that the end bends upward with respect to the flat central portion of the steel plate 1 as shown in FIG. In addition, the case where it bends below is also included.
Then, in the case of warping with the end bent upward, the degree of warping is, for example, as shown in FIG. 14, the warping at the left end of the steel plate 1 is Ts / T as Ts for T at the flat center portion of the steel plate 1. The warp at the right end of the steel sheet 1 can be expressed as Bs / B as Bs / B. Since the values of Ts and Bs can be obtained by calculating the measured values of the three plane distance meters 11c and 11d, the degree of warpage can be obtained.

ここで、鋼板1のうねりとは、図15に示すように鋼板1が長さ方向の各部分で湾曲していることをいう。
そして、鋼板1のうねりの程度は図15に示すように、例えば、鋼板1の左端側のうねりは鋼板1の平坦な部分でのTに対するTsとして、Ts/Tとして表すことができ、鋼板1のうねりはBに対するBsとして、Bs/Bとして表すことができる。Ts、Bsの値は3つの平面部距離計11c、11dの計測値を演算することにより求めることができるから、反りの程度を求めることができる。
Here, the waviness of the steel plate 1 means that the steel plate 1 is curved in each part in the length direction as shown in FIG.
As shown in FIG. 15, the undulation on the left end side of the steel plate 1 can be expressed as Ts / T as Ts with respect to T in the flat portion of the steel plate 1. Swell can be expressed as Bs / B as Bs / B. Since the values of Ts and Bs can be obtained by calculating the measured values of the three plane distance meters 11c and 11d, the degree of warpage can be obtained.

ここで、鋼板1のねじれとは、図16に示すように鋼板1の端部(トップ部とボトム部)が幅方向で側部が曲がっていることをいう。
そして、鋼板1のねじれの程度は図16に示すように、例えば、鋼板1のねじれは鋼板1の平坦な部分に対する一方の側部の曲がり量をAとし、他方の側部の曲がり量をBとすれば、AとBとの割合で表すことができる。また、鋼板1の平坦な部分に対する側部の曲がりの角度θで表すことができる。AとBとの割合又は角度θの値は3つの平面部距離計11c、11dの計測値を演算することにより求めることができるから、ねじりの程度を求めることができる。
Here, the twist of the steel plate 1 means that the end portions (top portion and bottom portion) of the steel plate 1 are bent in the width direction and the side portions are bent as shown in FIG.
The degree of twist of the steel plate 1 is, for example, as shown in FIG. 16. For the twist of the steel plate 1, the bending amount of one side with respect to the flat portion of the steel plate 1 is A, and the bending amount of the other side is B. Then, it can be expressed by the ratio of A and B. Moreover, it can represent with the angle (theta) of the side part bending with respect to the flat part of the steel plate 1. FIG. Since the ratio of A and B or the value of the angle θ can be obtained by calculating the measured values of the three plane distance meters 11c and 11d, the degree of torsion can be obtained.

なお、反り、うねり、ねじれ等の演算結果の出力方法としては、出力端末34で反り、うねり、ねじれのプロフィールの形状を印刷したり、反り、うねり、ねじれの数値をデータとして印刷することもできる。   In addition, as an output method of calculation results such as warp, swell, and twist, the shape of the profile of warp, swell, and twist can be printed at the output terminal 34, and numerical values of warp, swell, and twist can be printed as data. .

この実施の形態では、エッジ部距離計10a、10b、平面部距離計10c、10dに例えばCCDレーザ変位センサを用いているが、これは一次元受光素子を用いた距離計であって測定ポイントが微小な点で、広く一般的に採用されているものですが、二次元受光素子を用いた距離計はスリット状の幅方向全体を同時に計測できるものであり、一次元受光素子を用いた距離計の代わりに二次元受光素子を用いた距離計を用いても本発明を実施し得ることはいうまでもない。
このような二次元受光素子を用いた距離計としては、具体的にはレーザスキャン式二次元変位センサや、二次元カメラ等がある。
In this embodiment, for example, a CCD laser displacement sensor is used for the edge portion distance meters 10a and 10b and the plane portion distance meters 10c and 10d, but this is a distance meter using a one-dimensional light receiving element, and the measurement point is Although it is a very small point and widely used, a distance meter using a two-dimensional light receiving element can measure the entire slit-shaped width direction at the same time, and a distance meter using a one-dimensional light receiving element. It goes without saying that the present invention can also be implemented by using a distance meter using a two-dimensional light receiving element instead of.
Specific examples of the distance meter using such a two-dimensional light receiving element include a laser scan type two-dimensional displacement sensor and a two-dimensional camera.

本発明の実施の形態に係る板状製品のプロフィール計測装置を示す平面図。The top view which shows the profile measurement apparatus of the plate-shaped product which concerns on embodiment of this invention. 同板状製品のプロフィール計測装置を示す正面図。The front view which shows the profile measurement apparatus of the plate-shaped product. 同板状製品のプロフィール計測装置の計測台車の側面図。The side view of the measurement trolley | bogie of the profile measurement apparatus of the plate-shaped product. ピアノ線のカテナリーを示す説明図。Explanatory drawing which shows the catenary of a piano wire. ピアノ線の計算で求めたカテナリー量を示すグラフ。The graph which shows the amount of catenary calculated | required by calculation of the piano wire. ピアノ線の張力制御の構成を示すブロック図。The block diagram which shows the structure of tension control of a piano wire. 同板状製品のプロフィール計測装置のシステム構成を示すブロック図。The block diagram which shows the system configuration | structure of the profile measuring apparatus of the plate-shaped product. 垂直位置検出器の検出原理を示す説明図。Explanatory drawing which shows the detection principle of a vertical position detector. 直線基準計測用基準線から被計測対象物の表面までの距離の補正方法を示す説明図。Explanatory drawing which shows the correction method of the distance from the reference line for straight line reference | standard measurement to the surface of a to-be-measured object. エッジ部距離計の計測結果に基づき平面部距離計を追従させない状態を示す説明図。Explanatory drawing which shows the state which does not follow a plane part distance meter based on the measurement result of an edge part distance meter. エッジ部距離計の計測結果に基づき平面部距離計を追従させた状態を示す説明図。Explanatory drawing which shows the state which made the flat part distance meter track based on the measurement result of an edge part distance meter. 計測台車自重による計測台車用梁の撓みを示す説明図。Explanatory drawing which shows the bending of the beam for measurement trolleys by measurement trolley own weight. 計測台車の補正後の軌跡を示す説明図。Explanatory drawing which shows the locus | trajectory after correction | amendment of a measurement trolley | bogie. 板状製品の反りを示す説明図。Explanatory drawing which shows the curvature of a plate-shaped product. 板状製品のうねりを示す説明図。Explanatory drawing which shows the wave | undulation of a plate-shaped product. 板状製品のねじれを示す説明図。Explanatory drawing which shows the twist of a plate-shaped product.

符号の説明Explanation of symbols

1 鋼板(被計測対象物)、2 搬送ローラ、3 計測台車用梁、4 架台支柱、5 走行軸、6 車輪、7 計測台車、8 走行用モータ、9 パルス ジェネレータ(PLG)、10a、10b エッジ部距離計、10c、10d 平面部距離計、11a、11b 水平位置検出器、11c、11d 垂直位置検出器、12a、12b サーボ機構、21a,21b ピアノ線、31 プロセス計算機、32 データ解析演算処理装置、33 システム制御装置、34 出力端末。
DESCRIPTION OF SYMBOLS 1 Steel plate (to-be-measured object), 2 Conveyance roller, 3 Beam for measuring trolley, 4 Standing column support, 5 Traveling axis, 6 Wheel, 7 Measuring trolley, 8 Traveling motor, 9 Pulse generator (PLG), 10a, 10b Edge Distance meter, 10c, 10d Planar distance meter, 11a, 11b Horizontal position detector, 11c, 11d Vertical position detector, 12a, 12b Servo mechanism, 21a, 21b Piano wire, 31 Process computer, 32 Data analysis processing unit 33 System controller, 34 Output terminal.

Claims (6)

静止した被計測対象物の上方に位置し、被計測対象物の長さ方向に移動する計測台車と、
計測台車の移動量を計測する台車移動量計測装置と、
計測台車に設置され、静止した被計測対象物表面までの距離を計測する複数の平面部距離計と
計測台車の側方位置に設けられた少なくとも1つの直線基準計測用基準線と、
計測台車に設置され、直線基準計測用基準線に対して垂直方向の変動量を検出する垂直位置検出器と、
台車移動量計測装置と複数の平面部距離計と垂直位置検出器との計測値に基づき、被計測対象物の長さ方向における各位置の被計測対象物表面までの距離を、計測台車が走行するときに生じる蛇行やうねりの影響を除去するように補正演算する演算手段と、
を備えたことを特徴とする板状製品のプロフィール計測装置。
A measuring carriage that is located above the stationary object to be measured and moves in the length direction of the object to be measured;
A truck movement amount measuring device for measuring a movement amount of the measurement truck;
A plurality of flat surface area meters installed on the measurement carriage and measuring the distance to the surface of the stationary object to be measured; and at least one linear reference measurement reference line provided at a lateral position of the measurement carriage;
A vertical position detector that is installed on the measurement carriage and detects the amount of fluctuation in the direction perpendicular to the reference line for linear reference measurement;
Based on the measurement values of the movement amount measuring device of the carriage, a plurality of flat section distance meters, and the vertical position detector, the measurement carriage travels the distance to the surface of the object to be measured at each position in the length direction of the object to be measured. Arithmetic means for performing a correction operation so as to eliminate the influence of meandering and undulation that occurs when
An apparatus for measuring a profile of a plate-like product, comprising:
前記直線基準計測用基準線は計測台車の側方位置に水平に張設され、張力制御されるピアノ線であり、前記演算手段は該ピアノ線の長さ、自重及び張力に基づいて該ピアノ線のカテナリー量を演算し、該カテナリー量を前記各位置の被計測対象物表面までの距離の補正演算に用いることを特徴とする請求項1記載の板状製品のプロフィール計測装置。   The straight line reference measurement reference line is a piano wire that is stretched horizontally at a lateral position of the measuring carriage and is tension-controlled, and the computing means is based on the length, weight, and tension of the piano wire. The profile measurement apparatus for a plate-like product according to claim 1, wherein the amount of catenary is calculated, and the amount of catenary is used for correction calculation of the distance to the surface of the measurement target at each position. 前記演算手段は、被計測対象物の長さ方向における各位置の被計測対象物表面までの距離のデータに基づいて被計測対象物の反り、うねり及びねじれの少なくとも1つ以上を演算することを特徴とする請求項1又は2記載の板状製品のプロフィール計測装置。   The calculation means calculates at least one or more of warpage, undulation, and twist of the measurement target object based on data on the distance to the measurement target surface at each position in the length direction of the measurement target object. The plate-shaped product profile measuring device according to claim 1 or 2. 前記平面部距離計は被計測対象物の幅方向における所定領域の距離を計測することができる二次元距離計であることを特徴とする請求項1〜3のいずれかに記載の板状製品のプロフィール計測装置。   The flat part distance meter is a two-dimensional distance meter capable of measuring a distance of a predetermined region in the width direction of the measurement target object. Profile measuring device. 前記計測台車に設置され、各平面部距離計を被計測対象物の幅方向に移動させる距離計駆動装置と、
距離計駆動装置の駆動量から平面部距離計の移動量を計測する距離計移動量計測装置と、
前記計測台車に設置され、静止した被計測対象物のエッジ部までの距離を計測する少なくとも1つのエッジ部距離計と、
計測台車に設置され、直線基準計測用基準線に対して水平方向の変動位置を検出する水平位置検出器とを備え、
前記演算手段は、前記エッジ部距離計と前記水平位置検出器との計測値に基づき、前記平面部距離計の移動量を演算し、その演算値により前記距離計駆動装置を駆動することを特徴とする請求項1〜4記載の板状製品のプロフィール計測装置。
A distance meter driving device installed on the measurement carriage and moving each flat surface distance meter in the width direction of the object to be measured;
A distance meter moving amount measuring device for measuring the moving amount of the flat surface distance meter from the driving amount of the distance meter driving device;
At least one edge part distance meter installed on the measurement carriage and measuring the distance to the edge part of the stationary object to be measured;
A horizontal position detector that is installed on a measurement carriage and detects a fluctuation position in a horizontal direction with respect to a straight line reference measurement reference line;
The computing means computes the amount of movement of the plane part distance meter based on the measurement values of the edge part distance meter and the horizontal position detector, and drives the distance meter driving device with the computed value. The profile measuring device for a plate-like product according to claim 1.
前記距離計駆動装置と前記距離計移動量計測装置とは移動量計測器を内蔵したサーボ機構で構成されていることを特徴とする請求項5記載の板状製品のプロフィール計測装置。   6. The plate-shaped product profile measuring device according to claim 5, wherein the distance meter driving device and the distance meter moving amount measuring device are configured by a servo mechanism incorporating a moving amount measuring device.
JP2004188458A 2004-06-25 2004-06-25 Profile measuring device for plate products Expired - Fee Related JP4488806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188458A JP4488806B2 (en) 2004-06-25 2004-06-25 Profile measuring device for plate products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188458A JP4488806B2 (en) 2004-06-25 2004-06-25 Profile measuring device for plate products

Publications (2)

Publication Number Publication Date
JP2006010519A true JP2006010519A (en) 2006-01-12
JP4488806B2 JP4488806B2 (en) 2010-06-23

Family

ID=35777938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188458A Expired - Fee Related JP4488806B2 (en) 2004-06-25 2004-06-25 Profile measuring device for plate products

Country Status (1)

Country Link
JP (1) JP4488806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002406A1 (en) 2008-04-25 2009-10-29 DENSO CORPORATION, Kariya-shi Exhaust gas cleaning filter i.e. diesel particle filter, for cleaning exhaust gas from e.g. petrol engine, has catalytic converter with alkali metal element source and/or alkaline earth metal element source burned at specific temperature
KR101346856B1 (en) 2012-07-19 2014-01-03 주식회사 블루시스 Device for valuating control capacity of meandering web

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156810U (en) * 1981-03-30 1982-10-02
JPH02259516A (en) * 1989-03-31 1990-10-22 Misawa Homes Co Ltd Measuring instrument for straightness of surface
JPH03255305A (en) * 1990-03-05 1991-11-14 Kawasaki Steel Corp Method and apparatus for measuring surface profile
JPH06109455A (en) * 1992-09-24 1994-04-19 Toshiba Corp Measuring device for straightness of long material
JPH07139902A (en) * 1993-11-15 1995-06-02 Sumitomo Electric Ind Ltd Apparatus for measuring movement
JP2000171471A (en) * 1998-12-03 2000-06-23 Shimadzu Corp Surface-inspecting apparatus
JP2003156325A (en) * 2001-11-26 2003-05-30 Nippon Steel Corp Method and apparatus for measurement of roll profile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156810U (en) * 1981-03-30 1982-10-02
JPH02259516A (en) * 1989-03-31 1990-10-22 Misawa Homes Co Ltd Measuring instrument for straightness of surface
JPH03255305A (en) * 1990-03-05 1991-11-14 Kawasaki Steel Corp Method and apparatus for measuring surface profile
JPH06109455A (en) * 1992-09-24 1994-04-19 Toshiba Corp Measuring device for straightness of long material
JPH07139902A (en) * 1993-11-15 1995-06-02 Sumitomo Electric Ind Ltd Apparatus for measuring movement
JP2000171471A (en) * 1998-12-03 2000-06-23 Shimadzu Corp Surface-inspecting apparatus
JP2003156325A (en) * 2001-11-26 2003-05-30 Nippon Steel Corp Method and apparatus for measurement of roll profile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002406A1 (en) 2008-04-25 2009-10-29 DENSO CORPORATION, Kariya-shi Exhaust gas cleaning filter i.e. diesel particle filter, for cleaning exhaust gas from e.g. petrol engine, has catalytic converter with alkali metal element source and/or alkaline earth metal element source burned at specific temperature
KR101346856B1 (en) 2012-07-19 2014-01-03 주식회사 블루시스 Device for valuating control capacity of meandering web

Also Published As

Publication number Publication date
JP4488806B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
CN102706286B (en) Laser measurement device for thickness of plate
US7024780B2 (en) Method and device for determining the rectilinearity of guide rails
CN105203053A (en) Tile flatness detecting method and device
JP5760629B2 (en) How to correct meandering of steel strip
US10184784B2 (en) Device and method for measuring the width and thickness of a flat object
JP4488806B2 (en) Profile measuring device for plate products
JP5102437B2 (en) Method and apparatus for measuring planar shape of steel sheet
JP2010071778A (en) Apparatus for measuring outer diameter of large diameter tube
JPH04369409A (en) Optical thickness measuring apparatus
US11709050B2 (en) Position measurement method using a calibration plate to correct a detection value from the position detector
CN114216400A (en) Plate thickness detection device and method
JP5954354B2 (en) Apparatus and method for measuring transport roll level in table roll equipment
JPH0682237A (en) Warping measurement method of plate-like product
JP2882560B2 (en) How to measure dimensions of section steel
JP5013730B2 (en) Thickness measuring method and thickness measuring apparatus
JP5762787B2 (en) Conveyor scale
JP2006266959A (en) Instrument and method for measuring color of object surface
JP3028686B2 (en) Method and apparatus for measuring bending of top surface of railroad rail
KR101129880B1 (en) Optical apparatus for measuring flatness
JPH0428686A (en) Installation error measuring device for elevator guide rail
JP3089614B2 (en) Method and apparatus for detecting tension in horizontal continuous heat treatment furnace
JPH11108655A (en) Equipment and method for measuring shape of rail
JPH06186028A (en) Measuring method for straightness of long member
JP6015100B2 (en) H-shaped steel bending state determination method and bending state determination device
FI110544B (en) Measuring equipment and method for car body adjustment in car body measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160409

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees