JPH03255305A - Method and apparatus for measuring surface profile - Google Patents

Method and apparatus for measuring surface profile

Info

Publication number
JPH03255305A
JPH03255305A JP5180590A JP5180590A JPH03255305A JP H03255305 A JPH03255305 A JP H03255305A JP 5180590 A JP5180590 A JP 5180590A JP 5180590 A JP5180590 A JP 5180590A JP H03255305 A JPH03255305 A JP H03255305A
Authority
JP
Japan
Prior art keywords
wire
measured
natural frequency
straightness
surface profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5180590A
Other languages
Japanese (ja)
Inventor
Makoto Okuno
眞 奥野
Fumihiko Ichikawa
文彦 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5180590A priority Critical patent/JPH03255305A/en
Publication of JPH03255305A publication Critical patent/JPH03255305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the profile of a surface highly accurately by computing the minute suspending amount of a piece of wire as the reference of straightness based on the natural frequency of the wire, and compensating for the measurement error. CONSTITUTION:A piece of wire 2 such as a piece of piano wire is provided in parallel with an object to be measured 1. The wire 2 is made to be the reference of temporary straightness. A distance detecting device detects the distribution of the distances to the object to be measured with the wire 2 as a reference. At this time, one distance detector is moved along a guide rail 4, and the distribution of the distances between the object to be measured 1 and the wire 2 are measured. The natural frequency (f) of the wire 2 is measured with a detecting device 5. The suspending amount as the change in straightness of the wire 2 is computed with an operating device 6 based on the natural frequency (f). The measured value of the distribution of the distances is corrected with the suspending amount. Thus, the measured value of the profile of the surface is obtained highly accurately.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、測定対象物の表面プロフィール或いは真直度
を高精度で測定する方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method and apparatus for measuring the surface profile or straightness of a measurement object with high precision.

(従来の技術) 一般に測定対象物の表面プロフィールを測定する方法と
しては、第8図に示すように、測定対象物1と平行に案
内軌道4を設け、この案内軌道に沿って移動可能とした
距離検出器3により測定対象物1までの距離分布を測定
して表面プロフィールを求める方法が知られている。と
ころが、特に測定対象物が長尺物である場合、この案内
・軌道が反ったりたわんだりするという問題かあった。
(Prior Art) Generally, as shown in FIG. 8, as a method for measuring the surface profile of a measurement target, a guide track 4 is provided parallel to the measurement target 1, and the target is movable along this guide track. A method is known in which the distance detector 3 measures the distance distribution to the object to be measured 1 to determine the surface profile. However, especially when the object to be measured is a long object, there is a problem in that the guide/trajectory is warped or deflected.

案内軌道のこのような真直度変化は表面プロフィール測
定値に直接的に影響を及ぼし、大きな測定誤差要因とな
るからである。
This is because such a change in the straightness of the guide track directly affects the measured value of the surface profile and causes a large measurement error.

そこてこの対策として、特開昭59−57112号等で
提案されている所謂r逐次三点法jや、ストレートエツ
ジ或いはピアノ線等のワイヤー等を真直度基準とする方
法が開発されている。前者は、3個の距離検出器を等間
隔βに連結し、これらを案内軌道に沿って距離I2だけ
移動させる毎に測定対象物までの距離を測定し、同一位
置における相異なる距離検出器による測定値を比較する
ことによって、案内軌道の真直度変化に依存しない表面
プロフィールを算出しようとするものである。又後者は
、測定対象物と平行に真直度が一定とみなすことのでき
るストレートエツジ或いはワイヤー等を架設し、これを
真直度基準として測定対象物の表面プロフィールを測定
するものである。
As a countermeasure to this problem, the so-called sequential three-point method proposed in Japanese Patent Application Laid-Open No. 59-57112, etc., and a method using a wire such as a straight edge or piano wire as a straightness standard have been developed. In the former method, three distance detectors are connected at equal intervals β, and the distance to the object to be measured is measured each time the distance detectors are moved by a distance I2 along the guide trajectory. By comparing the measured values, an attempt is made to calculate a surface profile that is independent of changes in the straightness of the guide track. In the latter method, a straight edge or wire whose straightness can be considered to be constant is installed parallel to the object to be measured, and the surface profile of the object is measured using this as a straightness standard.

(発明が解決しようとする課題) 然し、r逐次三点法jでは、距離ρ毎のとびとびの点に
おける離散的な表面プロフィール情報しか得られず、又
、各距離検出器の偶発的な測定誤差が蓄積され精度の良
い測定結果が得られないという欠点があワた。又、スト
レートエツジ等を真直度基準とする方法では、特に測定
対象物が長尺物である場合、基準となるべきストレート
エツジにも反り・たわみ笠による真直度変化が発生し、
高精度な表面プロフィール測定ができない問題かあった
。更に、ワイヤーを真直度基準とする方法では、このよ
うな真直度基準の反り・たわみを回避できる利点がある
が、ワイヤーの張力の微小な変化等が生じた場合、ワイ
ヤーか僅かに懸垂し、これが測定誤差要因となる虞れが
あった。
(Problem to be Solved by the Invention) However, in the r-sequential three-point method, only discrete surface profile information can be obtained at discrete points for each distance ρ, and the accidental measurement error of each distance detector The drawback is that it accumulates and makes it impossible to obtain accurate measurement results. In addition, in methods that use a straight edge as a straightness standard, especially when the object to be measured is a long object, the straight edge, which is supposed to be the standard, may also change in straightness due to warping or deflection.
There was a problem that it was not possible to measure the surface profile with high precision. Furthermore, the method of using the wire as a straightness standard has the advantage of avoiding such warpage and deflection of the straightness standard, but if a slight change in the tension of the wire occurs, the wire may hang slightly, There was a possibility that this would cause a measurement error.

本発明は、このような従来技術の問題点を解決し、表面
プロフィールを高精度に測定する方法及び装置を提供す
ることを目的とする。
An object of the present invention is to solve the problems of the prior art and provide a method and apparatus for measuring a surface profile with high precision.

[発明の構成コ (課題を解決するための手段) 請求項1に記載の表面プロフィール測定方法は、物体の
表面プロフィールを測定するに際し、該測定対象物に平
行に真直度基準のワイヤーを張り、該ワイヤーと該測定
対象物との距離分布を測定するとともに、該ワイヤーの
固有振動数を測定し、該固有振動数から該ワイヤーの懸
垂量を算出し、該距離分布測定値と該懸垂量とから該測
定対象物の表面プロフィールを求めるようにしたもので
ある。
[Structure of the Invention (Means for Solving the Problem) The method for measuring a surface profile according to claim 1 includes, when measuring the surface profile of an object, stretching a straightness reference wire parallel to the object to be measured; The distance distribution between the wire and the object to be measured is measured, the natural frequency of the wire is measured, the amount of suspension of the wire is calculated from the natural frequency, and the distance distribution measurement value and the amount of suspension are calculated. The surface profile of the object to be measured is determined from the following.

請求項2に記載の表面プロフィール測定装置は、測定対
象物に平行に張ったワイヤーと、該ワイヤーと該測定対
象物との距離分布を測定する距離検出装置と、該ワイヤ
ーの固有振動数を検出する固有振動数検出装置と、該固
有振動数から該ワイヤーの懸垂量を算出するとともに、
該ワイヤー懸垂量と該距離分布測定値とから該測定対象
物の表面プロフィールを演算する演算装置とからなるよ
うにしたものである。
The surface profile measuring device according to claim 2 includes a wire stretched parallel to the object to be measured, a distance detecting device for measuring a distance distribution between the wire and the object to be measured, and a natural frequency of the wire. a natural frequency detection device that calculates the amount of suspension of the wire from the natural frequency,
The apparatus includes a calculation device that calculates the surface profile of the object to be measured from the wire suspension amount and the distance distribution measurement value.

(作用) 本発明によれば、測定対象物までの距離分布測定の真直
度基準として測定対象物と平行にワイヤーを架設し、更
にこのワイヤーの微小な懸垂量(真直度変化)をワイヤ
ーの固有振動数から算出し、ワイヤーの懸垂による測定
誤差を補償するようにしたので、正確な真直度基準が得
られ、測定対象物の表面プロフィールを高精度に測定で
きる。
(Function) According to the present invention, a wire is installed parallel to the object to be measured as a straightness standard for measuring the distance distribution to the object to be measured, and the minute amount of suspension (change in straightness) of this wire is Since it is calculated from the vibration frequency and compensates for measurement errors due to the suspension of the wire, an accurate straightness standard can be obtained and the surface profile of the object to be measured can be measured with high precision.

(実施例) 第1図は、本発明の一実施形態を示したものである。以
下、この図に蟇づき、本発明の具体的な構成について説
明する。
(Example) FIG. 1 shows one embodiment of the present invention. Hereinafter, the specific configuration of the present invention will be explained with reference to this figure.

測定対象物1と平行にピアノ線等のワイヤー2を架設し
、これを仮の真直度基準とする。このワイヤー2は、で
きるたけたるまないように十分大きな張力を加えた状態
で架設する必要かある。
A wire 2 such as a piano wire is installed parallel to the object 1 to be measured, and this is used as a temporary straightness standard. It is necessary to construct this wire 2 under a sufficiently large tension to prevent it from sagging.

距離検出装置3は、このワイヤー2を基準として測定対
象物までの距離分布を検出するもので、本実施例では1
個の距離検出器を案内軌道4に沿って移動せしめながら
測定対象物1とワイヤー2との距離分布を測定する場合
について示しである。
The distance detection device 3 detects the distance distribution to the object to be measured using the wire 2 as a reference, and in this embodiment, the distance detection device 3
This figure shows a case where the distance distribution between the object to be measured 1 and the wire 2 is measured while moving the distance detectors along the guide track 4.

ワイヤー2の真直度か全く変化せずに一定に保たれてい
れば、距離検出装置3による距離分布測定結果から正確
な測定対象物1の表面プロフィールが求められる。然し
、特に温度変化や振動を有する測定環境下等では、ワイ
ヤー2の両端を固定する部分の微小な変位や、ワイヤー
2への微細な付着物によるワイヤー2の自重の変化等に
より、ワイヤーの張力か変化し、ワイヤー2の真直度が
第2図に示すように変化する可能性がある。
If the straightness of the wire 2 does not change at all and is kept constant, an accurate surface profile of the object to be measured 1 can be determined from the distance distribution measurement result by the distance detection device 3. However, especially in measurement environments with temperature changes and vibrations, the tension of the wire may change due to minute displacements of the parts that fix both ends of the wire 2 or changes in the weight of the wire 2 due to minute deposits on the wire 2. The straightness of the wire 2 may change as shown in FIG.

このワイヤーの真直度変化は一般に、ワイヤーの長さに
伴って大きくなるので、測定対象物が長尺物である場合
にはこの影響は無視できないものとなる。このような場
合、測定対象物の表面プロフィール測定の精度が劣化す
ることになる。そこでワイヤー2の固有振動数fを固有
振動数検出装置5で測定し、この固有振動数fからワイ
ヤー2の真直度変化、即ち懸垂量を演算装置6で算出し
、これをもって前記距離分布測定値を補正することによ
り、高精度の表面プロフィール測定値を得ることができ
る。ワイヤーの固有振動数は、例えばワイヤーに振動を
加え、この時のワイヤーの振動振幅の経時変化を変位計
で検出し、このデータを周波数解析することにより容易
に求めることがてきる。
This change in the straightness of the wire generally increases with the length of the wire, so if the object to be measured is a long object, this effect cannot be ignored. In such a case, the accuracy of measuring the surface profile of the object to be measured will deteriorate. Therefore, the natural frequency f of the wire 2 is measured by the natural frequency detection device 5, and from this natural frequency f, the change in the straightness of the wire 2, that is, the suspension amount is calculated by the calculation device 6, and this is used as the distance distribution measurement value. By correcting for , highly accurate surface profile measurements can be obtained. The natural frequency of the wire can be easily determined, for example, by applying vibration to the wire, detecting the change over time in the vibration amplitude of the wire using a displacement meter, and frequency-analyzing this data.

次に、ワイヤーの固有振動数fからワイヤーの懸垂量を
算出する方法について第2図に基づいて説明する。一般
にワイヤーの固有振動数では、ワイヤーの長さをし、ワ
イヤーの張力なT、ワイヤーの線密度をσとして と表わされる。一方、ワイヤーの懸垂量(懸垂曲線)は
、第2図のようにX−Y座標をとると、と表わされる。
Next, a method for calculating the amount of suspension of the wire from the natural frequency f of the wire will be explained based on FIG. 2. Generally, the natural frequency of a wire is expressed as the length of the wire, the tension of the wire T, and the linear density of the wire σ. On the other hand, the amount of suspension of the wire (suspension curve) is expressed by taking the X-Y coordinates as shown in FIG.

(1) (2)式より、 となる。(1) From equation (2), becomes.

従って、ワイヤーの固有振動数fを測定することにより
、第2図のようなワイヤーの懸垂曲線が算出できる。前
述の距離分布測定値をこの懸垂量によって補正すること
により、ワイヤーの真直度か変化しても正確な表面プロ
フィールを求めることができる。
Therefore, by measuring the natural frequency f of the wire, the catenary curve of the wire as shown in FIG. 2 can be calculated. By correcting the distance distribution measurements described above by this suspension amount, an accurate surface profile can be obtained even if the straightness of the wire changes.

第5図は、ワイヤーの張力Tと固有振動数fの関係を測
定した結果の例である。本例は長さ2.4m、太さ1φ
の鋼線をワイヤーとして使用しており、ワイヤーの張力
を変化させた時の固有振動数検出装置5の出力の変化を
丸印でプロットしである。同図に併記した理論値の曲線
は、上式(1)式によるものである。又、第6図はワイ
ヤーの張力Tとワイヤー中央部の懸垂量の関係を示した
例である1本例ては長さ2m、太さlφの鋼線をワイヤ
ーとして使用した場合のものである0例えばこのワイヤ
ーを30kgの張力で張っである場合、この張力が±1
0%変化すると懸垂量は約20μ層変化し、これが測定
誤差となる。実際にはこのワイヤーを使用する場合、5
0kg以上の張力で張ることが望ましいが、そうした場
合でも、ワイヤーの張力が変化しやすい測定環境におい
ては数μ諺の測定誤差を生じる虞れがある。このような
場合、張力の変化量をワイヤーの固有振動数によって間
接的に検出しその補正を行なうことが高精度の測定のた
めに必要となるのである。
FIG. 5 is an example of the results of measuring the relationship between wire tension T and natural frequency f. This example has a length of 2.4m and a thickness of 1φ.
A steel wire is used as the wire, and the changes in the output of the natural frequency detection device 5 when the tension of the wire is changed are plotted with circles. The theoretical value curve shown in the figure is based on the above equation (1). Also, Figure 6 shows an example of the relationship between the tension T of the wire and the amount of suspension at the center of the wire.One example is when a steel wire with a length of 2 m and a thickness of lφ is used as the wire. 0 For example, if this wire is stretched with a tension of 30 kg, this tension is ±1
When it changes by 0%, the amount of suspension changes by about 20 μm, which causes a measurement error. Actually, when using this wire, 5
It is desirable that the wire be stretched with a tension of 0 kg or more, but even in such a case, there is a risk of a measurement error of several microns in a measurement environment where the tension of the wire is likely to change. In such a case, it is necessary to indirectly detect the amount of change in tension using the natural frequency of the wire and correct it for highly accurate measurement.

第3図、第4図は本発明の別の実施形態を示す図である
FIGS. 3 and 4 are diagrams showing another embodiment of the present invention.

第3図の実施形態では、距離検出装置3を一対の距離検
出器11A、IIBから構成したものである。即ち、図
の上側の距離検出器11Aと測定対象物1との距離、及
び下側の距離検出器11Bとワイヤー2との距離の和を
とって、測定対象物1のワイヤー2を基準とする表面プ
ロフィールデータとするものである。
In the embodiment shown in FIG. 3, the distance detection device 3 is composed of a pair of distance detectors 11A and IIB. That is, the sum of the distance between the distance detector 11A on the upper side of the diagram and the measurement object 1 and the distance between the lower distance detector 11B and the wire 2 is taken, and the wire 2 of the measurement object 1 is used as a reference. This is surface profile data.

又、第4図の実施形態ては、距離検出装置3を複数の距
離検出器11A、IIB、12A、12B・・・で構成
したものであり、更に本例では、距離検出装置3の中の
1つの距離検出器が、固有振動数検出装置を構成する変
位計5を兼ねるようにしである。このようにすると、固
有振動数検出装置の検出ヘッドを別途設ける必要がない
という利点がある。
Further, in the embodiment shown in FIG. 4, the distance detecting device 3 is composed of a plurality of distance detecting devices 11A, IIB, 12A, 12B, . . . One distance detector is designed to also serve as a displacement meter 5 constituting the natural frequency detection device. This has the advantage that there is no need to separately provide a detection head of the natural frequency detection device.

長さ2mの棒状体の真直度を、第4図に示した装置構成
で測定した例を第7図に示す0図中、実線は接触式の変
位計によって測定した結果、破線は本発明による測定結
果、−点鏝線はストレートエツジを真直度基準とした従
来法による測定結果をそれぞれ示す、従来法ではストレ
ートエツジ自体のたわみにより10μ重程度の測定誤差
を生じたが、本発明による測定結果は接触式変位計の測
定値とよく一致した。
Figure 7 shows an example of measuring the straightness of a rod-shaped body with a length of 2 m using the device configuration shown in Figure 4. In Figure 7, the solid line indicates the results measured by a contact displacement meter, and the broken line indicates the results according to the present invention. In the measurement results, the - dotted line shows the measurement results by the conventional method using the straight edge as the standard of straightness.In the conventional method, a measurement error of about 10μ occurred due to the deflection of the straight edge itself, but the measurement results according to the present invention The results agreed well with the measured values from the contact displacement meter.

[発明の効果] 本発明は、表面プロフィールを測定する真直度基準とし
て、測定対象物と平行に架設したワイヤーを用い、更に
このワイヤーの微小な懸垂量をワイヤーの固有振動数か
ら算出し、ワイヤーの懸垂による測定誤差を補償するよ
うにしたので、正確な真直度基準による高精度な表面プ
ロフィール測定ができるようになった。特に、測定対象
物が長尺物である場合、真直度基準を架設しただけの従
来の方法では、真直度基準自身の真直度変化による測定
誤差が大きくなり、本発明の方法の有効性が大いに発揮
される。
[Effects of the Invention] The present invention uses a wire installed parallel to the object to be measured as a straightness standard for measuring the surface profile, and further calculates the minute amount of suspension of this wire from the natural frequency of the wire. By compensating for measurement errors due to suspension, highly accurate surface profile measurements using accurate straightness standards are now possible. In particular, when the object to be measured is a long object, the conventional method of simply erecting a straightness standard results in large measurement errors due to changes in the straightness of the straightness standard itself, which greatly reduces the effectiveness of the method of the present invention. Demonstrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施形態を示す模式図、第2図は本
発明の測定原理を示す模式図、第3図は本発明の別の実
施形態を示す模式図、第4図は本発明の更に別の実施形
態を示す模式図、第5図はワイヤーの張力と固有振動数
の関係を示す線図、第6図はワイヤーの張力と懸垂量の
関係を示す線図、第7図は本発明による測定結果例を示
す線図、第8図は従来の表面プロフィール測定方法の原
理を示す模式図である。 1・・・測定対象物、 2・・・ワイヤー 3・・・距離検出装置、 4・・・案内軌道、 5・・・固有振動数検出装置、 6・・・演算装置。
Fig. 1 is a schematic diagram showing one embodiment of the present invention, Fig. 2 is a schematic diagram showing the measurement principle of the present invention, Fig. 3 is a schematic diagram showing another embodiment of the invention, and Fig. 4 is a schematic diagram showing the measurement principle of the present invention. A schematic diagram showing still another embodiment of the invention, FIG. 5 is a diagram showing the relationship between wire tension and natural frequency, FIG. 6 is a diagram showing the relationship between wire tension and suspension amount, and FIG. 7 8 is a diagram showing an example of a measurement result according to the present invention, and FIG. 8 is a schematic diagram showing the principle of a conventional surface profile measurement method. DESCRIPTION OF SYMBOLS 1... Measurement object, 2... Wire 3... Distance detection device, 4... Guide track, 5... Natural frequency detection device, 6... Arithmetic device.

Claims (2)

【特許請求の範囲】[Claims] (1)物体の表面プロフィールを測定するに際し、該測
定対象物に平行に真直度基準のワイヤーを張り、該ワイ
ヤーと該測定対象物との距離分布を測定するとともに、
該ワイヤーの固有振動数を測定し、該固有振動数から該
ワイヤーの懸垂量を算出し、該距離分布測定値と該懸垂
量とから該測定対象物の表面プロフィールを求めること
を特徴とする、表面プロフィール測定方法。
(1) When measuring the surface profile of an object, a straightness reference wire is stretched parallel to the object to be measured, and the distance distribution between the wire and the object to be measured is measured,
Measuring the natural frequency of the wire, calculating the amount of suspension of the wire from the natural frequency, and determining the surface profile of the object to be measured from the measured distance distribution value and the amount of suspension, Surface profile measurement method.
(2)測定対象物に平行に張ったワイヤーと、該ワイヤ
ーと該測定対象物との距離分布を測定する距離検出装置
と、該ワイヤーの固有振動数を検出する固有振動数検出
装置と、該固有振動数から該ワイヤーの懸垂量を算出す
るとともに、該ワイヤー懸垂量と該距離分布測定値とか
ら該測定対象物の表面プロフィールを演算する演算装置
とからなることを特徴とする、表面プロフィール測定装
置。
(2) a wire stretched parallel to the object to be measured; a distance detection device that measures the distance distribution between the wire and the object; a natural frequency detection device that detects the natural frequency of the wire; A surface profile measurement comprising: an arithmetic device that calculates the amount of suspension of the wire from the natural frequency and calculates the surface profile of the object to be measured from the amount of wire suspension and the distance distribution measurement value. Device.
JP5180590A 1990-03-05 1990-03-05 Method and apparatus for measuring surface profile Pending JPH03255305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5180590A JPH03255305A (en) 1990-03-05 1990-03-05 Method and apparatus for measuring surface profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5180590A JPH03255305A (en) 1990-03-05 1990-03-05 Method and apparatus for measuring surface profile

Publications (1)

Publication Number Publication Date
JPH03255305A true JPH03255305A (en) 1991-11-14

Family

ID=12897138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5180590A Pending JPH03255305A (en) 1990-03-05 1990-03-05 Method and apparatus for measuring surface profile

Country Status (1)

Country Link
JP (1) JPH03255305A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235304A (en) * 2000-02-21 2001-08-31 Kuroda Precision Ind Ltd Method of measuring accuracy of straight motion using straightness measuring apparatus
JP2002148146A (en) * 1999-12-24 2002-05-22 Toyota Motor Corp Hoop deflection amount measuring instrument and hoop fluctuation amount measuring method for driving belt
JP2006010519A (en) * 2004-06-25 2006-01-12 Jfe Electrical & Control Systems Inc Measuring arrangement for profile of tabular product
JP2009031170A (en) * 2007-07-30 2009-02-12 Okamoto Machine Tool Works Ltd Surface shape calibrating device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148146A (en) * 1999-12-24 2002-05-22 Toyota Motor Corp Hoop deflection amount measuring instrument and hoop fluctuation amount measuring method for driving belt
JP2001235304A (en) * 2000-02-21 2001-08-31 Kuroda Precision Ind Ltd Method of measuring accuracy of straight motion using straightness measuring apparatus
JP2006010519A (en) * 2004-06-25 2006-01-12 Jfe Electrical & Control Systems Inc Measuring arrangement for profile of tabular product
JP2009031170A (en) * 2007-07-30 2009-02-12 Okamoto Machine Tool Works Ltd Surface shape calibrating device and method

Similar Documents

Publication Publication Date Title
US4773760A (en) Procedure and means for measuring the thickness of a film-like or sheet-like web
JPH03255305A (en) Method and apparatus for measuring surface profile
US6236198B1 (en) Method and device for non-contact measurement of electrically conductive material
JPH0526658A (en) Sizing device
JPH0460528B2 (en)
Acharya et al. Measurements of the wall shear stress in boundary layer flows
JPS61178608A (en) Flatness detector
JPH0814881A (en) Method of calculating diameter value by use of three-dimensionally measuring unit
JPH05157549A (en) Detecting method for camber of band-shaped body
JPH0428686A (en) Installation error measuring device for elevator guide rail
JPH0611331A (en) Instrument and method for measuring undulating wear of rail
JPH0634360A (en) Steel plate shape measuring method
SU1439395A1 (en) Device for checking nonsquareness of channel axis to end face
JPH01107105A (en) Method for measuring straightness shape
JP3016502B2 (en) Surface roughness measuring device
Fleig et al. Vertical Shape determination of a stretched wire from oscillation measurements
GB2095405A (en) Dual axis level device
JPH1035493A (en) Irregularity of track calibration jig for simplified detection-measurement vehicle
SU746708A1 (en) Method of measuring lateral displacements of moving carrier tape
JPH02302606A (en) Thickness measuring apparatus
SU645018A1 (en) Method of determining transversal deformation of moving carrier tape
JPH1082619A (en) Apparatus for measuring length of steel product
SU1737255A1 (en) Method of measuring deviations from parallel ism of straight lines in plane
JPS63163110A (en) Method for measuring center line profile
JPS6283601A (en) Measurement of variation of ground surface