JP3016502B2 - Surface roughness measuring device - Google Patents

Surface roughness measuring device

Info

Publication number
JP3016502B2
JP3016502B2 JP6182130A JP18213094A JP3016502B2 JP 3016502 B2 JP3016502 B2 JP 3016502B2 JP 6182130 A JP6182130 A JP 6182130A JP 18213094 A JP18213094 A JP 18213094A JP 3016502 B2 JP3016502 B2 JP 3016502B2
Authority
JP
Japan
Prior art keywords
light
light receiving
measured object
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6182130A
Other languages
Japanese (ja)
Other versions
JPH0843060A (en
Inventor
竜郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6182130A priority Critical patent/JP3016502B2/en
Publication of JPH0843060A publication Critical patent/JPH0843060A/en
Application granted granted Critical
Publication of JP3016502B2 publication Critical patent/JP3016502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、密着型光計測装置によ
る物体の表面に生じた表面粗さを測定する表面粗さ計測
方法に関する。 【0002】 【従来の技術】物体の表面粗さを測定する方法として
は、比較的大きい凹凸がある表面の場合はスケールやノ
ギスのような計測器具を使用し、微小な凹凸の場合は顕
微鏡写真等を用いて測定する技術は知られている。ま
た、それらの中間に位置するような表面の場合にはレー
ザ距離計等の微小距離を計測する装置を用いて、定位置
からの距離変化によって凹凸を把握する技術も用いられ
ている。 【0003】 【発明が解決しようとする課題】しかしながら、従来の
技術では、その検出を人間の判断で行ったり、カメラの
画像処理や距離計測によっているため、計測器具の読取
り誤差や画像処理の精度や外界光の影響等の問題から安
定した計測をすることが難しく、また、高範囲な表面粗
さの計測の場合等は人手や装置の移動に時間を要し、か
つ手間の掛かる面倒な仕事であった。 【0004】特に、レーザ距離計等での従来方法では被
測体との位置関係を常に一定に保持しておく必要がある
と共に、被測体表面での乱反射がレーザの反射光受光時
間の計測に影響するため、計測誤差の要因になってい
る。 【0005】したがって、本発明は、上記の問題点に鑑
み、検出空間を容易に一定の状態に保つ事ができ、外界
光の影響等の外乱に強く、高精度な表面粗さ計測装置を
提供する事を目的としている。 【0006】 【課題を解決するための手段】本発明によれば、被測体
の表面に密着させ、発光素子を有する発光部からの投射
光を被測体の表面に投射し、被測体の表面からの反射光
を受光部で受光し、受光部からの受光量の変化に対応し
た信号出力により、被測体の対応する面の粗さを検知す
る表面粗さ計測装置において、前記被測体の表面に密着
させる測定面にV字状の溝を設けて本体を備え、そのV
字状の溝の底部は測定面と平行であり、その底部には線
状に配置された複数の受光素子を有する受光部が取付け
られ、その溝の傾斜面には線状に配置された複数の発光
素子を有する発光部が取付けられている。 【0007】 【作用効果の説明】本発明は上記のように構成されてお
り、光計測装置の密着測定面を表面粗さを測定する被測
体の表面に密着させ、発光部の発光素子から光を被測体
の表面に投射し、被測体の計測ポイントの表面からの反
射光を受光部の受光素子が受光し、その受光量の変化に
応じて信号が出力される。また、この計測装置は線状の
発光部と受講部とを有し、線状の計測ポイントを持つ事
ができるので、同時に多点の計測が可能である。 【0008】そこで、これらの多点の計測結果を隣接す
る計測点を並べて出力表示すれば、表面の粗さを表示す
ることになる。 【0009】そして、計測装置の測定面は被測体に密着
されているので、外界光が入り込むことによる影響を防
止すると共に、計測ポイントの関係位置がずれることが
ないので、精度の高い測定が可能となり、操作が簡単で
ある。 【0010】 【実施例】以下、図面を参照して、本発明の実施例を説
明する。 【0011】図1は本発明にかかる表面粗さ計測方法に
用いる密着型光計測装置の例を示す斜視図で、本体1に
は密着面である測定面7にV字状の溝2が設けられ、そ
のV字状の溝2の測定面7に平行な底部3には線状に配
置された複数の受光素子4aを有する受光部4が取付け
られ、溝2の傾斜面5には線状に配置された複数の発光
素子6aを有する発光部6が取付けられている。 【0012】また、図2は図1のA−A断面を示し、符
号Pは測定面7上の計測ポイントPを示している。 【0013】そして、発光部6より投射された投射光は
計測ポイントPで反射され、受光部はこの計測ポイント
Pを選択的に見る位置に配置され、計測ポイントPに於
ける反射光を受光する。そこの受光素子6aが光を受光
する事で、その受光量の変化に応じて信号出力する。 【0014】以下、上記の密着型光計測装置による表面
粗さ計測方法に付いて図3〜図10を参照して説明す
る。 【0015】図3は計測装置の本体1を被測体11の計
測面上に密着させておいた状態を示し、計測面は表面が
粗い部分11aと余り粗くない部分11bとで構成され
ている。 【0016】図4は図3の断面を示し、図5は粗い部分
11aの部分拡大図である。 【0017】この時、被測体11の表面が粗い部分11
a(例えば断面A−A)では発光部6からの投射光は被
測体表面で乱反射し、その反射光が受光部4で検出され
るが、投射光の多くの部分が乱反射で拡散され、受光部
4での受光量の変化が大となり(図6)、そのすぐ隣は
図7に示すように変化している。 【0018】次ぎに、被測体11の粗さの少ない部分1
1b(断面B−B)では、発光部6からの投射光は被測
体表面で余り拡散されずに反射するので、受光部4での
受光量変化は小となり(図8)、そのすぐ隣は図9に示
すように僅かに変化していることが分かる。 【0019】このような検出パターンが本体1の発光部
6と受光部4とからなる線状の計測ポイント(計測ライ
ン)に渡って順次組合わされて生じるため、計測装置か
らの検出出力は図10のようになる。すなわち、図4に
おけるaに相当する受光部4の受光素子4aを1番素子
として以降を昇順に番号を付けると、図5のbとcとに
相当する受講素子の検出出力(図10のbおよびc)の
差分が図5における凹凸間隔に相当する。 【0020】したがって、図4におけるaに相当する1
番素子から順に次番素子の検出出力の差分を取ることで
凹凸の大小を判別する事ができる。また、例えば図10
のaからdの間の検出出力のばらつきで図4におけるa
〜d区間の表面粗さを代表することができる。同様に、
図6のdからeまでの検出出力のばらつきが図4におけ
る凹凸の少ない部分d〜eでの表面粗さとなる。 【0021】上記のように、計測しようとする部分に計
測装置の本体1を配置することで表面粗さを簡単に計測
することができる。 【0022】また、被測体表面に密着した計測装置本体
1によって定まる溝で形成された計測空間内で検出を行
うため、例えばレーザ距離計による従来の方法のように
被測体との位置関係を特に意識して計測する必要はな
い。 【0023】さらに、レーザ距離計等での従来の技術で
問題であった被測体表面での乱反射を本発明にかかる計
測装置では利用しており、安定した計測が可能で高精度
である。 【0024】 【発明の効果】本発明は、上記のように構成されている
ので、以下の優れた効果を奏する。 (1) 計測装置に設けられた一定の計測空間内で検出
されるので、操作は簡単で、安定して精度が高い。 (2) 計測装置が被測体に密着されるので、外界光等
の外乱の影響が少ない。 (3) したがって、簡単に精度のよい表面粗さが測定
できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the surface roughness of a surface of an object by a contact-type optical measuring device. 2. Description of the Related Art As a method for measuring the surface roughness of an object, a measuring instrument such as a scale or a caliper is used for a surface having relatively large unevenness, and a micrograph is used for a minute unevenness. Techniques for measuring by using such methods are known. Further, in the case of a surface located in the middle of them, a technique of using a device for measuring a minute distance such as a laser range finder to grasp irregularities by a change in distance from a fixed position is also used. [0003] However, in the prior art, the detection is performed by human judgment, or by image processing or distance measurement by a camera. It is difficult to perform stable measurements due to problems such as the influence of external light and the like, and when measuring surface roughness in a wide range, it takes time to move humans and equipment, and it takes time and labor. Met. In particular, in the conventional method using a laser range finder or the like, it is necessary to always maintain a constant positional relationship with the object to be measured, and the irregular reflection on the surface of the object to be measured measures the time of receiving the reflected light of the laser. , Which is a factor of measurement error. Accordingly, the present invention has been made in view of the above problems, and provides a highly accurate surface roughness measuring device which can easily maintain a constant detection space, is resistant to disturbances such as the influence of external light, and the like. The purpose is to do. According to the present invention, light is projected from a light emitting section having a light emitting element onto a surface of an object to be measured by bringing the element into close contact with the surface of the object to be measured. In a surface roughness measuring device for receiving reflected light from the surface of the object by a light receiving unit and detecting the roughness of a corresponding surface of the measured object by a signal output corresponding to a change in the amount of light received from the light receiving unit, A V-shaped groove is provided on the measurement surface to be in close contact with the surface of the measurement body, and a main body is provided.
The bottom of the U-shaped groove is parallel to the measurement surface, and a light receiving portion having a plurality of light receiving elements arranged linearly is attached to the bottom, and a plurality of light receiving portions arranged linearly on the inclined surface of the groove. The light-emitting part having the light-emitting element is mounted. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is constructed as described above, and the contact measuring surface of the optical measuring device is brought into close contact with the surface of the measuring object whose surface roughness is to be measured. The light is projected onto the surface of the measured object, the light reflected from the surface of the measured point of the measured object is received by the light receiving element of the light receiving section, and a signal is output according to a change in the amount of received light. Further, since this measuring device has a linear light emitting unit and a lecture attending unit and can have linear measuring points, it is possible to measure at multiple points at the same time. [0008] Therefore, when the measurement results of these multiple points are displayed side by side with adjacent measurement points, the surface roughness is displayed. Since the measuring surface of the measuring device is in close contact with the object to be measured, it is possible to prevent the influence of external light from entering, and to prevent the relative positions of the measuring points from shifting, so that highly accurate measurement can be performed. It becomes possible and the operation is simple. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an example of a contact-type optical measuring device used in a surface roughness measuring method according to the present invention. A V-shaped groove 2 is provided on a measuring surface 7 which is a contact surface on a main body 1. A light receiving portion 4 having a plurality of light receiving elements 4a arranged linearly is attached to a bottom 3 of the V-shaped groove 2 parallel to the measurement surface 7, and a linear surface is provided on the inclined surface 5 of the groove 2. The light-emitting unit 6 having a plurality of light-emitting elements 6a arranged at the same position is attached. FIG. 2 shows a cross section taken along the line AA in FIG. 1, and reference symbol P indicates a measurement point P on the measurement surface 7. The projection light projected from the light emitting section 6 is reflected at the measurement point P, and the light receiving section is arranged at a position where the measurement point P is selectively viewed, and receives the reflected light at the measurement point P. . When the light receiving element 6a receives the light, it outputs a signal in accordance with a change in the amount of received light. Hereinafter, a method for measuring the surface roughness by the above-mentioned contact type optical measuring device will be described with reference to FIGS. FIG. 3 shows a state in which the main body 1 of the measuring device is brought into close contact with the measuring surface of the measured object 11, and the measuring surface is composed of a rough surface portion 11a and a less rough portion 11b. . FIG. 4 shows a cross section of FIG. 3, and FIG. 5 is a partially enlarged view of a rough portion 11a. At this time, the surface 11 of the object 11
In a (for example, section AA), the projection light from the light emitting unit 6 is irregularly reflected on the surface of the measured object, and the reflected light is detected by the light receiving unit 4, but most of the projected light is diffused by diffuse reflection, The change in the amount of light received by the light receiving section 4 is large (FIG. 6), and the area immediately next to it changes as shown in FIG. Next, the portion 1 of the measured object 11 having a small roughness
In 1b (section BB), the projection light from the light emitting unit 6 is reflected on the surface of the measured object without being diffused so much, the change in the amount of light received by the light receiving unit 4 is small (FIG. 8), and is immediately adjacent thereto. Is slightly changed as shown in FIG. Since such detection patterns are sequentially combined over a linear measurement point (measurement line) composed of the light emitting section 6 and the light receiving section 4 of the main body 1, the detection output from the measuring apparatus is shown in FIG. become that way. That is, when the light receiving element 4a of the light receiving unit 4 corresponding to a in FIG. 4 is set as the first element and the following numbers are assigned in ascending order, the detection output of the student element corresponding to b and c in FIG. The difference between c) and c) corresponds to the concavo-convex interval in FIG. Therefore, 1 corresponding to a in FIG.
By taking the difference between the detection outputs of the next element in order from the element No., it is possible to determine the size of the unevenness. Also, for example, FIG.
The variation in the detection output between a and d in FIG.
To d section can be represented. Similarly,
Variations in the detection output from d to e in FIG. 6 are the surface roughness in the portions d to e with little unevenness in FIG. As described above, the surface roughness can be easily measured by arranging the main body 1 of the measuring device at the portion to be measured. Further, since the detection is performed in the measurement space formed by the groove defined by the measuring device main body 1 which is in close contact with the surface of the object to be measured, the positional relationship with the object to be measured is different from the conventional method using a laser distance meter. It is not necessary to measure with particular awareness. Furthermore, the measuring device according to the present invention utilizes the irregular reflection on the surface of the object to be measured, which has been a problem with the conventional technology such as a laser range finder, so that stable measurement is possible and high accuracy. The present invention has the following advantages because it is configured as described above. (1) Since the detection is performed within a fixed measurement space provided in the measurement device, the operation is simple, stable and highly accurate. (2) Since the measuring device is in close contact with the measured object, the influence of disturbance such as external light is small. (3) Therefore, accurate and accurate surface roughness can be measured.

【図面の簡単な説明】 【図1】本発明の一実施例に用いる密着型光計測装置の
斜視図。 【図2】図1のA−A断面図。 【図3】図1の計測装置で計測している態様を示す斜視
図。 【図4】図3の縦断面図。 【図5】図4のD部の拡大図。 【図6】図4のB−B断面図。 【図7】図4のB−B断面の隣接部の断面図。 【図8】図4のC−C断面図。 【図9】図4のC−C断面の隣接部の断面図。 【図10】表面粗さを表す検出出力の例を示す図。 【符号の説明】 1…本体 2…溝 3…底部 4…受光部 5…傾斜部 6…発光部 7…密着測定部 11…被測体
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a contact-type optical measurement device used in one embodiment of the present invention. FIG. 2 is a sectional view taken along line AA of FIG. FIG. 3 is a perspective view showing a mode in which measurement is performed by the measurement device in FIG. 1; FIG. 4 is a longitudinal sectional view of FIG. 3; FIG. 5 is an enlarged view of a portion D in FIG. 4; FIG. 6 is a sectional view taken along line BB of FIG. 4; FIG. 7 is a cross-sectional view of a portion adjacent to the BB cross section in FIG. 4; FIG. 8 is a sectional view taken along line CC of FIG. 4; FIG. 9 is a cross-sectional view of a portion adjacent to a cross section taken along line CC of FIG. 4; FIG. 10 is a diagram showing an example of a detection output indicating surface roughness. [Description of Signs] 1 ... Main body 2 ... Groove 3 ... Bottom 4 ... Light receiving unit 5 ... Inclination unit 6 ... Light emitting unit 7 ... Adhesion measuring unit 11 ... Measured object

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−135810(JP,A) 特開 昭63−61111(JP,A) 特開 昭54−110865(JP,A) 特開 昭62−69112(JP,A) 特開 平3−202705(JP,A) 特開 平2−32206(JP,A) 特開 昭63−206604(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 102 G01N 21/84 - 21/91 G06T 1/00 - 7/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-135810 (JP, A) JP-A-63-61111 (JP, A) JP-A-54-110865 (JP, A) JP-A-62 69112 (JP, A) JP-A-3-202705 (JP, A) JP-A-2-32206 (JP, A) JP-A-63-206604 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30 102 G01N 21/84-21/91 G06T 1/00-7/00

Claims (1)

(57)【特許請求の範囲】 被測体の表面に密着させ、発光素子を有する発光部から
の投射光を被測体の表面に投射し、被測体の表面からの
反射光を受光部で受光し、受光部からの受光量の変化に
対応した信号出力により、被測体の対応する面の粗さを
検知する表面粗さ計測装置において、前記被測体の表面
に密着させる測定面にV字状の溝を設けて本体を備え、
そのV字状の溝の底部は測定面と平行であり、その底部
には線状に配置された複数の受光素子を有する受光部が
取付けられ、その溝の傾斜面には線状に配置された複数
の発光素子を有する発光部が取付けられていることを特
徴とする表面粗さ計測装置。
(57) [Claims] A light-emitting unit having a light-emitting element, which is in close contact with a surface of a measured object, projects light projected from the light-emitting unit on the surface of the measured object, and receives light reflected from the surface of the measured object. In a surface roughness measuring device that detects the roughness of a corresponding surface of a measured object by a signal output corresponding to a change in the amount of received light from a light receiving unit, a measuring surface to be brought into close contact with the surface of the measured object The body is provided with a V-shaped groove,
The bottom of the V-shaped groove is parallel to the measurement surface, and a light receiving section having a plurality of light receiving elements arranged linearly is attached to the bottom, and the light receiving section is linearly arranged on the inclined surface of the groove. A light emitting section having a plurality of light emitting elements is attached.
JP6182130A 1994-08-03 1994-08-03 Surface roughness measuring device Expired - Lifetime JP3016502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6182130A JP3016502B2 (en) 1994-08-03 1994-08-03 Surface roughness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6182130A JP3016502B2 (en) 1994-08-03 1994-08-03 Surface roughness measuring device

Publications (2)

Publication Number Publication Date
JPH0843060A JPH0843060A (en) 1996-02-16
JP3016502B2 true JP3016502B2 (en) 2000-03-06

Family

ID=16112860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6182130A Expired - Lifetime JP3016502B2 (en) 1994-08-03 1994-08-03 Surface roughness measuring device

Country Status (1)

Country Link
JP (1) JP3016502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10345100B1 (en) 2017-12-27 2019-07-09 Papalab Co., Ltd. Apparatus and method for evaluating metal surface texture

Also Published As

Publication number Publication date
JPH0843060A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
US4712100A (en) Coordinate inputting apparatus using multiple sensors
US5456020A (en) Method and sensor for the determination of the position of a position-control element relative to a reference body
JPS6175236A (en) Apparatus for measuring coated surface
JP3016502B2 (en) Surface roughness measuring device
CN105783738B (en) A kind of measurement method of increment type small-range displacement sensor
JP3021805B2 (en) Measuring device
Pierce et al. A novel laser triangulation technique for high precision distance measurement
GB2153995A (en) Coordinate measuring instrument
TW376446B (en) Six-degree-of-freedom measurement apparatus and method
JPH0854214A (en) Gap measuring method
JPS6135481B2 (en)
GB2095405A (en) Dual axis level device
JP2861804B2 (en) Length measuring device
JP2942906B2 (en) Electronic level device
JPH0621776B2 (en) Image clarity measurement method
JPS6324128A (en) Reflection type optical displacement measuring instrument
JPH06307816A (en) Non-contact plate width measuring device
JPH01161521A (en) Position designating device
JPH04208892A (en) Method and device for measuring number of cords
JPH0781841B2 (en) Thickness measuring device
JP3319666B2 (en) Edge detection device
JP3152483B2 (en) Distance measuring device
JPH09159424A (en) Method and device for determining inclination angle
JPS59190608A (en) Slant angle sensor
JP3019647B2 (en) Non-contact thickness gauge