JPH01107105A - Method for measuring straightness shape - Google Patents
Method for measuring straightness shapeInfo
- Publication number
- JPH01107105A JPH01107105A JP26289787A JP26289787A JPH01107105A JP H01107105 A JPH01107105 A JP H01107105A JP 26289787 A JP26289787 A JP 26289787A JP 26289787 A JP26289787 A JP 26289787A JP H01107105 A JPH01107105 A JP H01107105A
- Authority
- JP
- Japan
- Prior art keywords
- interval
- measured
- shape
- moving
- straightness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000005259 measurement Methods 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 abstract description 10
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、測定対象物の真直度形状と移動案内面の真直
度形状及び移動時の縦ゆれ盪とを同時に高精度で測定し
得る方法に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for simultaneously measuring the straightness shape of an object to be measured, the straightness shape of a moving guide surface, and the vertical vibration during movement with high precision. Regarding.
〈従来の技術〉
近年、工作機械に対する高精度化への要求が高まりつつ
ある中で、案内面(揺動面)の真直度管理は重要な課題
の一つとなってあLaその測定の容易化が望まれている
。そこで測定対象物の真直度形状及び移動案内面(揺動
面)の真直度形状の測定法として、3個の変位検出器を
測定対象物に沿って移動させ、これら変位検出器による
測定値から測定対象物の真直度形状と移動案内面の真直
度形状とを同時に評価する方法か知られている。<Conventional technology> In recent years, with the increasing demand for higher precision in machine tools, the straightness control of guide surfaces (oscillating surfaces) has become one of the important issues. is desired. Therefore, as a method for measuring the straightness shape of the object to be measured and the straightness shape of the moving guide surface (oscillating surface), three displacement detectors are moved along the object to be measured, and the values measured by these displacement detectors are measured. A method is known in which the straightness shape of the object to be measured and the straightness shape of the moving guide surface are evaluated simultaneously.
これは、その原理を表わす第2図に示すように、測定対
象物1に沿って案内面2上を移動する検出器取付台3(
例えば刃物取付台を利用)に測定対象物1どの距離を測
定する3個の変位検出器A、B、Cを、検出器取付台3
の移動方向に距1lIL1及びし、を隔てて並置し、こ
の検出器取付台3を図中の矢印方向に移動して3個の変
位検出器A、B、Cの測定値を得、これらの測定値から
測定対象物1の真直度形状及び検出器取付台3の移動時
の運動開度(うねりとピッチング)を求める方法である
。As shown in FIG. 2, which shows the principle, this is a detector mount 3 (
For example, use a blade mount) to install three displacement detectors A, B, and C to measure the distance of the object to be measured 1, and a detector mount 3.
The detector mounting base 3 is moved in the direction of the arrow in the figure to obtain the measured values of the three displacement detectors A, B, and C. This is a method of determining the straightness shape of the object to be measured 1 and the degree of movement (undulation and pitching) during movement of the detector mount 3 from the measured values.
すなわち、検出器取付台3の移動方向をX軸とし、測定
開始位置(ff1点0)からの移動距11xの位置での
測定対象物1の真直度誤差及び案内面2のうねり量をそ
れぞ、t′Lm(X)、 。That is, the moving direction of the detector mount 3 is set as the X axis, and the straightness error of the measuring object 1 and the amount of waviness of the guide surface 2 at a position of moving distance 11x from the measurement start position (ff1 point 0) are respectively calculated. , t'Lm(X), .
e!(X)として考える。検出器取付台3の移動時のピ
ッチング運動の回転中心を変位検出器Bの位置にとれば
、移動距離xlの位置での変位検出器A、B、C(7)
測定量y A(X +) 。e! Think of it as (X). If the center of rotation of the pitching motion during movement of the detector mount 3 is set at the position of displacement detector B, displacement detectors A, B, and C (7) at the position of movement distance xl.
Measured quantity y A(X +).
ya(xI)、yc(xI)は次のようになる。ya(xI) and yc(xI) are as follows.
yA(xI)=m(Xt−+、b)−ex(Xt)−L
b−ep(Xt) +++ (11yn(L)=m(
Xt)−ex(Xt) ・・・(21y
e(Xt)=m(Xt”La)−ex(Xt)”Ls・
cp(Xt) ・・” (3)(i・l,2,3,・
・・、N)
イ@l、、 ep(Xt):移動距m x t ノ位置
テノ検出器取付台3のピッチング運動量
検出器取付台3の移動に伴って測定したyA(Xt)、
yn(L)、 yc(Xt) (j=I、2,3.””
、N)から、以下に示すデータ処理を実施することによ
Lam(X、)、 e、(X、)、 ep(Xt)を分
離して抽出することができる。まず、測定量yA(X
+ )。yA(xI)=m(Xt-+, b)-ex(Xt)-L
b-ep(Xt) +++ (11yn(L)=m(
Xt)-ex(Xt)...(21y
e(Xt)=m(Xt”La)−ex(Xt)”Ls・
cp(Xt)...” (3)(i・l,2,3,・
..., N) I@l,, ep(Xt): Movement distance m x t position Pitching momentum of the teno detector mount 3 yA(Xt) measured as the detector mount 3 moves,
yn(L), yc(Xt) (j=I, 2, 3.""
, N), Lam(X,), e, (X,), and ep(Xt) can be separated and extracted by performing the data processing shown below. First, the measured quantity yA(X
+ ).
yR(X +) 、yc (X +) 、及び変位検出
器の取付間隔L7及びLbによって定まる定数a、b。Constants a and b determined by yR(X +), yc (X +), and the mounting intervals L7 and Lb of the displacement detector.
ep(xI)ノ除去した合成測定fi Y(Xt) (
−ye(Xt)+ a−yc(xI) + b−yA(
L) )を求める。Synthetic measurement fi Y(Xt) (
-ye(Xt)+a-yc(xI)+b-yA(
Find L) ).
Y(Xt)−Va(Xt)”a−Yc(Xt)”b−V
A(Xt)=m(XI)+a−m(X1+L、)+b−
m(Xl−Lb) m(4)(4)式かられかるよう
に、合成測定N Y(Xt)からはex(Xt>及びe
p(L)に関する項が消え、測定対象物1の真直度形状
1(L)に関連した項のみが残る。Y(Xt)-Va(Xt)"a-Yc(Xt)"b-V
A(Xt)=m(XI)+am(X1+L,)+b-
m(Xl-Lb) m(4) As seen from equation (4), from the composite measurement N Y(Xt), ex(Xt> and e
The term related to p(L) disappears, and only the term related to the straightness shape 1(L) of the measurement object 1 remains.
ここで、m(X、)°を(5)式に示すようなフーリエ
級数の和の形で表わして考えると、合成測定量Y(Xt
)は(6)式のようになる。Here, if m(X,)° is expressed in the form of a sum of Fourier series as shown in equation (5), then the composite measured quantity Y(Xt
) becomes as shown in equation (6).
但し L:対象物測定長さ
但し
δ、−tan−’ (−(a−sinja−b−sin
j4) /(l◆a11CO8jα+b−cosjβ)
)すなわち、合成測定量y(xI)は、測定対象物1の
真直度形状m(xI)の振幅がfJだけ拡大され、位相
がδjだけ変化したものになっている。However, L: object measurement length, δ, -tan-' (-(a-sinja-b-sin
j4) /(l◆a11CO8jα+b-cosjβ)
) That is, in the composite measurement quantity y(xI), the amplitude of the straightness shape m(xI) of the measurement object 1 is expanded by fJ, and the phase is changed by δj.
次に、フーリエ変換を利用することによって、振幅及び
位相の変化したデータ列Y(Xt)(i=1,2,3.
・・・、N) h’らもとのデータ列tn (X 、
)(i=1,2.:1.・−、N)を再生する。Next, by using Fourier transform, a data string Y(Xt) (i=1, 2, 3, .
..., N) h' and the original data string tn (X,
) (i=1,2.:1.-,N).
即ち、 Y(Xt) (i=1.2,3.− 、N)
ヲ(7)式のようにフーリエ級数の和に展開した形に考
える。That is, Y(Xt) (i=1.2, 3.-, N)
Think of it as an expanded form of the sum of Fourier series, as shown in equation (7).
(7)式での係数の対応から、Fj、 Gjは(8)式
のようになLaこのFJ、 GJを用いて、真直度形状
m(L)は(9)式のように表わせる。From the correspondence of the coefficients in equation (7), Fj and Gj are expressed as in equation (8). Using FJ and GJ, the straightness shape m(L) can be expressed as in equation (9).
GJ−fj−cj・(sir+9!J@cos/l−C
O3ψj−sinδj)すなわち、3個の変位検出器A
、B、Cでの測定’tJtYA(xI)、31a(L)
、31c(Xt) (i・l,2,3,・”、N)か
ら得られる合成測定量のデータ列Y(Xt)をフーリエ
級数の和に展開し、その時のCOS。GJ-fj-cj・(sir+9!J@cos/l-C
O3ψj−sinδj), that is, three displacement detectors A
, B, C measurements 'tJtYA(xI), 31a(L)
, 31c(Xt) The data string Y(Xt) of the composite measured quantity obtained from (i·l,2,3,·”,N) is expanded into a sum of Fourier series, and the COS at that time is.
sin成分の係数をFj、Gjとすれば、測定対象物の
真直度形状ff1(L)は(9)式から求まる。If the coefficients of the sine component are Fj and Gj, then the straightness shape ff1(L) of the object to be measured can be found from equation (9).
更ニ、(9)式カラ求めたm(XI)及び(1)式、(
2)式、(3)式から、案内面2のうねり形状ax(L
)(i・l,2,3,−、N) 、検出器取付台3の移
動時ノkl’ ッf ング運動it ’p(Xt)(i
・l,2,3,・・・、N)が求まる。Sarani, m(XI) calculated from formula (9) and formula (1), (
From equations 2) and 3, the undulation shape ax(L
) (i・l, 2, 3, -, N), the knocking movement it 'p(Xt) (i
・l, 2, 3, ..., N) are found.
以上のような従来技術によれば、測定対象物1の真直度
形状国(X)と移動案内面2のうねりex(x)及び検
出器取付台3のピッチング運動量ep(X)とを同時に
求めることができる。According to the conventional technology described above, the straightness shape (X) of the measurement object 1, the waviness ex(x) of the moving guide surface 2, and the pitching momentum ep(X) of the detector mount 3 are simultaneously determined. be able to.
〈発明が解決しようとする問題点〉
測定対象物の真直度形状s+(X)あるいは検出BJa
付台の移動案内面のうねり e!(X)を高精度に把握
する為には、細かいピッチで、つまりlを小さくして測
定する必要がある。<Problem to be solved by the invention> Straightness shape s+(X) of measurement object or detection BJa
Waviness of the moving guide surface of the attachment base e! In order to grasp (X) with high precision, it is necessary to measure it at a fine pitch, that is, by making l small.
しかしながら、ト記従来技術において使用されるフーリ
エ変換では演算処理時間の目安となる乗算回数nが下式
に示すように測定点数N0の2乗となる関係がある。However, in the Fourier transform used in the prior art mentioned above, there is a relationship in which the number of multiplications n, which is a guideline for calculation processing time, is the square of the number of measurement points N0, as shown in the following equation.
n=N0’ ・−QΦこのため、測定
点数の増加により演算処理時間が急激に増大する問題点
があった。n=N0' -QΦTherefore, there was a problem in that the calculation processing time rapidly increased due to the increase in the number of measurement points.
〈問題点を解決するための手段〉
上記問題点を解決するため本発明では次の手段を採用し
た。<Means for Solving the Problems> In order to solve the above problems, the present invention employs the following means.
(i) G4)式に示すように1間隔m・l1毎の測
定値を用いて、間隔m・l1毎の合成測定量y(xt’
) (xt’−m−xt)を求める。(i) G4) As shown in formula
) Find (xt'-m-xt).
(j) 前記の手順で、間隔m−J2毎の移動案内面
の真直度形状e(Xム°)を求める。(j) Using the above procedure, find the straightness shape e (Xmm°) of the moving guide surface for each interval m-J2.
(ト)一般に移動案内面の真直度形状はなめらかであL
a間隔m−42毎の値ax(X+°)から数値補間によ
って、間隔2毎の移動案内面の真直度形状eヨ(L)を
求める。(g) In general, the straightness shape of the moving guide surface is smooth.
By numerical interpolation from the value ax(X+°) for each interval m-42, the straightness shape eyo(L) of the moving guide surface for each interval 2 is determined.
■ (1)、 (2)、 (3)式に示す間隔1毎の測
定値と前記ex(Xt)とから、間隔2毎の測定対象物
の真直度形状とピッチング運動量を求める。(1), (2), (3) From the measured values for each interval 1 and the above ex(Xt), determine the straightness shape and pitching momentum of the object to be measured for each interval 2.
く実 施 例〉
以下、本発明の実施例について、図面によって説明する
。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.
前記の測定手順によって、間隔1毎の検出器A、B、C
の測定値を得、間隔m・ll毎の合成測定JiY(Xi
’)(X1’−m−Xl)を次式で算出する。According to the measurement procedure described above, the detectors A, B, C in each interval 1
, and the composite measurement JiY(Xi
')(X1'-m-Xl) is calculated using the following formula.
Y(X+’)−y1%(X+’)”a−Ye(X+’)
”b”3’A(Xt’)−m(XI’)+a−m(X1
’+L、)+b−n+(XI’−Lb) αυ以下前
記と同様の手順で、間隔m・l毎の真直度形状1(Xt
’)、移動案内面2のうねりez(X+’)、ピッチン
グ運動fi ep(X+’)ヲ求める。ここで、案内面
2のうねり形状は一般に急激に変化しないため、間隔m
・l毎のうねり形状at(Xt’)から数値補間法によ
って、間隔1毎のうねり形状ax(Xt)を求めること
ができる。この数値補間で求めた間隔1毎のex(L)
と(11,(2)、 l:I)式とから、間隔2毎の測
定対象物の真直度形状m(XI)と移動時の検出器取付
台の縦ゆれ量ep(L)を同時に算出する。Y(X+')-y1%(X+')"a-Ye(X+')
"b"3'A(Xt')-m(XI')+a-m(X1
'+L, )+b-n+(XI'-Lb) αυ Following the same procedure as above, straightness shape 1 (Xt
'), the waviness ez (X+') of the moving guide surface 2, and the pitching motion fi ep (X+') are determined. Here, since the undulation shape of the guide surface 2 generally does not change rapidly, the interval m
- The undulation shape ax(Xt) for each interval 1 can be obtained from the undulation shape at(Xt') for each l by numerical interpolation. ex(L) for each interval 1 obtained by this numerical interpolation
From the equation (11, (2), l: I), simultaneously calculate the straightness shape m (XI) of the object to be measured at every interval 2 and the vertical vibration amount ep (L) of the detector mount during movement. do.
なお、数値補間法としては、よく知られている多項式近
似法、スプライン関数法等を利用することができる、
〈発明の効果〉
以上説明したように本発明は、比較的データ点数の少な
い、広い間隔m−IL毎のデータ列を演算処理すること
を特徴とするので演算時間を増大することなく、細かい
ピッチで高鯖度な形状を把握できる。As the numerical interpolation method, well-known polynomial approximation method, spline function method, etc. can be used. Since the method is characterized by arithmetic processing of data strings for each interval m-IL, it is possible to grasp shapes with a fine pitch and high accuracy without increasing the calculation time.
図面は真直度形状測定法にかかる原理図である。 図面中、 1は測定対象物、 2は移動案内面、 3は検出器取付台、 A、B、Cは変位検出器である。 The drawing is a principle diagram of the straightness shape measurement method. In the drawing, 1 is the object to be measured, 2 is a moving guide surface, 3 is the detector mounting base, A, B, and C are displacement detectors.
Claims (1)
沿って移動させ、該検出器取付台に前記測定対象物との
距離を測定する3個の検出器を前記移動方向に間隔L_
a及びL_bで配置し、移動距離l毎に、その都度前記
3個の検出器の測定値を得、間隔m・l毎(mは任意の
自然数)の該測定値に前記間隔L_a及びL_bによっ
て定まる定数を乗じて加算することによって間隔m・l
毎の合成測定量を得、前記検出器取付台もしくは測定対
象物の全移動範囲にわたって求めた複数個の該合成測定
値からなるデータ列を演算処理することによって、間隔
m、l毎の移動案内面の真直度形状を算出し、それら間
隔m・l毎の移動案内面の真直度形状から数値補間を用
いて間隔l毎の真直度形状を算出し、間隔l毎の移動案
内面の真直度形状及び前記間隔l毎の測定値から前記移
動方向に対する前記測定対象物の凹凸形状と移動時の検
出器取付台の縦ゆれ量を間隔l毎で算出することを特徴
とする真直度形状測定法。A detector mount or an object to be measured is moved along either one of the guide surfaces, and three detectors for measuring the distance to the object to be measured are placed on the detector mount at intervals L_ in the moving direction.
a and L_b, obtain the measured values of the three detectors each time for each moving distance l, and add the measured values at intervals m·l (m is any natural number) according to the intervals L_a and L_b. By multiplying and adding by a fixed constant, the interval m・l
By calculating a data string consisting of a plurality of composite measurement values obtained over the entire movement range of the detector mount or the object to be measured, movement guidance for each interval m and l is obtained. The straightness shape of the surface is calculated, and the straightness shape of the moving guide surface for each interval m and l is calculated using numerical interpolation from the straightness shape of the moving guide surface for each interval l, and the straightness shape of the moving guide surface for each interval l is calculated. A straightness shape measuring method, characterized in that the uneven shape of the object to be measured in the moving direction and the amount of vertical wobbling of the detector mount during movement are calculated for each interval l from the shape and measured values for each interval l. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26289787A JPH01107105A (en) | 1987-10-20 | 1987-10-20 | Method for measuring straightness shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26289787A JPH01107105A (en) | 1987-10-20 | 1987-10-20 | Method for measuring straightness shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01107105A true JPH01107105A (en) | 1989-04-25 |
Family
ID=17382134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26289787A Pending JPH01107105A (en) | 1987-10-20 | 1987-10-20 | Method for measuring straightness shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01107105A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010107262A (en) * | 2008-10-29 | 2010-05-13 | Sumitomo Heavy Ind Ltd | Method and instrument for measuring straightness |
JP2010107263A (en) * | 2008-10-29 | 2010-05-13 | Sumitomo Heavy Ind Ltd | Method and instrument for measuring straightness |
-
1987
- 1987-10-20 JP JP26289787A patent/JPH01107105A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010107262A (en) * | 2008-10-29 | 2010-05-13 | Sumitomo Heavy Ind Ltd | Method and instrument for measuring straightness |
JP2010107263A (en) * | 2008-10-29 | 2010-05-13 | Sumitomo Heavy Ind Ltd | Method and instrument for measuring straightness |
DE102009050664B4 (en) * | 2008-10-29 | 2015-10-22 | Sumitomo Heavy Industries, Ltd. | Straightness measuring method and straightness measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Launder et al. | Secondary flows in ducts of square cross-section | |
CA1269525A (en) | Procedure and means for measuring the thickness of a film-like or sheet-like web | |
DK584589D0 (en) | Gas meter | |
US4172661A (en) | Optical measuring method | |
JPH01107105A (en) | Method for measuring straightness shape | |
CN101165454A (en) | Interferometer angle sensitivity correction method | |
JP3482002B2 (en) | Road surface property measuring device | |
CN107957272A (en) | A kind of method that gyroscope correction zero bias are put using Orthogonal Double | |
JPH03255305A (en) | Method and apparatus for measuring surface profile | |
JPH0464003B2 (en) | ||
GB2095405A (en) | Dual axis level device | |
Sharman | Paper 34: Calibration of Surface Texture Measuring Instruments | |
JPH0565083B2 (en) | ||
RU1772636C (en) | Method of determining article center-of-mass coordinates | |
SU991135A1 (en) | Device for checking dimensions | |
JPH0444928B2 (en) | ||
JPS61139712A (en) | Measurement of out of straightness | |
RU2081394C1 (en) | Method of linear dimensions measurement | |
Tani et al. | Development of high-speed and high-accuracy straightness measurement of a granite base of a CMM | |
Merzkirch et al. | Measurement of shock wave velocity using the Doppler principle | |
JP3526724B2 (en) | Error correction method in shape measuring device | |
JPS63204110A (en) | Method for measuring preciseness of planar shape | |
JPH0953931A (en) | Method for measuring straightness | |
SU729457A1 (en) | Method of determining dynamic characteristics of flexible rotors | |
SU1083078A1 (en) | Method of determination of structure component resonance frequency |