JPS63204110A - Method for measuring preciseness of planar shape - Google Patents

Method for measuring preciseness of planar shape

Info

Publication number
JPS63204110A
JPS63204110A JP3637187A JP3637187A JPS63204110A JP S63204110 A JPS63204110 A JP S63204110A JP 3637187 A JP3637187 A JP 3637187A JP 3637187 A JP3637187 A JP 3637187A JP S63204110 A JPS63204110 A JP S63204110A
Authority
JP
Japan
Prior art keywords
planar shape
workpiece
work
measuring
distance sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3637187A
Other languages
Japanese (ja)
Other versions
JPH0615971B2 (en
Inventor
Tsutomu Fujita
勉 藤田
Masahiko Yamamoto
昌彦 山本
Shinji Miyamoto
紳司 宮本
Akio Komura
明夫 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Technical Research
Original Assignee
Hitachi Zosen Technical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Technical Research filed Critical Hitachi Zosen Technical Research
Priority to JP62036371A priority Critical patent/JPH0615971B2/en
Publication of JPS63204110A publication Critical patent/JPS63204110A/en
Publication of JPH0615971B2 publication Critical patent/JPH0615971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently and accurately measure the preciseness of a planar shape, by performing processing allowing the output signals from a plurality of linearily arranged distance sensors, the positional relation of said distance sensors and the angle of rotation of a work to correspond to each other. CONSTITUTION:A planar shape preciseness measuring apparatus is equipped with one measuring bar 12. Height adjusting switches 15 are provided to the measuring bar 12 at the parts in the vicinity of both ends thereof and, by adjusting an adjust screw 13 using said switches 15, the height of the measuring bar 12 is adjusted so that all of sensors 4 are positioned within one plane or horizontal plane almost parallel to the surface of a work. For example, a processing apparatus 19 is composed of a personal computer and a graphic display is connected thereto. Therefore, the processing apparatus 19 performs processing allowing the outputs of the distance sensors 14 of the measuring bar 12 and the angle of rotation of the work 11 to correspond to each other to make it possible to efficiently and accurately measure the preciseness of the planar shape of the work 11.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、平面形状精度計測方法、さらに詳しくは、
たとえばシリコンウェハなどを研磨するラッピングマシ
ンの定盤などのような大形のワークの表面の平面形状精
度を計測する方法に関する。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a method for measuring plane shape accuracy, more specifically,
For example, the present invention relates to a method of measuring the planar shape accuracy of the surface of a large workpiece, such as a surface plate of a lapping machine that polishes silicon wafers.

従来の技術とその問題点 直径が200+++n+以下の小形のワークたとえばシ
リコンウェハの表面の平面形状精度の計測は、光干渉法
、ワークの全表面を覆うように多数のセンサーを配置す
る方法などにより既に実用化されている。ところが、シ
リコンウェハなどを研磨するラッピングマシンの定盤に
は直径が2000+nmに及ぶものもあり、このような
大形のワークに上記の方法を適用することはできない。
Conventional technology and its problems Measurement of the planar shape accuracy of the surface of a small workpiece with a diameter of 200++n+ or less, such as a silicon wafer, has already been done using optical interferometry, a method of arranging a large number of sensors to cover the entire surface of the workpiece, etc. It has been put into practical use. However, some surface plates of lapping machines for polishing silicon wafers and the like have diameters of up to 2000 nm, and the above method cannot be applied to such large-sized workpieces.

このため、従来は、下面の直線度の高い標準バーを大形
のワークの表面におき、ワーク表面と標準バーとのすき
まをすきまゲージで逐次測定するという作業者の熟練と
主観に頼った方法により計測しているが、このような方
法では、熟練を要し、しかも精度が悪く、計測に時間が
かかるという問題がある。
For this reason, the conventional method relied on the operator's skill and subjectivity by placing a standard bar with a highly straight bottom surface on the surface of a large workpiece and successively measuring the gap between the workpiece surface and the standard bar using a feeler gauge. However, this method requires skill, has poor accuracy, and takes time to measure.

この発明の目的は、上記の問題を解決し、大形のワーク
の平面形状精度を能率良く正確に計測できる方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method that can solve the above problems and efficiently and accurately measure the planar shape accuracy of a large workpiece.

問題点を解決するための手段 この発明による平面形状計測方法は、回転するワークに
対して、直線状に配列した複数の距離センサーからの出
力信号と、これら各距離センサーの位置関係と、ワーク
の回転角度とを対応づけした処理を行なうことによりワ
ーク表面の平面形状精度を計測するものである。
Means for Solving the Problems The planar shape measuring method according to the present invention calculates output signals from a plurality of distance sensors arranged in a straight line, the positional relationship of each of these distance sensors, and the positional relationship of the workpiece with respect to a rotating workpiece. The accuracy of the planar shape of the workpiece surface is measured by performing processing that correlates the rotation angle with the rotation angle.

実  施  例 第1図は、ラッピングマシン(10)の下定盤(ワーク
)(11)と、ワーク(11)表面(」二面)の平面形
状精度を計測するためにラッピングマシン(10)に取
付けられた平面形状精度計測装置を示す。
Example Figure 1 shows the lower surface plate (workpiece) (11) of the wrapping machine (10) and the workpiece (11) installed on the wrapping machine (10) to measure the planar shape accuracy of the surface (two surfaces). This figure shows the planar shape accuracy measuring device used.

平面形状精度計測装置は、1本の計測バー(12)を備
えている。計測バー(12)の両端部には高さ調整ねじ
(13)が設けられており、計測バー(12)がワーク
(11)を跨ぐように調整ねじ(13)の部分がラッピ
ングマシン(10)に据付けられている。
The planar shape accuracy measuring device includes one measuring bar (12). Height adjustment screws (13) are provided at both ends of the measurement bar (12), and the height adjustment screws (13) are attached to the wrapping machine (10) so that the measurement bar (12) straddles the workpiece (11). It is installed in

計測バー(12)には複数個(たとえば10個程度)の
距離センサー(14)が直線状に配列されている。
A plurality of (for example, about 10) distance sensors (14) are arranged linearly on the measurement bar (12).

また、計測バー(12)の両端寄りの部分には高さ調整
用光スイッチ(15)が設けられており、これらのスイ
ッチ(15)を用いて調整ねじ(13)を調整すること
により、センサー(14)がすべてワーク(11)表面
とほぼ平行な1つの平面内好ましくは水平面内に位置す
るように計測バー(12)の高さか調整されている。ワ
ーク(1■)の表面の周縁部にマーカ(1G)が取付け
られており、ラッピングマシン(10)には、このマー
カ(16)を検出することによりワーク(11)の回転
角度を求めるためのマーカ検出センサー(17)が据付
けられている。
In addition, height adjustment optical switches (15) are provided near both ends of the measurement bar (12), and by adjusting the adjustment screw (13) using these switches (15), the sensor The height of the measurement bar (12) is adjusted so that all of the measurement bars (14) are located in one plane, preferably in a horizontal plane, approximately parallel to the surface of the workpiece (11). A marker (1G) is attached to the periphery of the surface of the workpiece (1■), and the wrapping machine (10) has a device for determining the rotation angle of the workpiece (11) by detecting this marker (16). A marker detection sensor (17) is installed.

計測バー(12)の距離センサー(14)および高さ調
整用光スイッチ(15)ならびにマーカ検出センサー 
(17)は、センサーコントローラ(18)を介して処
理装置(19)に接続されている。処理装置(19)は
たとえばパーソナルコンピュータよりなり、これにはグ
ラフィックディスプレイ(2o)などが接続されている
Distance sensor (14) of measurement bar (12), height adjustment light switch (15), and marker detection sensor
(17) is connected to a processing device (19) via a sensor controller (18). The processing device (19) is, for example, a personal computer, to which a graphic display (2o) or the like is connected.

処理装置(19)は、計測バー(12)の複数の距離セ
ンサー(14)の出力と、これら各距離センサー(14
)の位置関係と、ワーク(11)の回転角度とを対応づ
けした処理を行なうことにより、ワーク(11)の平面
形状精度を計測する。
The processing device (19) receives the outputs of the plurality of distance sensors (14) of the measurement bar (12) and the outputs of each of these distance sensors (14).
) and the rotation angle of the workpiece (11), the planar shape accuracy of the workpiece (11) is measured.

次に、第2図を参照して、上記の装置にょる−  3 
 = 平面形状精度計測の原理を説明する。
Next, referring to FIG. 2, the above-mentioned apparatus-3
= Explain the principle of planar shape accuracy measurement.

第2図は計測バー(12)をラッピングマシン(10)
上に据付けてワーク(11)を回転させたときの40°
ごとの回転位置での計測ラインを示している。計測バー
(12)には10個程度の距離センサー(14)を取付
けるか、同図には原理上必要な6個の距離センサー(1
4)の位置j=■、■、■、■、■、■を示している。
Figure 2 shows the measuring bar (12) on the wrapping machine (10).
40° when rotating the workpiece (11) by installing it on top
The measurement line at each rotational position is shown. Approximately 10 distance sensors (14) can be attached to the measurement bar (12), or the figure shows six distance sensors (14) that are required in principle.
4) position j=■, ■, ■, ■, ■, ■.

また、ワーク(11)の回転による計測バー(12)の
位置をi=1、旦、・・・・・・、9で表わしている。
Further, the position of the measurement bar (12) due to the rotation of the workpiece (11) is represented by i=1, dan, . . . , 9.

計測バー(12)の距離センサー(14)の出力d1.
は、 1+J d、、=a  −x、+b、+f、、−・−−−−(1
)1、j   i   J   ]   1・Jと表わ
すことにする。たたし、iは上、・・・・・・、9のワ
ークの回転位置、jは■、・・・・・・、■のセンサー
位置である。また、a、bはワークの回転に伴って移動
する面を計測バーで切断したときの、切断面上部直線の
パラメータ、fはこの直線からのずれ量すなわち平面歪
の量である。
Output d1 of the distance sensor (14) of the measurement bar (12).
is 1+J d,,=a −x,+b,+f,,−・−−−(1
) 1, j i J ] 1.J. Here, i is the rotational position of the workpiece above, . . . , 9, and j is the sensor position of ■, . . . , ■. Furthermore, a and b are parameters of a straight line above the cut surface when a surface that moves with the rotation of the workpiece is cut with a measuring bar, and f is the amount of deviation from this straight line, that is, the amount of plane strain.

この発明の方法の基本的な考え型は、第2図における3
点AXB、Cでの測定値を基本に、これらの点が水平面
内にあるものとして、点A1B、C以外の測定値d1.
からfl、を求める1+J         1+J ことである。以下、その具体的な手順を述べる。
The basic idea of the method of this invention is 3 in Figure 2.
Based on the measured values at points AXB and C, assuming that these points are in a horizontal plane, measured values d1.
This means finding fl from 1+J 1+J. The specific procedure will be described below.

まず、点A、B、Cを通る位置1.4.7上のfl、を
求める。
First, fl on position 1.4.7 passing through points A, B, and C is determined.

lJ 点Aの測定データは上の■、戟の■として与えられるの
で、式(1)から、 d 1  、  o =a t  ′X o + b 
t  十f t  、  。
lJ The measurement data at point A is given as ■ above and ■, so from equation (1), d 1 , o = a t 'X o + b
t tenf t,.

・・・(2) d、■−aL″ゝ■+5どf、■ ・・・(3) となる。...(2) d,■-aL″ゝ■+5df,■ ...(3) becomes.

上の■と戟の■は同じ位置(点A)であるから、 である。Since ■ above and ■ on the sword are at the same position (point A), It is.

なお・この位置を基準とするので・ fL、■=0とし
てもよい。一方、計測バー(12)の中心をx=0とな
るようにすると、センサー(14)の位置の対称性から
、X■−−x■となる。
Note that since this position is used as a reference, fL, ■ may also be set to 0. On the other hand, if the center of the measurement bar (12) is set so that x=0, then due to the symmetry of the position of the sensor (14), it becomes X■--x■.

点B、Cの位置についても同様であるので、dL、(D
=a7 ’Xo+bL+fL、。
The same holds true for the positions of points B and C, so dL, (D
=a7'Xo+bL+fL,.

・・・(4) d L、 o =a 1 ’ X @ + b L+ 
f 1 、 o−・・・(5) d a 、 o =84 ’ X ■+ b L+ f
 L、 。
...(4) d L, o = a 1 ' X @ + b L+
f 1 , o-...(5) d a , o = 84' X ■+ b L+ f
L.

・・・(6) d L、 @ ”” a L” X @ + b 7 
+ f L、 @・・・(7) であり、 である。
...(6) d L, @ ”” a L” X @ + b 7
+ f L, @...(7) and .

式(2)、(5)から、 aI”″(d、、■  し、■) /(2・X■)      ・・・(8)a(″(d4
.■  4.■)  d /(2・X■)      ・・・(10)式(4) 
、(7)から、 aL″″(d7.■  7.o)  d /(2・X■)      ・・・(12)したがって
、1上の平面歪fは、式(8)、(9%式% 同様に、4上の平面歪fは式(10)、(11)から、
工上の平面歪fは式(12)、(13)から求められる
From formulas (2) and (5), aI""(d, , ■ , ■) /(2・X■) ...(8) a("(d4
.. ■ 4. ■) d / (2・X■) ... (10) Formula (4)
, (7), aL'''' (d7. % Similarly, the plane strain f on 4 is obtained from equations (10) and (11),
The plane strain f on construction is obtained from equations (12) and (13).

次に、1.4.7以外の位置でのfl、を求−−−−1
,j める。
Next, find fl at a position other than 1.4.7---1
,j Mel.

上、迭、ヱ以外の位置でのa、bの値は上、4.7との
対応関係から求められる。
The values of a and b at positions other than upper, lower, and ヱ can be found from the correspondence with upper and 4.7.

たとえば、第2図において、位置2のa、bは次のよう
にして得られる。
For example, in FIG. 2, a and b at position 2 are obtained as follows.

2の■と4の■、および1の■と2の■は同一点である
から、 および工において前述のようにすでに得られている。
Since ■■ in 2 and ■■ in 4, and ■■ in 1 and ■ in 2 are the same point, they have already been obtained in and as described above.

したがって、 dL、 ■=a2−”X■+bL+fL、@・・・(1
7) d 2 、 ■”’ a 2 ’ X ■+ b 2 
+ f 2 、 ■・・・(18) であるので、 /(x■−X■)      ・・・(19)52=d
2.■−f2.@  ”L”@・・・(20) で求められる。したがって、2上のfはすべて求められ
ることになる。
Therefore, dL, ■=a2-”X■+bL+fL, @...(1
7) d 2 , ■”' a 2 'X ■+ b 2
+ f 2 , ■...(18), so /(x■-X■)...(19)52=d
2. ■-f2. @ “L” @...(20) Therefore, all f's on 2 will be found.

他の位置3.5.6.8.9に対しても、同様にしてf
を得ることができる。
Similarly, for other positions 3.5.6.8.9, f
can be obtained.

d i、jは測定値であるが、上述の手順で処理する場
合には、各位置iに関して平滑化した値を用いるのが望
ましい。
Although d i,j are measured values, when processing according to the above procedure, it is desirable to use smoothed values for each position i.

また、各位置iでのデータは同時入力が望ましいが、実
際はセンサーをスキャンすることになり、ワーク(11
)が回転するため、本来の位置とはずれた位置を測定す
ることになる。いま、直径1mのワークが1 Orpm
で回転していると、最外周の周側は約500 mm/ 
seeとなる。したがって、10 m5ec以内に入力
することができれば、最大の測定位置ずれ量は5ffl
[11となるので、実用上問題はないと考えられる。
Also, although it is desirable to input data at each position i simultaneously, in reality the sensor will be scanned, and the workpiece (11
) rotates, resulting in measurements being made at a position that is different from the original position. Now, a workpiece with a diameter of 1 m is 1 Orpm.
When rotating at
See. Therefore, if input can be made within 10 m5ec, the maximum measured position deviation amount is 5ffl.
[11, so it is considered that there is no problem in practical use.

上記実施例では、ワーク(11)をラッピングマシン(
10)に取付けた状態で平面形状を計測しているが、ラ
ッピングマシン(10)から取外したワーク(11)を
適宜な手段により回転させて計測するようにしてもよい
。また、この発明の方法は、ラッピングマシンの定盤以
外のワークにももちろん適用できる。
In the above embodiment, the workpiece (11) is placed on a wrapping machine (
Although the planar shape is measured with the workpiece (11) attached to the wrapping machine (10), the measurement may be performed by rotating the workpiece (11) removed from the wrapping machine (10) by an appropriate means. Furthermore, the method of the present invention can of course be applied to works other than the surface plate of a wrapping machine.

発明の効果 この発明の方法によれば、−4−述のように、大形のワ
ークであっても、ワークを回転させるだけで、平面形状
精度を能率良く正確に計測することができる。
Effects of the Invention According to the method of the present invention, as described in -4- above, even if the work is a large work, the planar shape accuracy can be efficiently and accurately measured by simply rotating the work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す平面形状精度計測装置
の斜視図、第2図は計測の原理を説明するための図面で
ある。 (11)・・・定盤(ワーク’) 、(14)・・・距
離センサー。 以」二
FIG. 1 is a perspective view of a planar shape accuracy measuring device showing an embodiment of the present invention, and FIG. 2 is a drawing for explaining the principle of measurement. (11) ... Surface plate (work'), (14) ... Distance sensor. I"2

Claims (1)

【特許請求の範囲】[Claims] 回転するワークに対して、直線状に配列した複数の距離
センサーからの出力信号と、これら各距離センサーの位
置関係と、ワークの回転角度とを対応づけした処理を行
なうことによりワーク表面の平面形状精度を計測する平
面形状精度計測方法。
For a rotating workpiece, the planar shape of the workpiece surface is determined by processing the output signals from multiple distance sensors arranged in a straight line, the positional relationship of these distance sensors, and the rotation angle of the workpiece. Planar shape accuracy measurement method for measuring accuracy.
JP62036371A 1987-02-18 1987-02-18 Plane shape accuracy measurement method Expired - Lifetime JPH0615971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62036371A JPH0615971B2 (en) 1987-02-18 1987-02-18 Plane shape accuracy measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62036371A JPH0615971B2 (en) 1987-02-18 1987-02-18 Plane shape accuracy measurement method

Publications (2)

Publication Number Publication Date
JPS63204110A true JPS63204110A (en) 1988-08-23
JPH0615971B2 JPH0615971B2 (en) 1994-03-02

Family

ID=12467978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62036371A Expired - Lifetime JPH0615971B2 (en) 1987-02-18 1987-02-18 Plane shape accuracy measurement method

Country Status (1)

Country Link
JP (1) JPH0615971B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040244A (en) * 1996-09-11 2000-03-21 Speedfam Co., Ltd. Polishing pad control method and apparatus
US6275032B1 (en) * 1997-12-25 2001-08-14 System Seiko Co., Ltd. Surface flatness measuring apparatus
US6497047B1 (en) 1999-03-10 2002-12-24 Fujikoshi Kikai Kogyo Kabushiki Kaisha Flatness measuring equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100769A (en) * 1978-01-25 1979-08-08 Fujitsu Ltd Aurface accuracy meter for magnetic disc substrate
JPS5744807A (en) * 1980-08-29 1982-03-13 Hitachi Ltd Flatness measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100769A (en) * 1978-01-25 1979-08-08 Fujitsu Ltd Aurface accuracy meter for magnetic disc substrate
JPS5744807A (en) * 1980-08-29 1982-03-13 Hitachi Ltd Flatness measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040244A (en) * 1996-09-11 2000-03-21 Speedfam Co., Ltd. Polishing pad control method and apparatus
US6275032B1 (en) * 1997-12-25 2001-08-14 System Seiko Co., Ltd. Surface flatness measuring apparatus
US6497047B1 (en) 1999-03-10 2002-12-24 Fujikoshi Kikai Kogyo Kabushiki Kaisha Flatness measuring equipment

Also Published As

Publication number Publication date
JPH0615971B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
CN100522472C (en) Methods of measuring and compensating cutting size on chamfering machine of sheet material
US4794736A (en) Arrangement for mechanically and accurately processing a workpiece with a position detecting pattern or patterns
TWI656595B (en) Polarizer calibration device and method
JPH0642947A (en) Method and device for measuring run-out or contour
US6594002B2 (en) Wafer shape accuracy using symmetric and asymmetric instrument error signatures
JPS63204110A (en) Method for measuring preciseness of planar shape
US4132003A (en) Apparatus for measuring curvature and other geometric relations of dual roller tracks
CN108180865A (en) A kind of test device of heavy-calibre planar minute surface shape
JPH07332962A (en) Apparatus for measuring flatness
JPH08201053A (en) Method and apparatus for measuring planarity
JPH06201303A (en) Three dimensional measuring device
JPH0649958U (en) Semiconductor wafer thickness measuring machine
JPS63204109A (en) Method for measuring preciseness of planar shape
US6242926B1 (en) Method and apparatus for moving an article relative to and between a pair of thickness measuring probes to develop a thickness map for the article
CN112129207A (en) Method for testing positioning accuracy of non-full-circle motion angle of rotary table
JPH08233686A (en) Eccentricity measuring method and measuring device of aspheric surface
JPS6275209A (en) Method and instrument for measuring dimension of plate type body
JPH0532743Y2 (en)
JPH08226815A (en) Surface condition distortion measuring device
JPH1038502A (en) Angle measuring tool
KR20220023270A (en) Method for measuring geometric errors of vertical 5-axis machine tools
JPS61139712A (en) Measurement of out of straightness
US1806118A (en) Brick meter
JPS5821651Y2 (en) polishing equipment
SU1370443A1 (en) Device for checking curvilinear surfaces