JPH05157549A - Detecting method for camber of band-shaped body - Google Patents

Detecting method for camber of band-shaped body

Info

Publication number
JPH05157549A
JPH05157549A JP3349107A JP34910791A JPH05157549A JP H05157549 A JPH05157549 A JP H05157549A JP 3349107 A JP3349107 A JP 3349107A JP 34910791 A JP34910791 A JP 34910791A JP H05157549 A JPH05157549 A JP H05157549A
Authority
JP
Japan
Prior art keywords
edge
camber
edge position
position detection
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3349107A
Other languages
Japanese (ja)
Inventor
Manabu Kuninaga
学 國永
Shinichiro Tawara
伸一郎 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3349107A priority Critical patent/JPH05157549A/en
Publication of JPH05157549A publication Critical patent/JPH05157549A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To establish the method nor detecting the camber of a band-shaped body highly accurately regardless of the period. CONSTITUTION:Three or more edge-position sensors 2-6 are arranged along the longitudinal direction of a band-shaped body 7 at the side of one edge 7a of the band-shaped body 7 so as to measure the distance from a detecting reference line 8 to edge 7a in the direction of the width. The distances from the plate edge of the band-shaped body 7 to the reference line 8 are detected at a specified interval with respect to the moving distance in the longitudinal direction. When the camber of the land-shaped body 7 is estimated based on the relative positions of the detecting points, three edge-position, detecting sensors 2, 3 and 4 are arranged at the close equal interval. The edge-position detecting sensors 5 and 6 are arranged at an arranging interval of 2L, which is at least twice or more larger than arranging interval L of the edge-position detecting sensors 2, 3 and 4, and at an interval 4L, which is four times larger than L. The shape of the camber of the band-shaped body 7 is obtained based on a plurality of edge waveforms at the respective periods detected by the edge-position detecting sensors 2, 3, 4, 5 and 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は帯状体のキャンバー検出
方法に係わり、特に、複数のエッジ位置検出センサを用
いて帯状体のキャンバーを検出する方法に用いて好適で
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a camber of a belt, and is particularly suitable for use in a method of detecting a camber of a belt using a plurality of edge position detecting sensors.

【0002】[0002]

【従来の技術】周知の通り、帯状体のキャンバーを検出
する方法として従来から種々の方法が提案されており、
その一部は既に実用化されてかなりの効果を上げてい
る。従来より提案されている帯状体のキャンバーを検出
方法の代表的なものとしては、例えば特開昭63−66
409号公報に示されるように、検出基準点から帯状体
のエッジまでの距離を上記帯状体の幅方向について測定
するためのエッジ位置検出センサを3台用いるようにし
ている。そして、上記検出基準点から上記帯状体のエッ
ジまでの幅方向位置を、3点で同時に検出し、その検出
点の相対位置に基づいてキャンバーを計測するようにし
ている。
2. Description of the Related Art As is well known, various methods have heretofore been proposed as a method for detecting a camber of a strip.
Some of them have already been put to practical use and have been quite effective. As a typical method of detecting a belt-shaped camber that has been conventionally proposed, for example, Japanese Patent Laid-Open No. 63-66.
As shown in Japanese Patent No. 409, three edge position detection sensors are used to measure the distance from the detection reference point to the edge of the strip in the width direction of the strip. Then, the position in the width direction from the detection reference point to the edge of the band-shaped body is simultaneously detected at three points, and the camber is measured based on the relative position of the detection points.

【0003】[0003]

【発明が解決しようとする課題】上記特開昭63−66
409号公報に提案されているキャンバー検出方法は、
エッジ位置検出センサをある一定の大きさの等間隔に固
定して帯状体のキャンバーを検出するようにしている。
このように、複数のエッジ位置検出センサを等間隔で固
定した場合には、その間隔の4倍〜8倍程度の範囲内に
ある特定の周期のキャンバーに対しては高い精度の検出
を行うことが期待できる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention JP-A-63-66
The camber detection method proposed in Japanese Patent No. 409 is
The edge position detection sensor is fixed at a certain size and at equal intervals to detect the camber of the band.
As described above, when a plurality of edge position detection sensors are fixed at equal intervals, highly accurate detection is performed for camber of a specific cycle within a range of 4 to 8 times the interval. Can be expected.

【0004】しかし、上記特定の周期以外の他の周期の
キャンバーに対しては、高精度の検出を行うことができ
ない問題があった。すなわち、、例えば各エッジ位置検
出センサの配設間隔に比べて非常に短い周期のキャンバ
ーに対しては、検出点がエッジの曲がりの極点付近に来
ない場合、検出振幅が実際のエッジ波形の振幅よりも小
さくなってしまい、正確な検出が望めないという欠点が
あった。本発明は上述の問題点にかんがみ、キャンバー
の周期の長短に拘わらず高精度な検出を行うことができ
る帯状体のキャンバー検出方法を提供することを目的と
する。
However, there has been a problem that highly accurate detection cannot be performed with respect to the camber having a cycle other than the specific cycle. That is, for example, for a camber whose period is very short compared to the arrangement interval of each edge position detection sensor, when the detection point does not come near the extreme point of the bend of the edge, the detected amplitude is the amplitude of the actual edge waveform. However, there is a drawback that accurate detection cannot be expected. In view of the above problems, it is an object of the present invention to provide a belt-shaped camber detection method capable of performing highly accurate detection regardless of the length of the camber cycle.

【0005】[0005]

【課題を解決するための手段】本発明の帯状体のキャン
バー検出方法は、帯状体の一方のエッジ側に、検出基準
線から上記エッジまでの距離を幅方向について測定する
ために、3台以上のエッジ位置検出センサを上記帯状体
の長手方向に沿って配置し、上記3台以上のエッジ位置
検出センサでもって上記基準線から上記帯状体の板端ま
での距離を上記長手方向の移動距離に対して一定間隔で
検出し、検出点の相対位置から帯状体のキャンバーを推
定する方法において、近接した等間隔で3台のエッジ位
置検出センサを配設した第1のエッジ位置検出センサ群
と、上記第1のエッジ位置検出センサ群における各エッ
ジ位置検出センサの配設間隔Lに対し少なくとも2倍か
ら4倍の配設間隔2L〜4Lで複数のエッジ位置検出セ
ンサを配設した第2のエッジ位置検出センサ群とを配置
し、上記第1および第2のエッジ位置検出センサ群によ
り上記基準線から上記帯状体の板端までの距離を、上記
長手方向に移動する距離に対して一定の間隔で検出する
ことにより周期別の複数のエッジ波形を生成し、これら
の周期別の複数のエッジ波形に基づいて上記帯状体のキ
ャンバー形状を得るようにしている。
According to the method for detecting a camber of a strip of the present invention, three or more units are provided on one edge side of the strip to measure the distance from the detection reference line to the edge in the width direction. Edge position detection sensors are arranged along the longitudinal direction of the belt-shaped body, and the distance from the reference line to the plate end of the belt-shaped body is set as the movement distance in the longitudinal direction by the three or more edge-position detection sensors. On the other hand, in a method of detecting the camber of the strip from the relative position of the detection points by detecting at a constant interval, a first edge position detecting sensor group in which three edge position detecting sensors are arranged at equal intervals, A plurality of edge position detection sensors are arranged at an arrangement interval 2L to 4L that is at least two to four times the arrangement interval L of each edge position detection sensor in the first edge position detection sensor group. Edge position detection sensor groups are arranged, and the first and second edge position detection sensor groups make the distance from the reference line to the plate end of the belt-like body constant with respect to the distance moved in the longitudinal direction. A plurality of edge waveforms for each cycle are generated by detecting at intervals of, and the camber shape of the strip is obtained based on the plurality of edge waveforms for each cycle.

【0006】[0006]

【作用】少なくとも3台のエッジ位置検出センサを近接
した等間隔Lを開けて設置するとともに、片端のエッジ
位置検出センサから配設間隔2Lから4Lまでの間に少
なくとも2台のエッジ位置検出センサを設置することに
より、合計では少なくとも5台のエッジ位置検出センサ
を設置し、センサ間隔Lと2Lから4Lの3種類の間隔
で帯状体のキャンバーを検出するようにして、種々のキ
ャンバーの周期に適したセンサ間隔で上記帯状体のキャ
ンバーを検出することが可能となり、従来の3台のエッ
ジ位置検出センサで検出する方式の欠点であった、狭い
周期範囲でしか高精度に検出することができないという
不都合が解消され、広い周期範囲のキャンバーをより少
ないセンサ台数で検出することが可能となる。
Operation: At least three edge position detection sensors are installed close to each other at equal intervals L, and at least two edge position detection sensors are installed between the edge position detection sensors at one end and the arrangement intervals 2L to 4L. By installing at least 5 edge position detection sensors in total, it is suitable for various camber cycles by detecting the camber of the strip at three sensor intervals L and 2L to 4L. It becomes possible to detect the camber of the belt-shaped body at different sensor intervals, and it is possible to detect with high accuracy only in a narrow cycle range, which is a drawback of the conventional method of detecting with three edge position detection sensors. The inconvenience is solved, and it becomes possible to detect a camber in a wide cycle range with a smaller number of sensors.

【0007】また、エッジ位置検出センサの配設間隔L
は帯状体の検出したいキャンバー周期の最小値によって
決定され、その周期は通常は1m以上である。したがっ
て、この値から第1のエッジ位置検出センサ群における
近接したセンサの間隔Lは、100mm〜500mm程
度にするのが望ましい。なお、上記センサの配設間隔が
100mmより小さい場合には、小さい間隔の各点から
キャンバーを推定するために誤差が大きくなってしま
う。また、その反対に各エッジ位置検出センサの配設間
隔が500mmよりも大きいと、検出振幅の減少を生じ
てしまうことによる誤差が大きくなる。したがって、帯
状体の状態に応じ100mm〜500mmの範囲でセン
サの配設間隔Lを選択し、次に同様に上記配設間隔Lの
2倍の配設間隔2Lから4倍の配設間隔4Lで第2のエ
ッジ位置検出センサ群におけるセンサ配置を決定する。
このようにして各エッジ位置検出センサを配設したら、
これらのエッジ位置検出センサの中から所定の組み合わ
せルールに基づいて3つのエッジ位置検出センサの検出
出力を選択し、これらの検出出力に基づいて上記帯状体
のキャンバーを検出する。
Further, the interval L between the edge position detection sensors is set.
Is determined by the minimum value of the camber period desired to be detected by the strip, and the period is usually 1 m or more. Therefore, from this value, it is desirable that the distance L between the adjacent sensors in the first edge position detection sensor group is set to about 100 mm to 500 mm. If the interval between the sensors is smaller than 100 mm, the error becomes large because the camber is estimated from each point having a small interval. On the contrary, if the interval between the edge position detection sensors is larger than 500 mm, the error due to the decrease in the detection amplitude increases. Therefore, the arrangement interval L of the sensors is selected in the range of 100 mm to 500 mm according to the state of the strip, and then the arrangement interval 2L that is twice the arrangement interval L to the arrangement interval 4L that is 4 times the same. The sensor arrangement in the second edge position detection sensor group is determined.
After arranging each edge position detection sensor in this way,
The detection outputs of the three edge position detection sensors are selected from these edge position detection sensors based on a predetermined combination rule, and the camber of the belt-shaped body is detected based on these detection outputs.

【0008】[0008]

【実施例】図1は本発明の帯状体のキャンバー検出方法
の一実施例を説明する図である。図1において、1はエ
ッジ7aの幅方向位置変動を検出する第1のエッジ位置
検出センサ群を示し、9は第2のエッジ位置検出センサ
群を示している。また2,3,4,5,6はそれぞれの
検出器(エッジ位置検出センサ)を示し、7は検知対象
である帯状体を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining an embodiment of a method for detecting a camber of a belt-shaped body according to the present invention. In FIG. 1, reference numeral 1 denotes a first edge position detection sensor group for detecting a widthwise position variation of the edge 7a, and reference numeral 9 denotes a second edge position detection sensor group. Further, reference numerals 2, 3, 4, 5, and 6 indicate respective detectors (edge position detection sensors), and reference numeral 7 indicates a band-shaped body which is a detection target.

【0009】これらの検出器2,3,4,5,6は、幅
方向変動検出の基準点が一致するように設置されてお
り、本実施例においてはそれぞれL,L,2L,4Lの
配設間隔をおいて配置されている。そして、この条件の
下で走行中の帯状体7の幅方向エッジ7aの位置を検出
するものであり、この検出結果を基にして帯状体7のキ
ャンバーを演算によって求めるようにしている。
These detectors 2, 3, 4, 5 and 6 are installed so that the reference points for width direction fluctuation detection coincide with each other, and in the present embodiment, L, L, 2L and 4L are arranged respectively. They are arranged at intervals. Then, the position of the widthwise edge 7a of the belt-shaped body 7 that is running under this condition is detected, and the camber of the belt-shaped body 7 is calculated based on the detection result.

【0010】図2に示すように、検出器2,3,4の検
出結果より求める曲がりθの演算式は、3台の検出器の
検出結果をそれぞれS2,S3,S4とし、センサ間の
間隔をXとおくと、次式で計算できる。
As shown in FIG. 2, the calculation formula of the bend θ obtained from the detection results of the detectors 2, 3 and 4 is that the detection results of the three detectors are S2, S3 and S4, respectively. If is set as X, it can be calculated by the following formula.

【0011】[0011]

【数1】 [Equation 1]

【0012】この検出と演算を、ある通板距離ΔL(m
m)毎に行い、周期4L〜8L程度のキャンバー成分を
デジタルフィルタ(図示せず)によって抽出する。ま
た、検出器2,4,5の検出結果に基づいて同様な曲が
り角度θを求める演算を行い、周期8L〜16L程度の
キャンバー成分をデジタルフィルタで抽出する。更に、
検出器2,5,6の検出結果から曲がり角度θを求める
演算を行い、周期16L以上のキャンバー成分をデジタ
ルフィルタで抽出する。
This detection and calculation are carried out by a certain plate passing distance ΔL (m
m), and a camber component having a period of about 4L to 8L is extracted by a digital filter (not shown). Further, based on the detection results of the detectors 2, 4 and 5, the same calculation of the bending angle θ is performed, and the camber component having the period of about 8L to 16L is extracted by the digital filter. Furthermore,
A calculation for obtaining the bending angle θ is performed from the detection results of the detectors 2, 5 and 6, and a camber component having a period of 16 L or more is extracted by a digital filter.

【0013】一方、曲がり角度θからキャンバーを復元
するには、図3のようにセンサ間隔毎の曲がり角度θで
センサ間隔分の距離をおいて連結すればよい。具体的に
は、センサ間隔Xで、曲がりデータがセンサ間隔毎にθ
1,θ2,θ3…と得られた場合、
On the other hand, in order to restore the camber from the bending angle θ, the sensors may be connected at a bending angle θ for each sensor interval with a distance corresponding to the sensor interval as shown in FIG. Specifically, at the sensor interval X, the bending data is θ for each sensor interval.
1, θ2, θ3 ...

【0014】[0014]

【数2】 [Equation 2]

【0015】で与えられる。次いで、最初の検出点と最
後の検出点を結ぶ直線を基準線とするため、
Is given by Then, since the straight line connecting the first detection point and the last detection point is the reference line,

【0016】[0016]

【数3】 [Equation 3]

【0017】の演算を行うことによって、検出開始点と
終了点を結ぶ直線を基準とした帯状体のエッジ7aの曲
がり、すなわちキャンバーが得られる。
By performing the calculation of (1), the curve of the edge 7a of the belt-like body, that is, the camber, with respect to the straight line connecting the detection start point and the detection end point, can be obtained.

【0018】ところで、3台のエッジ位置検出センサの
みを用いて曲がりを検出する方法では、センサ間隔がキ
ャンバー周期に対して長い場合には検出点の間隔が長く
なるため、検出結果からキャンバーを復元すると、元の
波形よりも振幅が小さく検出されてしまう。 すなわ
ち、検出点と検出点との間の波形は直線で補間される。
このように、直線で補間されても図4の検出原理説明図
において丸形で示したように、エッジ位置検出センサの
配設間隔が小さければ復元波形の形状に関してあまり問
題ない。
By the way, in the method of detecting a bend using only three edge position detection sensors, when the sensor interval is longer than the camber cycle, the intervals between the detection points become long, so the camber is restored from the detection result. Then, the amplitude is detected smaller than the original waveform. That is, the waveform between the detection points is linearly interpolated.
As described above, even if the interpolation is performed with a straight line, as indicated by a circle in the detection principle explanatory diagram of FIG. 4, if the interval between the edge position detection sensors is small, there is not much problem regarding the shape of the restored waveform.

【0019】しかしながら、同図において三角形で示し
たように、センサの配設間隔が大きいと、これらのセン
サ間に存在する波形の凹凸部分がカットされてしまう可
能性が高くなり、その結果として振幅が小さく復元され
てしまうことになる。この検出振幅の減少が最大となる
場合の検出誤差と本来のキャンバー振幅との比は、対象
のキャンバー周期とセンサ間隔の比に対する関数とな
り、図5のグラフで示されるように変化する。
However, as indicated by the triangles in the figure, if the sensors are arranged at large intervals, there is a high possibility that the corrugated portions existing between these sensors will be cut, resulting in the amplitude. Will be restored small. The ratio of the detection error and the original camber amplitude when the decrease of the detection amplitude is maximum is a function of the ratio of the target camber period and the sensor interval, and changes as shown in the graph of FIG.

【0020】また、キャンバー形状復元のために3台の
エッジ位置検出センサの検出結果から曲がりを計算して
連結する方式では、キャンバー形状復元の際に1回1回
のエッジ位置の測定誤差の影響が蓄積されるため、周期
に対して測定間隔、すなわち、センサ間隔が長いとエッ
ジ位置の測定誤差によるキャンバー復元誤差が大きくな
る。この誤差は、対象のキャンバー周期とセンサ間隔と
の比に対する関数となり、図6のグラフで示されるよう
になる。
Further, in the method of calculating the bends from the detection results of the three edge position detection sensors and connecting them to restore the camber shape, the influence of the measurement error of the edge position once when restoring the camber shape. Therefore, if the measurement interval, that is, the sensor interval is longer than the period, the camber restoration error due to the edge position measurement error increases. This error is a function of the ratio of the target camber period and the sensor interval, and is as shown in the graph of FIG.

【0021】したがって、全体の検出誤差は図5のグラ
フと図6のグラフとの加算となり、図7のグラフで示さ
れるようになる。すなわち、対象周期がセンサ間隔の5
倍程度であれば、高い精度でキャンバー形状の復元が可
能である。しかし、これはセンサ間隔が全て同じである
と、対象とするキャンバー周期が狭い範囲に限定される
ことを意味する。
Therefore, the total detection error is the sum of the graph of FIG. 5 and the graph of FIG. 6, and is as shown in the graph of FIG. That is, the target cycle is 5 sensor intervals.
If it is about double, the camber shape can be restored with high accuracy. However, this means that if the sensor intervals are all the same, the target camber period is limited to a narrow range.

【0022】そこで、より広い範囲の周期のキャンバー
を検出するために、各エッジ位置検出センサの配設間隔
を図1のように構成し、5台のエッジ位置検出センサ2
〜6で3種類のセンサ間隔がとれるように構成する。す
なわち、図7で示したように、センサ間隔の4倍〜8倍
の範囲であれば高い検出精度を維持できることを利用し
て、図1のようにセンサ間隔をL,L,2L,4Lとな
るように設定し、少ないセンサ台数でより高精度な検出
を可能にする。
Therefore, in order to detect a camber having a wider range of intervals, the arrangement intervals of the edge position detection sensors are configured as shown in FIG. 1, and the five edge position detection sensors 2 are arranged.
It is configured such that three types of sensor intervals can be obtained in the range from 6 to 6. That is, as shown in FIG. 7, it is possible to maintain the high detection accuracy in the range of 4 to 8 times the sensor interval, so that the sensor intervals are L, L, 2L, and 4L as shown in FIG. Is set so as to enable more accurate detection with a small number of sensors.

【0023】なお、図1中のエッジ位置検出センサ2、
3、4で周期4L〜8Lのキャンバーを、エッジ位置検
出センサ2、4、5で周期8L〜16Lのキャンバー
を、エッジ位置検出センサ2、5、6で周期16L〜3
2Lのキャンバーを検出し、それぞれの検出結果を加算
して合成することにより、周期4L〜32Lにわたる広
い範囲のキャンバーを、従来の3台のエッジ位置検出セ
ンサで検出する方式よりも格段と高い精度で検出するこ
とが可能となる。
The edge position detecting sensor 2 in FIG.
In 3 and 4, the camber having a period of 4L to 8L is used, in the edge position detecting sensors 2, 4 and 5, the camber having a period of 8L to 16L is used, and in the edge position detecting sensors 2, 5 and 6 the period is 16L to 3L.
By detecting a 2L camber and adding and combining the detection results, a much wider range of camber over a period of 4L to 32L can be detected with a much higher accuracy than the conventional method of detecting three edge position detection sensors. Can be detected with.

【0024】以上述べた処理を、検出結果より計算して
求めた周期別の曲がり角度に対して行うことにより、周
期別のキャンバー形状を復元した波形を得る。そして、
得られた複数の周期成分別の波形を足し合わせれば帯状
体のキャンバー形状を高精度に検出することができる。
By performing the above-described processing on the bending angle for each period calculated from the detection result, a waveform in which the camber shape for each period is restored is obtained. And
The camber shape of the belt-shaped body can be detected with high accuracy by adding the obtained waveforms of the respective periodic components.

【0025】[0025]

【発明の効果】以上述べたように本発明は、エッジ検出
用のセンサが等しい配設間隔Lで配設されている第1の
エッジ位置検出センサ群と、上記第1のエッジ位置検出
センサ群におけるセンサの配設間隔Lの2倍の配設間隔
2Lから4倍の配設間隔4Lで複数のエッジ位置検出セ
ンサが配設されている第2のエッジ位置検出センサ群と
を設けることにより、通常は検出が不可能な領域まで高
精度な検出が可能となり、センサの配設個数をそれほど
増加させることなく総合的な検出精度を大幅に向上させ
ることができる。
As described above, according to the present invention, the first edge position detection sensor group and the first edge position detection sensor group in which the edge detection sensors are arranged at equal intervals L are provided. By providing a second edge position detection sensor group in which a plurality of edge position detection sensors are arranged at an arrangement interval 2L that is twice the arrangement interval L of the sensor in the above and an arrangement interval 4L that is four times the arrangement interval L. Highly accurate detection is possible even in a region where detection is normally impossible, and the overall detection accuracy can be significantly improved without increasing the number of sensors provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の帯状体のキャンバー検出方法を実施す
るためのセンサの配設状況を示す平面図である。
FIG. 1 is a plan view showing an arrangement state of sensors for carrying out a method for detecting a camber of a belt-shaped body of the present invention.

【図2】検出結果に基づいてエッジの直線からの曲がり
角度θを求める様子を示す模式図である。
FIG. 2 is a schematic diagram showing how to determine a bending angle θ from a straight line of an edge based on a detection result.

【図3】曲がり角度のデータからエッジ形状を復元する
様子を示す模式図である。
FIG. 3 is a schematic diagram showing how an edge shape is restored from bending angle data.

【図4】エッジ位置検出センサの配設間隔Lがキャンバ
ー周期に対して大きい場合に検出振幅が実波形よりも減
少することを示す図である。
FIG. 4 is a diagram showing that the detected amplitude is smaller than the actual waveform when the arrangement interval L of the edge position detection sensor is larger than the camber cycle.

【図5】対象キャンバー周期とセンサ間隔の比に対し
て、検出振幅の減少が元の振幅に占める割合を示すグラ
フである。
FIG. 5 is a graph showing the ratio of the decrease in detected amplitude to the original amplitude with respect to the ratio of the target camber period and the sensor interval.

【図6】対象キャンバー周期とセンサ間隔の比に対し
て、エッジ位置検出センサの検出誤差による復元波形の
誤差が元の振幅に占める割合を示すグラフである。
FIG. 6 is a graph showing a ratio of an error of a restored waveform due to a detection error of an edge position detection sensor to an original amplitude with respect to a ratio of a target camber period and a sensor interval.

【図7】図6と図7とを合成したグラフで、3台のエッ
ジ位置検出センサによるキャンバー検出精度を示すグラ
フである。
7 is a graph obtained by combining FIG. 6 and FIG. 7, and is a graph showing camber detection accuracy by three edge position detection sensors.

【符号の説明】[Explanation of symbols]

1 第1のエッジ位置検出センサ群 2,3,4,5,6 エッジ位置検出センサ 7 検知対象の帯状体 8 エッジ位置検出センサの基準線 9 第2のエッジ位置検出センサ群 1 First Edge Position Detection Sensor Group 2, 3, 4, 5, 6 Edge Position Detection Sensor 7 Band to be Detected 8 Reference Line of Edge Position Detection Sensor 9 Second Edge Position Detection Sensor Group

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 帯状体の一方のエッジ側に、検出基準線
から上記エッジまでの距離を幅方向について測定するた
めに、3台以上のエッジ位置検出センサを上記帯状体の
長手方向に沿って配置し、上記3台以上のエッジ位置検
出センサでもって上記基準線から上記帯状体の板端まで
の距離を上記長手方向の移動距離に対して一定間隔で検
出し、検出点の相対位置から帯状体のキャンバーを推定
する方法において、 近接した等間隔で3台のエッジ位置検出センサを配設し
た第1のエッジ位置検出センサ群と、上記第1のエッジ
位置検出センサ群における各エッジ位置検出センサの配
設間隔Lに対し少なくとも2倍から4倍の配設間隔2L
〜4Lで複数のエッジ位置検出センサを配設した第2の
エッジ位置検出センサ群とを配置し、 上記第1および第2のエッジ位置検出センサ群により上
記基準線から上記帯状体の板端までの距離を、上記長手
方向に移動する距離に対して一定の間隔で検出すること
により周期別の複数のエッジ波形を生成し、これらの周
期別の複数のエッジ波形に基づいて上記帯状体のキャン
バー形状を得るようにしたことを特徴とする帯状体のキ
ャンバー検出方法。
1. On one edge side of the strip, three or more edge position detection sensors are provided along the longitudinal direction of the strip in order to measure the distance from the detection reference line to the edge in the width direction. The three or more edge position detection sensors detect the distance from the reference line to the plate end of the strip at a constant interval with respect to the moving distance in the longitudinal direction, and detect the strip from the relative position of the detection points. A method for estimating a camber of a body, comprising a first edge position detection sensor group in which three edge position detection sensors are arranged at equal intervals, and each edge position detection sensor in the first edge position detection sensor group. 2L, which is at least 2 to 4 times the arrangement interval L of
A second edge position detection sensor group having a plurality of edge position detection sensors arranged in a range from 4 L to 4 L, and from the reference line to the plate end of the strip by the first and second edge position detection sensor groups. By detecting the distances of .. at a constant interval with respect to the distance of movement in the longitudinal direction to generate a plurality of edge waveforms for each cycle, and based on the plurality of edge waveforms for each cycle, the camber of the belt-like body. A method for detecting a camber of a strip, which is characterized in that a shape is obtained.
JP3349107A 1991-12-06 1991-12-06 Detecting method for camber of band-shaped body Withdrawn JPH05157549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3349107A JPH05157549A (en) 1991-12-06 1991-12-06 Detecting method for camber of band-shaped body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3349107A JPH05157549A (en) 1991-12-06 1991-12-06 Detecting method for camber of band-shaped body

Publications (1)

Publication Number Publication Date
JPH05157549A true JPH05157549A (en) 1993-06-22

Family

ID=18401540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3349107A Withdrawn JPH05157549A (en) 1991-12-06 1991-12-06 Detecting method for camber of band-shaped body

Country Status (1)

Country Link
JP (1) JPH05157549A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158267A1 (en) * 1999-11-08 2001-11-28 Sumitomo Metal Industries, Ltd. Method for measuring quality of bandlike body, method for suppressing camber, instrument for measuring quality of bandlike body, rolling machine, and trimming device
JP2004170363A (en) * 2002-11-22 2004-06-17 Sumitomo Metal Ind Ltd Edge position measuring method of long material and shape measuring method using the same, and edge position measuring device and shape measuring device using the same
US20140268175A1 (en) * 2013-03-12 2014-09-18 Celgard, Llc Method and system for optical camber measurement of flat sheet membranes, films, and webs
JP2018027560A (en) * 2016-08-18 2018-02-22 東芝三菱電機産業システム株式会社 Shape measurement device and rolling system including the same
JP2021056087A (en) * 2019-09-30 2021-04-08 東芝三菱電機産業システム株式会社 Shape measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158267A1 (en) * 1999-11-08 2001-11-28 Sumitomo Metal Industries, Ltd. Method for measuring quality of bandlike body, method for suppressing camber, instrument for measuring quality of bandlike body, rolling machine, and trimming device
EP1158267A4 (en) * 1999-11-08 2003-01-08 Sumitomo Metal Ind Method for measuring quality of bandlike body, method for suppressing camber, instrument for measuring quality of bandlike body, rolling machine, and trimming device
JP2004170363A (en) * 2002-11-22 2004-06-17 Sumitomo Metal Ind Ltd Edge position measuring method of long material and shape measuring method using the same, and edge position measuring device and shape measuring device using the same
US20140268175A1 (en) * 2013-03-12 2014-09-18 Celgard, Llc Method and system for optical camber measurement of flat sheet membranes, films, and webs
WO2014165013A1 (en) * 2013-03-12 2014-10-09 Celgard, Llc Method and system for optical camber measurement of flat sheet membranes, films, and webs
US9541384B2 (en) 2013-03-12 2017-01-10 Celgard, Llc Method and system for optical camber measurement of flat sheet membranes, films, and webs
JP2018027560A (en) * 2016-08-18 2018-02-22 東芝三菱電機産業システム株式会社 Shape measurement device and rolling system including the same
JP2021056087A (en) * 2019-09-30 2021-04-08 東芝三菱電機産業システム株式会社 Shape measuring device

Similar Documents

Publication Publication Date Title
DE69833337D1 (en) Method for measuring the structures of a fingerprint by means of a linear sensor
JPH05157549A (en) Detecting method for camber of band-shaped body
US6357301B1 (en) Method and device for measuring the tensile stress distribution in a metal strip
JP3021805B2 (en) Measuring device
JPH0949720A (en) Butting-type measuring device
CN105783738A (en) Incremental type small-measurement-range displacement sensor and measurement method
CN205619888U (en) Increment formula is journey displacement sensor in a small amount
JP4935289B2 (en) Method and apparatus for measuring bent shape
JP4189139B2 (en) Linear encoder
JP3602226B2 (en) Method and apparatus for measuring the number of passing vehicles
JPH03255305A (en) Method and apparatus for measuring surface profile
CN205619889U (en) Novel micro displacement sensor is measured to increment formula in turn
JPS60218010A (en) Measuring method of center line profile of beltlike body
JPH109852A (en) Straightness measuring method
KR101179624B1 (en) Sensing device for bending developable surface and method thereof
JPH06294645A (en) Bent detection method for rolled member
US6552802B1 (en) Apparatus and method for roll invariant reflective position sensing
JPS63163110A (en) Method for measuring center line profile
JPH0236307A (en) Warp measuring method for beltlike body
JP3605649B2 (en) Surface profile measuring method and device
JP2004020469A (en) Surface form measuring method and program of its method
RU2179705C2 (en) Device for measuring shape of surface of large-sized articles
JP2560940B2 (en) Web tracking controller
JPH06288755A (en) Shape measurement and its device
JPH102730A (en) Method for measuring plate thickness distribution of strip and apparatus therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311