JPH0236307A - Warp measuring method for beltlike body - Google Patents

Warp measuring method for beltlike body

Info

Publication number
JPH0236307A
JPH0236307A JP63185872A JP18587288A JPH0236307A JP H0236307 A JPH0236307 A JP H0236307A JP 63185872 A JP63185872 A JP 63185872A JP 18587288 A JP18587288 A JP 18587288A JP H0236307 A JPH0236307 A JP H0236307A
Authority
JP
Japan
Prior art keywords
distance
strip
straight line
degree
beltlike body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63185872A
Other languages
Japanese (ja)
Other versions
JPH0557524B2 (en
Inventor
Kenichi Matsui
健一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63185872A priority Critical patent/JPH0236307A/en
Publication of JPH0236307A publication Critical patent/JPH0236307A/en
Publication of JPH0557524B2 publication Critical patent/JPH0557524B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To accurately find respective (n) coefficients of a function Y=F(x) of degree (n) and to accurately measure the warp of the beltlike body by setting the warp of the beltlike body nearby both ends, i.e. the distance from a measurement point to a reference straight line to '0'. CONSTITUTION:Distance sensors 2, 3, and 4 are arranged successively on the reference straight line parallel to the lengthwise direction of the beltlike body 1 and every time the beltlike body 1 is conveyed by a proper distance, the distance from the straight line to one side end part or center line of the beltlike body 1 is measured at three points and those distances are substituted in a polynomial of degree (n) to find the curvature. Here, the deviation distance between the straight light connecting two of the three measurement points and the remaining measurement point is found at N lengthwise positions, thereby finding coefficients from the degree (n) to the degree '0' of the polynomial of degree (n) according to N expressions showing the relation between the lengthwise position and two expressions wherein the deviation distance from the reference straight line is '0' nearby the tip end and tail end of the beltlike body 1. Consequently, the respective coefficients of the function Y=F(x) of degree (n) are found by single-time regressive arithmetic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼板等の帯状体の曲がり状態を測定する方法
に関し、更に詳述すれば基準直線から帯状体片側端部ま
たは帯状体中心線までの距離を帯状体長手方向位置のn
次多項式として求める曲がり測定方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the bending state of a belt-shaped body such as a steel plate. n of the longitudinal position of the strip
This paper relates to a method for measuring bending as a degree polynomial.

〔従来の技術〕[Conventional technology]

所定幅に圧延された鋼板にその圧延ラインにおいて曲が
りが発生すると、所定幅、長さの鋼板を切り出せないこ
とがあるので、圧延ラインにおいて鋼板(帯状体)の曲
がりの程度を知ることは重要である。
If a steel plate that has been rolled to a specified width is bent on the rolling line, it may not be possible to cut out a steel plate of the specified width and length, so it is important to know the degree of bending in the steel plate (strip) on the rolling line. be.

鋼板等の成形製品の曲がりの測定方法としては、第7図
に示すように帯状体11の長手(搬送)方向に3個の中
心位置測定可能な幅計12.13.14を並設し、帯状
体11が適当な距離搬送される都度、各幅計12.13
.14の中心位置測定値を検出して、その検出値に基づ
き帯状体11の曲がりを測定する方法が知られている 
(特開昭59−65710号公報)。
As a method for measuring the bending of a formed product such as a steel plate, as shown in FIG. Each time the strip 11 is conveyed an appropriate distance, each width is 12.13.
.. There is a known method of detecting the center position measurement value of 14 and measuring the bending of the strip 11 based on the detected value.
(Japanese Unexamined Patent Publication No. 59-65710).

以下この方法につき説明する。帯状体11は、テーブル
ロール16.16・・・の図示しない駆動系の作用によ
る回転に伴ってその長手方向に搬送されるようになって
おり、帯状体11の搬送方向に、中心位置測定可能な幅
計12.13間距離り12幅計12.14間距離L2だ
け隔てて、3個の幅計12.13.14が並設固定して
あり、幅計12.13.14は帯状体11の中心線!〜
基準線間の離隔距離を測定するようになっている。
This method will be explained below. The strip 11 is conveyed in its longitudinal direction as the table rolls 16, 16, etc. are rotated by the action of a drive system (not shown), and the center position of the strip 11 can be measured in the conveying direction. Three width gauges 12.13.14 are fixed in parallel, separated by a distance L2 between width gauges 12.13 and 12 width gauges 12.14. 11 center lines! ~
It is designed to measure the separation distance between reference lines.

第8図は従来技術の測定原理を説明するための距離測定
点、距離測定値、中心線lの関係を表す模式図であり、
・図中A、B、Cが夫々距離センサ12、13.14に
対向する帯状体11上の距離測定点である。
FIG. 8 is a schematic diagram showing the relationship between distance measurement points, distance measurement values, and center line l for explaining the measurement principle of the prior art.
- In the figure, A, B, and C are distance measurement points on the strip 11 facing the distance sensors 12, 13, and 14, respectively.

但し、幅計12.13.14によって定義される測定原
点位置を結んだ直線をX軸とし、帯状体の搬送方向と反
対方向を正方向と定義する。また、上記X軸と直交し、
基準線から帯状体に向かう方向をY軸止方向とし、原点
は幅計12によって最初に測定された測定点の測定原点
位置と定義する。
However, the straight line connecting the measurement origin positions defined by the width gauges 12, 13, and 14 is defined as the X axis, and the direction opposite to the conveyance direction of the strip is defined as the positive direction. Also, perpendicular to the above X axis,
The direction from the reference line toward the strip is defined as the Y-axis stop direction, and the origin is defined as the measurement origin position of the measurement point first measured by the width gauge 12.

図中曲線Y = F (X)は帯状体11の中心線pと
して仮定する曲線であり、下記(1)式に示すn次多項
式で表現する。
The curve Y=F(X) in the figure is a curve assumed to be the center line p of the strip 11, and is expressed by an n-th degree polynomial shown in equation (1) below.

曲線F(×)上の2点の距離測定点A、Bを通る直線Y
 = C(Xlと曲線Y = F (XlとのX−Xc
Jにおける距離M(jlを求める。(但し、各距離測定
点A、  B。
A straight line Y passing through two distance measurement points A and B on the curve F(x)
= C (Xl and curve Y = F (X-Xc with Xl
Find the distance M (jl) at J. (However, each distance measurement point A, B.

Cの搬送方向位置座標を夫々X aj+  X bj+
  X cjとする。) 直線Y = G (Xlの式は Y = G (Xl よって +F(X□) L+ L貫 M(jl−G  (XcJ)  −F  (XcJ)−
F  (XcJ)           ・・・(2)
ここで幅計12.13.14における基準線からの距離
測定値が!! ij+  I!bj+  ’! cjで
あるとするとF (X、J)=ff、、、  F (X
bj) −pbJ、  F (XCJ) =7!、であ
るから上記(2)式は となる。
The transport direction position coordinates of C are respectively X aj+ X bj+
Let it be X cj. ) Straight line Y = G (The formula for Xl is Y = G (Xl Therefore +F(X□) L+ L through M(jl-G (XcJ) -F (XcJ)-
F (XcJ) ... (2)
Here is the measured distance from the reference line at width meter 12, 13, and 14! ! ij+I! bj+'! cj, then F (X, J)=ff, ,, F (X
bj) −pbJ, F (XCJ) = 7! , so the above equation (2) becomes.

よって上記(i)、 (2+、 (31式よりそして帯
状体11の各搬送タイミングにて上記(4)式の如き方
程式を多数個得て、これら多数の連立方程式を解くこと
により、Y = F fXlの各係数(C7゜CM−1
+ ・・・、C0)を求めて帯状体11の曲がりを測定
する。
Therefore, by obtaining a large number of equations such as the above equation (4) from the above equations (i), (2+, (31) and at each conveyance timing of the strip 11, and solving these many simultaneous equations, Y = F. Each coefficient of fXl (C7゜CM-1
+..., C0) and measure the bending of the strip 11.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところがこの方法では上記(4)式左辺において、1次
の項の係数CI及び定数項C8が消去される(下記計算
式参照)。
However, in this method, the coefficient CI of the first-order term and the constant term C8 are eliminated on the left side of the above equation (4) (see the calculation formula below).

==0 <x*=+Lz ))CI L。==0 <x*=+Lz ))CI L.

+ CI  Xaj+ Co )   (Cn  X’
2J+ Cn−+  X:ソ=0 +−+ CI  XeJ+ Co  )従って連立方程
式を解くことにより求められるのは、2次以上の項の係
数(C−、Cf1−+ 、・・・C3、Cz )のみで
ある。そして係数C,,C。
+ CI Xaj+ Co ) (Cn X'
2J+ Cn-+ X: So=0 +-+ CI Only. and coefficients C,,C.

を求める場合には、多数得られた搬送方向位置座標と距
離11J定値とを組合せた値の中で同一搬送タイミング
にて得られた2組の値、求められた2次以上の項の係数
値及び未知数としてのC+、C。
When calculating, two sets of values obtained at the same transport timing among the values obtained by combining a large number of transport direction position coordinates and distance 11J constant value, and the coefficient value of the calculated quadratic or higher term are used. and C+, C as unknowns.

をY = F (X)に代入し、得られる2本の方程式
を解いてC+、Coの値を求めていた。
The values of C+ and Co were obtained by substituting Y = F (X) and solving the resulting two equations.

つまりこの方法では、2次以上の項の係数は回帰演算に
て求められるのでその精度は比較的良いが、C,、C・
。は誤差を含む可能性が高い2組の測定データのみに基
づいて求められている。よってC+、Coはその算出精
度が極めて低く、この結果これらの係数を用いて測定さ
れる曲がりは正確さに欠けるという問題点があった。
In other words, in this method, the coefficients of quadratic and higher terms are obtained by regression calculation, so the accuracy is relatively good, but
. is determined based only on two sets of measurement data that are likely to contain errors. Therefore, the calculation accuracy of C+ and Co is extremely low, and as a result, there is a problem in that the bending measured using these coefficients lacks accuracy.

本発明は斯かる事情に鑑みてなされたものであり、n次
間数Y = F (Xiの各係数を精度良く求められ、
帯状体の曲がりを正確に測定することができる帯状体の
曲がり測定方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and it is possible to obtain each coefficient of Xi with high accuracy,
It is an object of the present invention to provide a method for measuring the bending of a band-like object, which can accurately measure the bending of the band-like object.

〔課題を解決するための手段〕[Means to solve the problem]

従来方法によると、例えば第5図に示すような中心線!
 (但しQ、  Rは夫々帯状体の最先端、最後端を示
す)を表すn次の多項式の係数が求められる。
According to the conventional method, for example, the center line as shown in FIG.
(where Q and R indicate the leading and trailing ends of the strip, respectively) are obtained.

ところで帯状体の曲がり測定において要求される測定結
果は最先端及び最後端における曲がりをOと設定した場
合の中央部の曲がりであってもよい。そこで本発明では
第6図に示すように両端での曲がりをOとして、帯状体
の片側端部または中心線として近似した0次関数の各係
数を算出することとする。
By the way, the measurement result required in measuring the bending of a strip-shaped body may be the bending at the center when the bending at the leading and trailing ends is set to O. Therefore, in the present invention, as shown in FIG. 6, the curves at both ends are assumed to be O, and each coefficient of a zero-order function approximated as one end or center line of the strip is calculated.

本発明に係る帯状体の曲がり測定方法は、帯状体の長手
方向に略平行な基準直線から帯状体片側端部または帯状
体中心線までの距離を3個所にて測定して距離測定値を
得、これらの距離測定値に基づいて前記基準直線から帯
状体片側端部または帯状体中心線までの距離を帯状体の
長手方向位置のn次多項式として求める帯状体の曲がり
測定方法において、3個所の距離測定点のうちの2個所
の距離測定点を結ぶ直線と残りの1個所の距離測定点と
のずれ距離を、帯状体の長手方向のN(≧rl−1)個
所にて求め、長手方向位置とこのずれ距離との関係を示
すN本の式、及び帯状体の最先端近傍と最後端近傍とで
の基準直線からのずれ距離を0とする2本の式に基づい
て前記n次多項式のn次から0次までの係数を求めるこ
とを特徴とする。
The method for measuring the bending of a strip according to the present invention obtains a distance measurement value by measuring the distance from a reference straight line substantially parallel to the longitudinal direction of the strip to one end of the strip or the center line of the strip at three locations. , a method for measuring the bending of a strip in which the distance from the reference straight line to one end of the strip or the center line of the strip is determined as an n-th degree polynomial of the longitudinal position of the strip based on these distance measurement values. The deviation distance between the straight line connecting two of the distance measurement points and the remaining one distance measurement point is determined at N (≧rl-1) points in the longitudinal direction of the strip, and The n-th degree polynomial is calculated based on N equations showing the relationship between the position and this deviation distance, and two equations in which the deviation distance from the reference straight line near the leading edge and near the rear end of the strip is set to 0. It is characterized by finding the coefficients from the nth order to the zeroth order.

〔作用〕[Effect]

本発明では帯状体の最先端近傍及び最後端近傍での曲が
り(基準直線から距離測定点までの距離)をOとする。
In the present invention, the bending (distance from the reference straight line to the distance measurement point) near the leading edge and the trailing edge of the strip is defined as O.

そうするとn次多項式からなる関数Y = F fX)
の各係数を一度の回帰演算にて求めることができる。
Then, the function Y = F fX) consisting of an n-dimensional polynomial
Each coefficient can be obtained by one regression calculation.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明に係る曲がり測定方法の実施状態を示す
模式図である。
FIG. 1 is a schematic diagram showing the implementation state of the bending measuring method according to the present invention.

帯状体1の長手(搬送)方向に平行な基準直線上に3個
の距離センサ2,3.4を並設し、帯状体1が適当な距
離搬送される都度、各距離センサ2.3.4の距離測定
値を検出して、その検出値に基づき帯状体1の曲がりを
測定する。
Three distance sensors 2, 3.4 are arranged in parallel on a reference straight line parallel to the longitudinal (conveyance) direction of the strip 1, and each distance sensor 2, 3. 4 is detected, and the bending of the strip 1 is measured based on the detected value.

帯状体1は、1対のフレーム5,5に固持されているテ
ーブルロール6.6・・・の図示しない駆動系の作用に
よる回転に伴って図中白抜矢符方向に搬送されることに
なっており、また1本のフレーム5上にはフレーム5の
延設方向に、距離センサ2.3間距離L1.距離センサ
3,4間距離L2だけ隔てて、3個の距離センサ2.3
.4が並設固定してあり、距離センサ2,3.4は帯状
体1の側面〜各距離センサ2,3.4間の離隔距離を測
定するようになっている。ただし距離センサ24間の距
離をLO(=LI +LZ)とする。
The strip 1 is conveyed in the direction of the white arrow in the figure as the table rolls 6, 6, . Moreover, on one frame 5, in the extending direction of the frame 5, there is a distance L1.3 between the distance sensors 2.3. Three distance sensors 2.3 are separated by a distance L2 between the distance sensors 3 and 4.
.. 4 are fixedly arranged in parallel, and the distance sensors 2, 3.4 measure the distance between the side surface of the strip 1 and each distance sensor 2, 3.4. However, the distance between the distance sensors 24 is assumed to be LO (=LI +LZ).

第2図は本発明方法における距離測定点、距離測定値9
曲がり形状曲線の関係を示す模式図であり、図中A、B
、Cが夫々距離センサ2,3.4に対向する帯状体1上
の距離測定点である。
Figure 2 shows distance measurement points and distance measurement values 9 in the method of the present invention.
It is a schematic diagram showing the relationship between curved shape curves, and in the figure A and B
, C are distance measuring points on the strip 1 facing the distance sensors 2, 3.4, respectively.

但し、距離センサ2,3.4によって定義される測定原
点位置を結んだ直線をX軸とし、帯状体の搬送方向と反
対方向を正方向と定義する。また、上記X軸と直交し、
距離センサ2,3.4から帯状体に向かう方向をY軸止
方向とし、原点は距離センサ2によって最初に測定され
た測定点の測定原点位置と定義する。
However, the straight line connecting the measurement origin positions defined by the distance sensors 2, 3.4 is defined as the X axis, and the direction opposite to the conveying direction of the strip is defined as the positive direction. Also, perpendicular to the above X axis,
The direction from the distance sensors 2, 3.4 toward the strip is defined as the Y-axis stop direction, and the origin is defined as the measurement origin position of the measurement point first measured by the distance sensor 2.

図中曲線Y = F (Xiは帯状体Iの曲がり形状と
して仮定する曲線であり、下記(5)式に示すn次多項
弐で表現する。
In the figure, the curve Y = F (Xi is a curve assumed as the curved shape of the strip I, and is expressed by the n-th order polynomial 2 shown in the following equation (5).

曲線F (x+上の2点の距離測定点A、Cを通る直線
Y = G (Xiと曲%% Y = F (X)との
X = X bJにおける距離M(j) (BD)を求
める。 (但し、各距離測定点A、B、Cの搬送方向位
置座標を夫々X aj+ XbjX(Jとする。) 直線Y = G (X)の式は X Cj   X aj にて表される。
Find the distance M(j) (BD) at X = X bJ between the two distance measurement points A and C on the curve F (x+). (However, the transport direction position coordinates of each distance measurement point A, B, and C are respectively X aj + XbjX (J.) The equation of the straight line Y = G (X) is expressed as X Cj X aj.

pb j L。pbj L.

L。L.

ここで XbJ=XaJ+L。here XbJ=XaJ+L.

X cj =X aj +L 。X cj = X aj + L.

だから、(8)式の左辺第1項、第2項1よとなる。従
って よって 十F (Xo) L+  F  (XcJ)  ” Lz  F  (X
a;)M(J)−F  (XbJ)  −c  (Xb
j)・・・(6) となる。
Therefore, the first term and the second term on the left side of equation (8) become 1. Therefore, 10F (Xo) L+ F (XcJ) ” Lz F (X
a;)M(J)-F(XbJ)-c(Xb
j)...(6)

ここで距離センサ2,3.4における距離測定値が(!
 llj+  I’ bj+  12 Cjであるとす
るとF (X、、)= 1−;、  F (XbJ) 
= lb、、  F (Xc、H) = pcJである
から上記(6)式は となる。
Here, the distance measurement values at distance sensors 2, 3.4 are (!
If llj+ I' bj+ 12 Cj, then F (X,,)= 1-;, F (XbJ)
= lb,, F (Xc, H) = pcJ, so the above equation (6) becomes.

よって上記15)、 +61. (71式より、L。Therefore, the above 15), +61. (From formula 71, L.

帯状体両端での測定点から基準直線(X軸)までの距離
は0であるから、帯状体の長さをLとすると、 F(0)=O F(L)=0 だから、(5)式より Co”O・・・00) (91,Qω、0υ式より行列表示すると、X−C=Y
       ・・・Oz ただし く以下余白) ■ □ ■ L’ bj bs ここでNは距離測定回数である。
Since the distance from the measurement points at both ends of the strip to the reference straight line (X-axis) is 0, if the length of the strip is L, then F(0)=O F(L)=0, so (5) From the formula, Co”O...00) (91, Qω, 0υ When expressed as a matrix, X-C=Y
...Oz (Leave space below) ■ □ ■ L' bj bs Here, N is the number of distance measurements.

従って(2)式においてCについて解けばY = F 
(Xiの各係数(C−、C,、−+ 、”’、C+ 、
Co)が求まる。
Therefore, if you solve for C in equation (2), Y = F
(Each coefficient of Xi (C-, C,,-+,"', C+,
Co) can be found.

N=n−1の場合はXは正方行列となるので下記09式
の如くCが一義的に決まる。
When N=n-1, X becomes a square matrix, so C is uniquely determined as shown in equation 09 below.

C=X−’・Y  ・・・Q31 N>n−1のときは下記aa式の如く最小2乗法を用い
て求めなければならない。
C=X-'.Y...Q31 When N>n-1, it must be determined using the least squares method as shown in the aa formula below.

C−(X”−X)−’・Xl ・Y   ・・・θ0(
但しxTはXの転置行列) 通常nは6程度で充分であるのでα4式のXTXは7行
7列の正方行列となり、逆行列(X”  −X)−’は
比較的少ない計算量にて簡単に求められる。
C-(X''-X)-'・Xl ・Y...θ0(
However, xT is the transposed matrix of easily requested.

なお00)式よりco”Oであるのでaカ式においてX
の第N+1行目と第1列目とを削除したXl(N+1行
、n列)、Cの第1行目を削除したC。
Note that from the formula 00), co"O, so in the formula a, X
Xl (N+1 row, n column) by deleting the N+1st row and first column of C, and C by deleting the first row of C.

(n行、1列)、及びYの第N+1行目を削除した”V
+(N+1行、1列)を用いてY = F (X)の各
係数を求めても前述の結果と同じ結果になる。
(row n, column 1) and deleted the N+1st row of Y
+(N+1 row, 1 column) to obtain each coefficient of Y=F(X), the same result as above is obtained.

ところで第3図に示す曲vAm、と、この曲線m0を平
行移動してなる曲線m1とにおいて、3個の距離センサ
にて距離測定した場合、B、D6−巨となる。従って横
ぶれがあっても正確に曲がりを測定できる。第4図に示
す曲線m。と、この曲線moを平行移動させしかも首を
振らしてなる曲線m2とにおいて、3個の距離センサに
て距離測定した場合、首振り角が小さい場合は「屓=瞑
となる。従って首振り角が小さい場合、m(、、m2の
C8−07は同一となるので、少しの首振りがあっても
正確に曲がりを測定できる。
By the way, when distances are measured using three distance sensors in the song vAm shown in FIG. 3 and the curve m1 obtained by translating this curve m0, the distances are B, D6-large. Therefore, bending can be accurately measured even if there is lateral wobbling. Curve m shown in FIG. , and a curve m2 formed by moving this curve mo in parallel and shaking the head, when the distance is measured using three distance sensors, if the swing angle is small, "屓 = meditate. Therefore, the swing is If the angle is small, C8-07 of m(,, m2 will be the same, so even if there is a slight swing, the bend can be measured accurately.

なお従来方、法のように距離センサを配置して中心線ま
での距離を直接測定するように構成してもよいことは言
うまでもない。
It goes without saying that a distance sensor may be arranged to directly measure the distance to the center line as in the conventional method.

なお本実施例では距離測定点A、Cを通る直線と距離測
定点Bとの距離のずれに基づいて各係数を求めることと
したが、これに限らず他の組合せ、即ち距離測定点A、
B (B、C)を通る直線と距離測定点C(A)との距
離のずれに基づいて求めてもよいことは勿論である。
In this embodiment, each coefficient is calculated based on the distance difference between the straight line passing through the distance measurement points A and C and the distance measurement point B, but this is not limited to this.
Of course, it may be determined based on the distance difference between the straight line passing through B (B, C) and the distance measurement point C (A).

また本実施例では3個の距離センサを基準直線上に配置
することとしたが、基準直線までの距離が求められる場
合には各測定点を通り基準直線に垂直な直線上の任意の
位置に配置してよい。
In addition, in this example, three distance sensors are placed on the reference straight line, but if the distance to the reference straight line is to be determined, they can be placed at any position on the straight line that passes through each measurement point and is perpendicular to the reference straight line. May be placed.

更に曲がりを0とする2点は帯状体の最先端支び最後端
に限定する必要はなく、それらの近傍の2点であってよ
い。
Further, the two points at which the bending is zero need not be limited to the most extreme support and the rearmost end of the strip, but may be two points in the vicinity thereof.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の曲がり測定方法は帯状体
の両端近傍での測定点から基準直線までの距離をOと設
定することにより、Y = F (xiのn個の係数を
一度の回帰演算のみによって求めることができるので、
それらのn個の係数の算出精度が極めて良くなる。この
結果本発明では帯状体の曲がりを正確に測定することが
できる。
As detailed above, the bending measuring method of the present invention sets the distance from the measurement point near both ends of the strip to the reference straight line as O, and calculates the n coefficients of xi at once. Since it can be determined only by regression calculation,
The calculation accuracy of those n coefficients becomes extremely high. As a result, in the present invention, the bending of the strip can be accurately measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式図、第2図は
本発明方法における距離測定点、距離測定値2曲がり形
状曲線の関係を示す模式図、第3図〜第6図は本発明方
法の原理を説明するための模式図、第7図は従来方法の
実施状態を示す模式図、第8図は従来方法における距離
測定点、距離測定値1曲がり形状曲線の関係を示す模式
図である。 ■・・・帯状体 2.3.4・・・距離センサ特 許 
出願人
Fig. 1 is a schematic diagram showing the implementation state of the method of the present invention, Fig. 2 is a schematic diagram showing the relationship between distance measurement points and distance measurement values 2 curved shape curves in the method of the present invention, and Figs. A schematic diagram for explaining the principle of the invention method, FIG. 7 is a schematic diagram showing the implementation state of the conventional method, and FIG. 8 is a schematic diagram showing the relationship between distance measurement points and distance measurement value 1 curve shape curve in the conventional method. It is. ■...Striped body 2.3.4...Distance sensor patent
applicant

Claims (1)

【特許請求の範囲】 1、帯状体の長手方向に略平行な基準直線から帯状体片
側端部または帯状体中心線までの距離を3個所にて測定
して距離測定値を得、これらの距離測定値に基づいて前
記基準直線から帯状体片側端部または帯状体中心線まで
の距離を帯状体の長手方向位置のn次多項式として求め
る帯状体の曲がり測定方法において、3個所の距離測定
点のうちの2個所の距離 測定点を結ぶ直線と残りの1個所の距離測定点とのずれ
距離を、帯状体の長手方向のN (≧n−1)個所にて求め、長手方向位置とこのずれ距
離との関係を示すN本の式、及び帯状体の最先端近傍と
最後端近傍とでの基準直線からのずれ距離を0とする2
本の式に基づいて前記n次多項式のn次から0次までの
係数を求めることを特徴とする帯状体の曲がり測定方法
[Claims] 1. Obtain distance measurement values by measuring the distance from a reference straight line substantially parallel to the longitudinal direction of the strip to one end of the strip or the center line of the strip at three locations, and calculate these distances. In the method for measuring the bending of a strip, the distance from the reference straight line to one end of the strip or the center line of the strip is determined as an n-th order polynomial of the longitudinal position of the strip based on the measured value. Find the deviation distance between the straight line connecting the two distance measurement points and the remaining one distance measurement point at N (≧n-1) points in the longitudinal direction of the strip, and calculate the longitudinal position and this deviation. N equations showing the relationship with distance, and 2 where the deviation distance from the reference straight line near the leading edge and the trailing edge of the strip is set to 0.
A method for measuring curvature of a band-shaped body, characterized in that coefficients from the nth to the zeroth order of the nth-order polynomial are determined based on the equations in this book.
JP63185872A 1988-07-26 1988-07-26 Warp measuring method for beltlike body Granted JPH0236307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63185872A JPH0236307A (en) 1988-07-26 1988-07-26 Warp measuring method for beltlike body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63185872A JPH0236307A (en) 1988-07-26 1988-07-26 Warp measuring method for beltlike body

Publications (2)

Publication Number Publication Date
JPH0236307A true JPH0236307A (en) 1990-02-06
JPH0557524B2 JPH0557524B2 (en) 1993-08-24

Family

ID=16178355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63185872A Granted JPH0236307A (en) 1988-07-26 1988-07-26 Warp measuring method for beltlike body

Country Status (1)

Country Link
JP (1) JPH0236307A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634360A (en) * 1992-07-20 1994-02-08 Nippon Steel Corp Steel plate shape measuring method
GB2415259A (en) * 2004-06-16 2005-12-21 Christopher St John Cordingley Measuring warp in planar materials
JP2006234540A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk H-section steel shape measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634360A (en) * 1992-07-20 1994-02-08 Nippon Steel Corp Steel plate shape measuring method
GB2415259A (en) * 2004-06-16 2005-12-21 Christopher St John Cordingley Measuring warp in planar materials
GB2415259B (en) * 2004-06-16 2009-03-25 Christopher St John Cordingley Measuring warp in planar materials
JP2006234540A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk H-section steel shape measuring method

Also Published As

Publication number Publication date
JPH0557524B2 (en) 1993-08-24

Similar Documents

Publication Publication Date Title
JPH0236307A (en) Warp measuring method for beltlike body
JP3940327B2 (en) Metal plate thickness measurement method
JP2536668B2 (en) Steel plate flatness measuring device
JPS5911844B2 (en) Long material bend measuring device
JPS60218010A (en) Measuring method of center line profile of beltlike body
JPH04143608A (en) Device for measuring flatness of steel plate
JPH05157549A (en) Detecting method for camber of band-shaped body
JPH06273162A (en) Flatness measuring device
JP2001124535A (en) Method for measuring bend in long material
JPH01221605A (en) Thickness measuring instrument
JPH09126705A (en) Roll parallelism measuring device of roll line
JP2988645B2 (en) Measurement method of sheet material distortion shape
JP4173700B2 (en) Bookbinding bend inspection device
JP3010398B2 (en) Steel sheet shape measurement method
JPH0540032A (en) Device for inspecting straightness of edge of object
JPH087063B2 (en) Flatness measuring device
JP3126101B2 (en) Contact type measuring instrument
JPH0543254B2 (en)
JPS61132817A (en) Method for measuring center line profile of belt-like object
JPS6166116A (en) Measuring method of central-line profile of material to be rolled
JP2786547B2 (en) Sheet material camber detection device
JP2539134B2 (en) Flatness measuring device
JPH0247510A (en) Measuring method of shape of belt-shaped body
JPH0719830A (en) Measuring apparatus for shape of hot steel plate
JPH08292024A (en) Bending measuring device for shape steel