JP2005351863A - Measurement method of surface shape - Google Patents

Measurement method of surface shape Download PDF

Info

Publication number
JP2005351863A
JP2005351863A JP2004175846A JP2004175846A JP2005351863A JP 2005351863 A JP2005351863 A JP 2005351863A JP 2004175846 A JP2004175846 A JP 2004175846A JP 2004175846 A JP2004175846 A JP 2004175846A JP 2005351863 A JP2005351863 A JP 2005351863A
Authority
JP
Japan
Prior art keywords
image
measured
slider
accuracy
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004175846A
Other languages
Japanese (ja)
Inventor
Kenichi Ishikawa
憲一 石川
Michio Uneda
道雄 畝田
Koichiro Ichikawa
浩一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoshi Machinery Corp
Original Assignee
Fujikoshi Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoshi Machinery Corp filed Critical Fujikoshi Machinery Corp
Priority to JP2004175846A priority Critical patent/JP2005351863A/en
Publication of JP2005351863A publication Critical patent/JP2005351863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make measurements of surface shapes with higher accuracy, by avoiding reduction of measurement accuracy affected from undulation and bending of a linear guide, as well as vertical motions during transit time of a sliding block moving along this linear guide, in a technique for measuring the surface of measured things, such as lapping surface plate with high accuracy by moving contact-type or noncontact-type length sensors along the surface of measured bodies. <P>SOLUTION: An oppositely placed image 7 and one side of an imager system 6, such as cameras are arranged at a fixed position, while another side is forced to move along the surface of measured bodies 2. During this movement, by obtaining the image 7 as plurality of image information with the imager system 6; and by assessing displacement of the reference point in these images at accuracy below pixel unit of the image information concerned, the surface shape of the measured bodies can be measured as a reference with respect to the image or the imager system arranged at the fixed position. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、接触型又は非接触型の長さセンサを被計測物の表面に沿って移動させることにより、被計測物の表面形状を計測する装置に関するもので、例えば、ラッピング定盤やポリッシング定盤などの高い表面精度を要求される部材の表面を高精度で計測する技術に関し、特に、大口径定盤や長尺平面の形状の高精度計測に適した計測方法に関するものである。   The present invention relates to an apparatus for measuring the surface shape of an object to be measured by moving a contact type or non-contact type length sensor along the surface of the object to be measured. For example, the present invention relates to a lapping surface plate or a polishing plate. More particularly, the present invention relates to a measurement method suitable for high-precision measurement of the shape of a large-diameter surface plate or a long flat surface.

従来の表面形状の計測では、被計測物を測定台に載せ、リニアガイドに沿って移動するスライダに搭載した接触式又は非接触式のセンサで、被計測物の表面を走査する方法で行われている(例えば特許文献1)。この方法では、センサを移動させるスライダを基準にして表面の形状を測定することとなるので、スライダの移動精度が測定精度に影響を与えていた。従って、被計測物の表面形状計測結果には、スライダの移動誤差が含まれることになる。   Conventional surface shape measurement is performed by a method of scanning the surface of an object to be measured with a contact or non-contact sensor mounted on a slider that moves along a linear guide. (For example, Patent Document 1). In this method, since the shape of the surface is measured with reference to the slider that moves the sensor, the movement accuracy of the slider has an influence on the measurement accuracy. Therefore, the measurement result of the surface shape of the object to be measured includes a slider movement error.

しかしラップ定盤などの表面形状計測などにおいては、リニアガイド自体の平行度を越える精度の計測が要求されている。また、大口径ラップ定盤の表面形状を計測する場合には、リニアガイドの撓みや振れ等の影響によって、高精度計測が困難になっている。特許文献2には、断面積の小さい線材ないし薄い板材を基準とし、その基準面を測長する測定器を測定面に平行に移動させる機構と、上記測定面又は基準面までの距離情報、計算により求めた基準面の自重による撓み量、測定面に対する水平方向移動量を用いて平坦度及び表面形状を求める方法が提案されている。   However, in measuring the surface shape of a lapping surface plate or the like, measurement with accuracy exceeding the parallelism of the linear guide itself is required. In addition, when measuring the surface shape of a large-diameter lap surface plate, high-precision measurement is difficult due to the influence of linear guide bending and deflection. Patent Document 2 discloses a mechanism for moving a measuring device for measuring the reference surface in parallel with the measurement surface based on a wire or thin plate having a small cross-sectional area, distance information to the measurement surface or the reference surface, and calculation. There has been proposed a method for obtaining the flatness and the surface shape by using the amount of deflection by the weight of the reference surface obtained by the above and the amount of horizontal movement with respect to the measurement surface.

一方、リニアガイドと平行に投射したレーザ光を基準にして、リニアガイドのうねりや撓みに起因するセンサの上下位置の補正を行うことによって、定盤表面の高精度測定を行うことが考えられる。この場合には、リニアガイドのうねりや撓みに起因するレーザ光受光素子の変位をレーザ光の高さを基準として高分解能に測定しうる信号処理方法が必要になる。しかしこの方法は、レーザ光の光速が極めて速いことから、受信位相差に基づいて解析を行うアレー信号処理では、その実現が難しい。
特開2001‐41732号公報 特開2003‐322520号公報
On the other hand, it is conceivable to perform high-precision measurement of the surface of the surface plate by correcting the vertical position of the sensor due to the waviness or deflection of the linear guide with reference to laser light projected in parallel with the linear guide. In this case, a signal processing method is required that can measure the displacement of the laser light receiving element due to the swell or deflection of the linear guide with high resolution on the basis of the height of the laser light. However, this method is difficult to realize in the array signal processing in which the analysis is performed based on the reception phase difference because the speed of the laser light is extremely high.
JP 2001-41732 A Japanese Patent Laid-Open No. 2003-322520

以上のように従来の技術では、被計測物表面の形状を計測する長さセンサの移動精度の影響を無視できず、リニアガイドに沿って移動するときのセンサの変位が測定精度に影響を及ぼし、高精度計測の障害となっている。   As described above, in the conventional technology, the influence of the movement accuracy of the length sensor that measures the shape of the surface of the object to be measured cannot be ignored, and the displacement of the sensor when moving along the linear guide affects the measurement accuracy. It has become an obstacle to high-precision measurement.

本発明は、リニアガイドのうねりや撓み、このリニアガイドに沿って移動するスライダの移動時の上下動などの影響による測定精度の低下を回避し、より高精度の表面形状計測を行うことができる計測方法を得ることを課題としている。   The present invention avoids a decrease in measurement accuracy due to the influence of waviness and deflection of the linear guide and the vertical movement during the movement of the slider that moves along the linear guide, and can perform more accurate surface shape measurement. The task is to obtain a measurement method.

本発明では、対向する画像7とカメラその他の画像取得装置6の一方を不動位置に設置して他方を被計測物2の表面に沿って移動させ、この移動の際に、画像取得装置6で画像7を複数の画像情報として取得し、これらの画像中における基準点の位置変化を、当該画像情報のピクセル単位以下の精度で評価することによって、不動位置に設置した画像又は画像取得装置を基準とした被計測物の表面形状を測定する。   In the present invention, one of the facing image 7 and the camera or other image acquisition device 6 is set at a non-moving position, and the other is moved along the surface of the object 2 to be measured. By acquiring the image 7 as a plurality of pieces of image information and evaluating the change in the position of the reference point in these images with an accuracy equal to or less than the pixel unit of the image information, the image or the image acquisition device installed at the fixed position is used as a reference. Measure the surface shape of the measured object.

一般的には、リニアガイド3に案内されて移動するスライダ4に被計測物表面を計測する接触型又は非接触型の長さセンサ5、16を搭載し、このセンサから離れた不動位置に、好ましくはスライダ4の移動方向延長上に、不動画像7を設置し、接触型センサ又はスライダにカメラ6を取り付け、カメラ6で不動画像7を撮影することにより複数の画像情報を取得し、画像解析により画像中の基準点13aをピクセル単位以下の精度で演算する。リニアガイド3に沿ってセンサ5、16の位置を変化させる毎に画像情報を取得することによって、複数の画像情報相互における基準点13aの位置の変化が、被計測物の表面形状変化又はスライダの直線誤差と等しいことになり、高精度の表面形状計測ないし補正が可能になる。   In general, a contact type or non-contact type length sensor 5 or 16 that measures the surface of an object to be measured is mounted on a slider 4 that is guided and moved by a linear guide 3. Preferably, a fixed image 7 is installed on the extension of the moving direction of the slider 4, a camera 6 is attached to the contact sensor or slider, and a plurality of pieces of image information are acquired by photographing the fixed image 7 with the camera 6. Thus, the reference point 13a in the image is calculated with an accuracy of a pixel unit or less. By acquiring image information each time the positions of the sensors 5 and 16 are changed along the linear guide 3, a change in the position of the reference point 13a among a plurality of pieces of image information is caused by a change in the surface shape of the object to be measured or the slider. It becomes equal to the straight line error, and high-precision surface shape measurement or correction becomes possible.

カメラと画像とは、その設置位置を逆にしても良い。すなわち、長さセンサとなるプローブ5又はスライダ4に画像7を設け、このスライダの移動による影響を受けない不動位置に、カメラ6を設置しても良い。   The installation positions of the camera and the image may be reversed. That is, the image 7 may be provided on the probe 5 or the slider 4 serving as a length sensor, and the camera 6 may be installed at a fixed position that is not affected by the movement of the slider.

以上のことから理解されるように、上記課題を解決した本願の請求項1の発明に係る表面形状計測方法は、対向する画像7と画像取得装置6の一方を不動位置に設置し、他方を被計測物2の表面と略平行な平面ないし直線に沿って移動するスライダ4に搭載したプローブ5に設置し、前記スライダの移動に伴う複数位置で当該プローブの先端を前記被計測物の表面に接触させた状態で前記画像取得装置が取得した前記画像の複数枚の画像情報相互のずれ量を検出するというものである。   As can be understood from the above, in the surface shape measuring method according to the invention of claim 1 of the present application that solves the above-described problem, one of the facing image 7 and the image acquisition device 6 is installed at a fixed position, and the other is fixed. The probe is mounted on a probe 5 mounted on a slider 4 that moves along a plane or straight line that is substantially parallel to the surface of the object 2 to be measured, and the tip of the probe is placed on the surface of the object to be measured at a plurality of positions as the slider moves. The amount of deviation between the pieces of image information of the plurality of images acquired by the image acquisition device in the contact state is detected.

また、本願請求項2の発明に係る表面形状計測方法は、被計測物2の表面と略平行な平面ないし直線に沿って移動するスライダ4に搭載した長さセンサ5、16で当該表面の形状を計測する表面形状計測方法において、対向する画像7と画像取得装置6の一方を不動位置に設置すると共に他方を前記スライダに設置し、前記スライダの移動に伴う複数位置で前記画像取得装置が取得した前記画像の複数枚の画像相互のずれ検出により、前記長さセンサの計測値を補正することを特徴とするものである。   Further, the surface shape measuring method according to the second aspect of the present invention is such that the shape of the surface is measured by the length sensors 5 and 16 mounted on the slider 4 that moves along a plane or straight line substantially parallel to the surface of the object 2 to be measured. In the surface shape measurement method for measuring the image, one of the facing image 7 and the image acquisition device 6 is installed at a stationary position and the other is installed on the slider, and the image acquisition device acquires the images at a plurality of positions as the slider moves. The measurement value of the length sensor is corrected by detecting a shift between the plurality of images.

本発明によってスライダ4の移動精度の影響を受けない表面形状計測装置を提供することができる。また、従来はスライダ4の移動精度を高めることに焦点が置かれていたが、本発明ではスライダ4の移動精度の影響を受けないことから、装置を製造する際にもスライダ4の移動精度をさほど考慮する必要がなくなるので、この発明の方法を採用することにより、安価で且つ高精度な表面形状計測装置を提供することができる。   According to the present invention, it is possible to provide a surface shape measuring device that is not affected by the movement accuracy of the slider 4. Conventionally, the focus has been on increasing the movement accuracy of the slider 4, but in the present invention, since the movement accuracy of the slider 4 is not affected, the movement accuracy of the slider 4 can be reduced even when manufacturing the apparatus. Since it is not necessary to consider so much, by adopting the method of the present invention, an inexpensive and highly accurate surface shape measuring device can be provided.

図1は、この発明の第1実施形態を模式的に示した図で、1は計測台、2は計測台1に載置されたラップ定盤(被計測物)、3はラップ定盤2の上方に装架されたリニアガイド、4はリニアガイド3に沿って移動するスライダ、5はスライダ4に上下動可能に支持されて先端がラップ定盤上面に接触しているプローブ(長さセンサ)、6はプローブ5にスライダ4の移動方向前方を向けて搭載したカメラ、7はカメラ6の前方の定位置に設置した不動画像である。   FIG. 1 schematically shows a first embodiment of the present invention, in which 1 is a measuring table, 2 is a lapping surface plate (object to be measured) placed on the measuring table 1, and 3 is a lapping surface plate 2. 4 is a slider that moves along the linear guide 3, and 5 is a probe (length sensor) that is supported by the slider 4 so as to be movable up and down and whose tip is in contact with the upper surface of the lap platen. ), 6 is a camera mounted on the probe 5 with the front of the slider 4 in the moving direction, and 7 is a non-moving image installed at a fixed position in front of the camera 6.

図1に示した装置で定盤2の表面形状を計測する方法を次に説明する。
(1)画像取得装置となるカメラ6によって、不動画像7となる定位置の画面ないし物体を、プローブ5のガイド方向への移動に伴いながら撮像する。
(2)画像処理アルゴリズムによって、カメラ6で撮影した画像中の計測基点となる特定点の座標を算出する。
(3)上記(1)及び(2)の手順をスライダ4の所定間隔の移動毎に繰り返す。
(4)画像処理によって得られた上記(2)の計測基点の座標に関して、プローブ5のガイド方向への移動に伴う計測基点の座標の変化が、プローブ5の縦方向の変位に等しく、従ってその変化が、定盤2の表面形状となる。
Next, a method for measuring the surface shape of the surface plate 2 using the apparatus shown in FIG. 1 will be described.
(1) A camera 6 serving as an image acquisition device captures a fixed-position screen or object serving as a non-moving image 7 while the probe 5 moves in the guide direction.
(2) The coordinates of a specific point serving as a measurement base point in the image captured by the camera 6 are calculated by an image processing algorithm.
(3) The procedures (1) and (2) are repeated every time the slider 4 moves at a predetermined interval.
(4) Regarding the coordinates of the measurement base point of (2) obtained by the image processing, the change in the coordinates of the measurement base point accompanying the movement of the probe 5 in the guide direction is equal to the vertical displacement of the probe 5, and therefore The change becomes the surface shape of the surface plate 2.

上記(2)で用いる画像処理アルゴリズムとしては、正規化相関、増分符号相関などの公知の画像処理アルゴリズムを用いることができる。本願発明者は、不動画像として二直線交差画像を用い、画像処理アルゴリズムとしてハフ(Hough)変換を用いて、この発明の方法による表面形状の測定精度の試験を行った。以下にその試験方法を図2を参照して説明する。
(1)カメラ台10の前方にマイクロメータ11で移動量を正確に計測可能な微動台12を設置し、その微動台のカメラ台10を向く面に斜めに交差する2直線13を描いた画面7を貼付ける。
(2)カメラ台10に微動台12に向けてカメラ6を搭載し、当該カメラ6によって、画面7を撮影し、得られた画像データをパソコン15に取り込む。
(3)パソコン15により、取り込んだ画像からハフ変換を用いて、画像中における交点13aの座標を算出する。
(4)微動台12を所定量移動し、画面7を再度カメラ6で撮影し、その画像をパソコン15に取り込む。
(5)取り込んだ画像をハフ変換で解析し、微動台の移動量(μm)と画像中の交点の移動量(ピクセル)の関係を得る。
As the image processing algorithm used in the above (2), known image processing algorithms such as normalized correlation and incremental code correlation can be used. The inventor of the present application used the straight line intersection image as the immovable image and the Hough transform as the image processing algorithm to test the measurement accuracy of the surface shape by the method of the present invention. The test method will be described below with reference to FIG.
(1) A screen in which a fine moving base 12 capable of accurately measuring the amount of movement with a micrometer 11 is installed in front of the camera base 10 and two straight lines 13 that obliquely intersect the surface of the fine moving base facing the camera base 10 are drawn. 7 is pasted.
(2) The camera 6 is mounted on the camera base 10 toward the fine movement base 12, the screen 7 is photographed by the camera 6, and the obtained image data is taken into the personal computer 15.
(3) The coordinates of the intersection 13a in the image are calculated by the personal computer 15 using the Hough transform from the captured image.
(4) The fine moving base 12 is moved by a predetermined amount, the screen 7 is captured again by the camera 6, and the image is taken into the personal computer 15.
(5) The captured image is analyzed by the Hough transform, and the relationship between the amount of movement (μm) of the fine movement table and the amount of movement (pixel) of the intersection in the image is obtained.

上記のハフ変換を用いた画像解析により、画像の交点13aの移動量を0.1ピクセル精度で計測可能であることが確認できた。カメラの撮像素子として400万画素の素子を用いると、最小分解能は2.5μmとなる。更に高精度画像処理として公知のサブピクセル画像処理を用いることで、更に20倍程度の画素拡大を可能にできることから、これを利用することによって、0.1μmオーダの計測精度が得られる。   It was confirmed by the image analysis using the Hough transform that the amount of movement of the intersection 13a of the image can be measured with 0.1 pixel accuracy. When an element of 4 million pixels is used as an image sensor of a camera, the minimum resolution is 2.5 μm. Furthermore, by using known sub-pixel image processing as high-precision image processing, it is possible to further enlarge the pixel by about 20 times. By using this, measurement accuracy of the order of 0.1 μm can be obtained.

図1は、カメラ6をスライダ4に搭載したプローブ5に取付け、このカメラで不動画像7を撮影するようにしたものである。この方法は、定盤2の表面形状に従って上下動するプローブ5の動きを直接計測するので、前述したように、計測した交点13aの座標変化がそのまま定盤2の表面の計測値となる。カメラ6と画像7を逆にした形態、すなわち、画像7をプローブ5に取付け、不動位置に設置したカメラ6で当該画像を撮影するようにしたときも同様である。   In FIG. 1, a camera 6 is attached to a probe 5 mounted on a slider 4, and a non-moving image 7 is taken with this camera. Since this method directly measures the movement of the probe 5 that moves up and down according to the surface shape of the surface plate 2, as described above, the coordinate change of the measured intersection 13a becomes the measured value of the surface of the surface plate 2 as it is. The same applies when the camera 6 and the image 7 are reversed, that is, when the image 7 is attached to the probe 5 and the camera 6 is set at a fixed position.

一方、カメラ又は画像をスライダに取付けたときは、長さセンサの計測値をこの発明の方法で検出した画像のずれ量で補正することにより、定盤表面の高精度計測を行う。長さセンサとして非接触型のセンサを用いたときは、定盤表面の形状に追従して上下動する部材が存在しないので、この補正による方法を用いることになる。   On the other hand, when the camera or the image is attached to the slider, the surface plate surface is measured with high accuracy by correcting the measurement value of the length sensor with the image shift amount detected by the method of the present invention. When a non-contact type sensor is used as the length sensor, there is no member that moves up and down following the shape of the surface of the surface plate, so this correction method is used.

図3は、不動カメラ6と移動画像7とを用い、移動画像7をスライダ4に取付けた例を示した図である。   FIG. 3 is a diagram showing an example in which the moving image 7 is attached to the slider 4 using the immobile camera 6 and the moving image 7.

図3に示した装置で定盤2の表面形状を計測する方法を次に説明する。
(1)不動カメラ6によって、スライダ4に取付けた移動画像7を、スライダ4のガイド方向への移動に伴いながら撮像する。同時に、長さセンサ16の計測値を読取る。
(2)画像処理アルゴリズムによって、不動カメラ6で撮影したデジタル画像中の計測基点となる特定点の座標を算出する。
(3)上記(1)及び(2)の手順をスライダ4の所定間隔の移動毎に繰り返す。
(4)スライダ4のガイド方向への移動に伴う長さセンサ16の計測値を、当該計測時における上記(2)の計測基点の座標の変化で補正した値が、定盤2の表面形状となる。
Next, a method for measuring the surface shape of the surface plate 2 with the apparatus shown in FIG. 3 will be described.
(1) The moving image 7 attached to the slider 4 is picked up by the stationary camera 6 as the slider 4 moves in the guide direction. At the same time, the measurement value of the length sensor 16 is read.
(2) The coordinates of a specific point serving as a measurement base point in the digital image captured by the stationary camera 6 are calculated by an image processing algorithm.
(3) The procedures (1) and (2) are repeated every time the slider 4 moves at a predetermined interval.
(4) The value obtained by correcting the measurement value of the length sensor 16 accompanying the movement of the slider 4 in the guide direction by the change in the coordinates of the measurement base point (2) at the time of the measurement is the surface shape of the surface plate 2. Become.

図3のカメラ6と画像7とを逆にした形態、すなわち、カメラ6をスライダ4に搭載し、画像7を不動位置に設置した形態の場合も、上記と同様にして定盤表面の形状計測を行う。   In the case of the configuration in which the camera 6 and the image 7 in FIG. I do.

第1実施形態を示す図The figure which shows 1st Embodiment 計測精度確認試験とこれに用いた画像の例を示す図Figure showing a measurement accuracy confirmation test and an example of the image used for this 第2実施形態を示す図The figure which shows 2nd Embodiment

符号の説明Explanation of symbols

2 被計測物
3 リニアガイド
4 スライダ
5 プローブ(接触型の長さセンサ)
6 カメラ
7 画像
15 パソコン(画像処理装置)
16 非接触型の長さセンサ
2 Object 3 Linear guide 4 Slider 5 Probe (contact type length sensor)
6 Camera 7 Image
15 Personal computer (image processing device)
16 Non-contact type length sensor

Claims (2)

対向する画像(7)と画像取得装置(6)の一方を不動位置に設置し、他方を被計測物(2)の表面と略平行な平面ないし直線に沿って移動するスライダ(4)に搭載したプローブ(5)に設置し、前記スライダの移動に伴う複数位置で当該プローブの先端を前記被計測物の表面に接触させた状態で前記画像取得装置が取得した前記画像の複数枚の画像情報相互のずれ量を検出する、表面形状計測方法。   One of the opposing image (7) and image acquisition device (6) is placed at a fixed position, and the other is mounted on a slider (4) that moves along a plane or straight line that is substantially parallel to the surface of the object to be measured (2). The image information of the plurality of images acquired by the image acquisition device in a state where the tip of the probe is in contact with the surface of the object to be measured at a plurality of positions accompanying the movement of the slider. A surface shape measurement method that detects the amount of mutual displacement. 被計測物(2)の表面と略平行な平面ないし直線に沿って移動するスライダ(4)に搭載した長さセンサ(5,16)で当該表面の形状を計測する表面形状計測方法において、対向する画像(7)と画像取得装置(6)の一方を不動位置に設置すると共に他方を前記スライダに設置し、前記スライダの移動に伴う複数位置で前記画像取得装置が取得した前記画像の複数枚の画像相互のずれ検出により、前記長さセンサの計測値を補正することを特徴とする、表面形状計測方法。   In the surface shape measurement method that measures the shape of the surface with a length sensor (5, 16) mounted on a slider (4) that moves along a plane or straight line that is substantially parallel to the surface of the object to be measured (2), One of the image (7) and the image acquisition device (6) to be installed is set at a non-moving position and the other is set to the slider, and a plurality of the images acquired by the image acquisition device at a plurality of positions accompanying the movement of the slider A surface shape measurement method comprising correcting a measurement value of the length sensor by detecting a shift between images.
JP2004175846A 2004-06-14 2004-06-14 Measurement method of surface shape Pending JP2005351863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175846A JP2005351863A (en) 2004-06-14 2004-06-14 Measurement method of surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175846A JP2005351863A (en) 2004-06-14 2004-06-14 Measurement method of surface shape

Publications (1)

Publication Number Publication Date
JP2005351863A true JP2005351863A (en) 2005-12-22

Family

ID=35586459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175846A Pending JP2005351863A (en) 2004-06-14 2004-06-14 Measurement method of surface shape

Country Status (1)

Country Link
JP (1) JP2005351863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006260A (en) * 2009-06-26 2011-01-13 Primax Electronics Ltd Thickness detecting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587557A (en) * 1991-09-27 1993-04-06 Toyoda Mach Works Ltd Three dimensional measurement device
JPH06109455A (en) * 1992-09-24 1994-04-19 Toshiba Corp Measuring device for straightness of long material
JP2003322518A (en) * 2002-05-01 2003-11-14 Mitsubishi Heavy Ind Ltd Measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587557A (en) * 1991-09-27 1993-04-06 Toyoda Mach Works Ltd Three dimensional measurement device
JPH06109455A (en) * 1992-09-24 1994-04-19 Toshiba Corp Measuring device for straightness of long material
JP2003322518A (en) * 2002-05-01 2003-11-14 Mitsubishi Heavy Ind Ltd Measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006260A (en) * 2009-06-26 2011-01-13 Primax Electronics Ltd Thickness detecting device

Similar Documents

Publication Publication Date Title
CN109115126B (en) Method for calibrating a triangulation sensor, control and processing unit and storage medium
US6642506B1 (en) Speckle-image-based optical position transducer having improved mounting and directional sensitivities
US10151580B2 (en) Methods of inspecting a 3D object using 2D image processing
US9062958B2 (en) Image sensor, attitude detector, contact probe, and multi-sensing probe
KR101273094B1 (en) The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method
TW200935047A (en) Apparatus and method for inspection
US9627173B2 (en) Stage device and charged particle beam apparatus using the stage device
JP4970204B2 (en) Straightness measuring device, thickness variation measuring device, and orthogonality measuring device
CN111829448A (en) Optical extensometer and uniform strain testing method based on lens imaging and double-prism reflection
CA3194810A1 (en) Exposure control in photolithographic direct exposure methods for manufacturing circuit boards or circuits
CN102012215B (en) Digital image-based noncontact optical strain measurement method and strain gauge
CN110763146A (en) High-precision optical extensometer and measuring method based on double cameras
JP4603121B2 (en) Optical scale device and optical rotary scale device
JP4791568B2 (en) 3D measuring device
JP2005351863A (en) Measurement method of surface shape
CN114556045B (en) Position measuring method
JPH10311705A (en) Image input apparatus
Garcia et al. Real-time flatness inspection system for steel strip production lines
JP2009085833A (en) Measuring device
JP4545580B2 (en) In-plane displacement meter
JP2020180916A (en) Optical displacement meter
CN212692801U (en) Optical extensometer based on lens imaging and biprism reflection
KR100641885B1 (en) light phase interferrometry method and system for horizontal scanning type
TWI765567B (en) Method of measureing position errors for feed drive system
CN113167606B (en) Method for correcting detection value of linear scale

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629