JPH06108258A - High strength coated sintered alloy - Google Patents

High strength coated sintered alloy

Info

Publication number
JPH06108258A
JPH06108258A JP28391092A JP28391092A JPH06108258A JP H06108258 A JPH06108258 A JP H06108258A JP 28391092 A JP28391092 A JP 28391092A JP 28391092 A JP28391092 A JP 28391092A JP H06108258 A JPH06108258 A JP H06108258A
Authority
JP
Japan
Prior art keywords
sintered alloy
coating
coated sintered
stress
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28391092A
Other languages
Japanese (ja)
Inventor
Manabu Sato
学 佐藤
Masakazu Okubo
昌和 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP28391092A priority Critical patent/JPH06108258A/en
Publication of JPH06108258A publication Critical patent/JPH06108258A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the impact resistance and chipping resistance of a coated sintered alloy by constituting the coated sintered alloy of a bonding phase of specified wt.% of a hard phase imparted with a specified compressive stress and a coating film. CONSTITUTION:The surface of the matrix of a sintered alloy constituted of a hard phase of at least one kind among the carbides and nitrides of 4a, 5a and 6a group metals in the periodic table and mutlal solid solution therebetween and a bonding phase essentially consisting of Ni, Co or an Ni-Co alloy is coated with a film by chemical vapor deposition to form a coated sintered alloy. The quantity of the bonding phase is regulated to 2 to 12wt.%, the hard phase present on the surface part of the matrix is applied with 30 to 80kg/mm<2> compressive stress and the film is applied with <=20kg/mm<2> compresesive stress or is applied with no stress. In this way, the sintered alloy small in dispersion and of which quality control is easy as well, can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐衝撃性,耐欠損性に
優れる高強度被覆焼結合金に関し、特に切削工具又は耐
摩耗工具に代表される工具用として最適な高強度被覆焼
結合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength coated sintered alloy having excellent impact resistance and chipping resistance, and particularly suitable for a tool represented by a cutting tool or a wear-resistant tool. It is about.

【0002】[0002]

【従来の技術】超硬合金及びサーメットに代表される焼
結合金の基体の表面に、高硬質な被膜を被覆してなる被
覆焼結合金は、大別すると、化学蒸着法(CVD法)に
よる被覆焼結合金と物理蒸着法(PVD法)による被覆
焼結合金がある。これらの被覆焼結合金は、製造条件に
基づく残留応力、又は被膜の材質と基体の材質による熱
膨張係数の差に基づく残留応力が被膜及び基体の表面部
に残在している。
2. Description of the Related Art A coated sintered alloy obtained by coating a surface of a substrate of a sintered alloy represented by cemented carbide and cermet with a highly hard coating is roughly classified by a chemical vapor deposition method (CVD method). There are coated sintered alloys and coated sintered alloys by physical vapor deposition (PVD method). In these coated sintered alloys, residual stress based on the manufacturing conditions or residual stress based on the difference in thermal expansion coefficient between the material of the coating and the material of the base remains on the surface of the coating and the base.

【0003】被覆焼結合金に内在する残留応力と被覆焼
結合金の諸特性との関係について検討されている代表的
なものとしては、山本らの日本金属学会誌50(3)
(1986)320、及び特開昭64−31972号公
報がある。
As a representative example of the relationship between the residual stress inherent in the coated sintered alloy and various characteristics of the coated sintered alloy, Yamamoto et al., Journal of the Japan Institute of Metals 50 (3).
(1986) 320 and JP-A-64-31972.

【0004】[0004]

【発明が解決しようとする課題】山本らの日本金属学会
誌50(3)(1986)320によると、CVD法に
よる被覆焼結合金は、基体の表面部に存在する硬質相で
ある炭化タングステン及び被膜である窒化チタンの両方
に引張応力が作用していると記載されている。そして、
山本らの同文献には、CVD法による被覆焼結合金は、
PVD法による被覆焼結合金又は被膜の被覆されてない
焼結合金に比べて、抗折強度及び破壊靭性値が極端に低
下するという問題が記載されている。
According to Yamamoto et al., Journal of the Japan Institute of Metals, 50 (3) (1986) 320, the coated sintered alloy by the CVD method contains tungsten carbide, which is a hard phase present on the surface of the substrate, and tungsten carbide. It is described that tensile stress acts on both of the titanium nitride films. And
In Yamamoto et al.'S reference, the coated sintered alloy by the CVD method is
It has been described that the flexural strength and fracture toughness values are extremely reduced as compared with a sintered sintered alloy obtained by the PVD method or an uncoated sintered alloy.

【0005】また、特開昭64−31972号公報に
は、CVD法による被覆焼結合金の基体表面部に存在す
る硬質相及び/又は被膜に、50kg/mm2以上の圧
縮応力を付与した被覆焼結合金が記載されている。同公
報の被覆焼結合金は、従来のCVD法による被覆焼結合
金の被膜表面からショットピーニング法又はサンドブラ
スト法等により衝撃力を付加して、基体表面部の硬質相
及び/又は被膜に存在する引張応力を圧縮応力とし、被
覆焼結合金の強度を顕著に高めたという優れた合金であ
るが、基体の結合相量,被膜の厚さ,被膜の膜質及び多
重層被膜によっては、逆に強度低下になるという問題が
ある。
Further, Japanese Patent Laid-Open No. 64-31972 discloses a coating obtained by applying a compressive stress of 50 kg / mm 2 or more to the hard phase and / or the coating existing on the surface of the substrate of the coated sintered alloy by the CVD method. Sintered alloys are described. The coated sintered alloy of the publication is present in the hard phase and / or the coating on the surface of the substrate by applying an impact force from the coating surface of the coated sintered alloy by the conventional CVD method by the shot peening method or the sandblast method. This is an excellent alloy in which tensile stress is used as compressive stress and the strength of the coated sintered alloy is remarkably increased. However, depending on the amount of binder phase of the substrate, the thickness of the coating, the quality of the coating and the multilayer coating, the strength may be reversed. There is a problem that it will decrease.

【0006】本発明は、上述のような従来の問題点を解
決したもので、具体的には、基体表面部の硬質相と被膜
との両方にバランスよく応力を付与し、耐衝撃性及び耐
欠損性を最高に維持できるようにした被覆焼結合金の提
供を目的とするものである。
The present invention solves the above-mentioned conventional problems. Specifically, it imparts a well-balanced stress to both the hard phase and the coating film on the surface of the substrate to provide impact resistance and resistance. It is an object of the present invention to provide a coated sintered alloy capable of maintaining the maximum defectivity.

【0007】[0007]

【課題を解決するための手段】本発明者らは、被覆焼結
合金の基体表面部の硬質相と被膜とに内在する応力の制
御と、それぞれに付与する応力と切削工具としての性能
との関係について検討していた所、基体表面部の硬質相
と被膜とに付与される最適残留応力は、基体の結合相量
及び被膜の構成により異なり、基体表面部の硬質相には
圧縮応力を、被膜には圧縮応力又は応力がない状態にす
ると耐衝撃性及び耐欠損性が顕著に優れるという知見を
得て、本発明を完成するに至ったものである。
Means for Solving the Problems The inventors of the present invention have made it possible to control the stresses inherent in the hard phase and the coating on the surface of the base body of the coated sintered alloy, and the stresses imparted to them and the performance as a cutting tool. After studying the relationship, the optimum residual stress applied to the hard phase and the coating on the surface of the substrate differs depending on the amount of the binder phase of the substrate and the structure of the coating, and compressive stress is applied to the hard phase on the surface of the substrate. The present invention has been completed based on the finding that impact resistance and chipping resistance are remarkably excellent when the coating is in a state of no compressive stress or stress.

【0008】すなわち、本発明の高強度被覆焼結合金
は、周期律表の4a,5a,6a族金属の炭化物,窒化
物及びこれらの相互固溶体の中の少なくとも1種の硬質
相と、Ni,Co又はNi−Co合金を主成分とする結
合相からなる焼結合金の基体の表面に化学蒸着法により
被膜を被覆してなる被覆焼結合金であって、該結合相は
2〜12重量%からなり、該基体の表面部に存在する該
硬質相は30〜80kg/mm2の圧縮応力が付与され
ており、該被膜は20kg/mm2以下の圧縮応力が付
与されているか、もしくは応力が付与されてない合金で
ある。
That is, the high-strength coated sintered alloy of the present invention comprises at least one hard phase among carbides and nitrides of metals of groups 4a, 5a and 6a of the Periodic Table and their mutual solid solutions, Ni, A coated sintered alloy in which a surface of a substrate of a sintered alloy comprising a binder phase containing Co or Ni-Co alloy as a main component is coated with a coating by a chemical vapor deposition method, the binder phase being 2 to 12% by weight. made, the rigid phase present in the surface portion of the base body is applied compressive stress 30~80kg / mm 2 are either the coating under 20 kg / mm 2 or less of compressive stress is applied, or stress It is an alloy that has not been added.

【0009】本発明の被覆焼結合金における基体は、従
来から公知公用されている超硬合金又はサーメットでな
り、具体的には、例えばTiC,ZrC,HfC,V
C,NbC,TaC,WC,Cr32,Mo2C,Ti
N,ZrN,HfN,VN,NbN,TaN,Ti
(C,N),(Ti,Ta)C,(Ti,Ta,W)
C,(Ti,Ta,Nb,W)C,(Ti,Ta)
(C,N),(Ti,Ta,W)(C,N)の中の1種
以上の硬質相と、Ni,Co又はNi−Co合金、もし
くはこれらに硬質相の元素やFeが数%以下固溶してな
る結合相とからなるものである。これらの内、WCをベ
ースとする硬質相でなる超硬合金、又はTiCやTi
(C,N)をベースとする硬質相でなるサーメットから
なる基体の場合は、その効果が顕著になることから特に
好ましい。
The substrate of the coated sintered alloy of the present invention is a cemented carbide or cermet which has been publicly known and used conventionally. Specifically, for example, TiC, ZrC, HfC, V
C, NbC, TaC, WC, Cr 3 C 2 , Mo 2 C, Ti
N, ZrN, HfN, VN, NbN, TaN, Ti
(C, N), (Ti, Ta) C, (Ti, Ta, W)
C, (Ti, Ta, Nb, W) C, (Ti, Ta)
(C, N), (Ti, Ta, W) (C, N) at least one hard phase and Ni, Co, or Ni-Co alloy, or a few percent of hard phase elements and Fe. Hereinafter, it is composed of a binder phase formed as a solid solution. Of these, cemented carbide with a hard phase based on WC, or TiC or Ti
In the case of a base body composed of a cermet having a hard phase based on (C, N), the effect becomes remarkable, which is particularly preferable.

【0010】基体を構成する結合相は、基体全体の2重
量%未満になると、硬質相と被膜とに残存する応力を制
御してもその効果が弱く、逆に基体全体の12重量%を
超えて多くなると、本発明を構成する残留応力の範囲で
は、その効果が弱くなるために、基体の結合相量を2〜
12重量%と定めた。結合相は、Co又はCoを含んだ
合金からなる基体で構成される従来の被覆焼結合金の場
合は、ほぼ100%が面心立方晶構造の結晶構造である
が、被膜の表面から最適な方法で衝撃力を付加すること
により、基体表面部の結合相の結晶構造が六方晶構造に
変態する。本発明の被覆焼結合金における結合相は、で
きるだけ六方晶構造に変態した状態が好ましく、特に、
X線回折法において求める基体表面部に存在する結合相
が面心立方晶構造の結合相(F.C.C.)に対する六
方晶構造の結合相(h.C.P)の積分強度比で0.2
以上(h.C.P/F.C.C.≧0.2)でなると、
耐欠損性に一層優れた効果を発揮するので好ましい。
When the binder phase constituting the substrate is less than 2% by weight of the whole substrate, the effect is weak even if the residual stress in the hard phase and the coating is controlled, and conversely it exceeds 12% by weight of the entire substrate. As the amount of the binder increases, the effect becomes weaker in the range of the residual stress that constitutes the present invention.
It was set to 12% by weight. In the case of a conventional coated sintered alloy composed of a substrate made of Co or an alloy containing Co, the binder phase has a crystal structure of a face-centered cubic structure in almost 100%. By applying an impact force by the method, the crystal structure of the binder phase on the surface of the substrate is transformed into a hexagonal crystal structure. The binder phase in the coated sintered alloy of the present invention is preferably in a state transformed to a hexagonal crystal structure as much as possible, and particularly,
The integrated phase ratio of the hexagonal bonded phase (hCP) to the bonded phase (FCC) of the face-centered cubic structure is the bonded phase present on the surface of the substrate as determined by X-ray diffractometry. 0.2
Above (h.C.P / F.C.C. ≧ 0.2),
It is preferable because it exhibits a more excellent effect of fracture resistance.

【0011】本発明の被覆焼結合金における基体の表面
部に存在する硬質相に付与される圧縮応力が30kg/
mm2未満になると、被膜に付与される応力にも影響を
受けるが耐欠損性に対する効果が弱く、逆に80kg/
mm2を超えて多くなると、バラツキが高く、かつ応力
の付与が困難になる。この基体の表面部に存在する硬質
相とは、基体の表面又は表面から基体の内部へ向って約
10μmの深さまでに存在する硬質相であって、別の表
現をすると結晶X線回折装置におけるX線が被膜表面か
ら基体内部へ透過検出し得る深さであり、実質的には、
使用X線ターゲット等の測定条件により深さが異なる。
In the coated sintered alloy of the present invention, the compressive stress applied to the hard phase existing on the surface of the substrate is 30 kg /
If it is less than mm 2, it is affected by the stress applied to the coating, but the effect on fracture resistance is weak, and conversely 80 kg /
If it exceeds mm 2 , the variation is high and it becomes difficult to apply stress. The hard phase existing on the surface of the substrate is a hard phase existing on the surface of the substrate or from the surface to the inside of the substrate to a depth of about 10 μm. In other words, in the crystal X-ray diffractometer, It is the depth at which the X-ray can be transmitted and detected from the surface of the coating to the inside of the substrate.
The depth varies depending on the measurement conditions such as the X-ray target used.

【0012】本発明の被覆焼結合金における被膜は、被
膜材質としては、特に制限を受けないが、基体の熱膨張
係数と被膜材質の熱膨張係数との差が大きい程、その効
果が高く、具体的には、例えば周期律表の4a,5a,
6a族金属の炭化物,窒化物,酸化物,ホウ化物,Si
の炭化物,窒化物,Alの酸化物,窒化物及びこれらの
相互固溶体、ダイヤモンド,ダイヤモンド状カーボン,
立方晶窒化ホウ素を挙げることができる。この被膜の厚
さは、厚くしすぎると剥離しやすくなるために20μm
以下、特に10μm以下でなる場合はバラツキも小さ
く、性能的にも安定し、かつ優れた効果があるので好ま
しい。
The coating in the coated sintered alloy of the present invention is not particularly limited as to the coating material, but the greater the difference between the coefficient of thermal expansion of the substrate and the coefficient of thermal expansion of the coating material, the higher the effect. Specifically, for example, the periodic table 4a, 5a,
Carbides, nitrides, oxides, borides, Si of 6a group metals
Carbides, nitrides, Al oxides, nitrides and their mutual solid solutions, diamond, diamond-like carbon,
Cubic boron nitride may be mentioned. The thickness of this coating is 20 μm because it tends to peel off if it is made too thick.
In particular, when the thickness is 10 μm or less, variations are small, performance is stable, and excellent effects are obtained, which is preferable.

【0013】また、被膜材質がTiの炭化物,窒化物,
炭酸化物,窒酸化物,Alの酸化物及びこれらの相互固
溶体の中の1種以上でなり、かつ2層以上の多重層で形
成されている場合には、被膜に付与された応力及び基体
の表面部に存在する硬質相に付与された応力による耐欠
損性への効果が顕著になることから、好ましい。
Further, the coating material is Ti carbide, nitride,
When it is composed of one or more of carbonates, oxynitrides, oxides of Al and mutual solid solutions thereof, and is formed of multiple layers of two or more layers, the stress applied to the coating and the It is preferable because the stress imparted to the hard phase existing on the surface portion has a remarkable effect on the fracture resistance.

【0014】本発明の被覆焼結合金は、基体の表面部の
硬質相に付与される圧縮応力と、被膜に付与される圧縮
応力又は圧縮や引張りの応力が付与されてない状態の被
膜からなり、この硬質相と被膜とのバランス関係が重要
であり、このとき被膜の総数が多くなればなるほど効果
が高く、特に3層以上の多重層、さらに5層以上の多重
層でなる場合には一層顕著な効果が発揮される。被膜の
全厚さが同一ならば被膜の総数が多いほど本発明におけ
る効果が顕著になり好ましい。
The coated sintered alloy of the present invention comprises a compressive stress applied to the hard phase on the surface of the substrate and a coating in a state in which neither the compressive stress applied to the coating nor the compressive or tensile stress is applied. The balance between the hard phase and the coating is important. At this time, the larger the total number of coatings, the higher the effect. Particularly, in the case of three or more layers, and more than five layers A remarkable effect is exhibited. If the total thickness of the coating is the same, the larger the total number of coatings, the more remarkable the effect of the present invention is, which is preferable.

【0015】本発明の被覆焼結合金における被膜に付与
される圧縮応力が20kg/mm2を超えて多くなる
と、被膜の剥離が激しく、実質的に安定に20kg/m
2を超えた圧縮応力を被膜に付与するのが困難とな
る。
When the compressive stress applied to the coating in the coated sintered alloy of the present invention exceeds 20 kg / mm 2 , the coating peels off significantly and is substantially stable at 20 kg / m 2.
It becomes difficult to apply a compressive stress exceeding m 2 to the coating.

【0016】本発明の被覆焼結合金は、従来のCVD法
による被覆焼結合金の表面から最適衝撃力を付加し、被
膜と基体表面部の硬質相に付与される応力を制御するこ
とにより作製することができる。具体的には、例えばシ
ョットピーニング法又はサンドブラスト法でもって、所
定の特性を有する物質を所定速度で被覆焼結合金の被膜
表面に飛翔衝突させることにより作製することができ
る。
The coated sintered alloy of the present invention is produced by applying an optimum impact force from the surface of the coated sintered alloy by the conventional CVD method and controlling the stress applied to the hard phase of the coating and the substrate surface. can do. Specifically, it can be produced, for example, by a shot peening method or a sand blast method by causing a substance having predetermined characteristics to fly and collide with the coating surface of the coating sintered alloy at a predetermined speed.

【0017】さらに、本発明の被覆焼結合金を作製する
方法について、詳細に説明すると、被膜表面から飛翔衝
突させる所定の特性を有する物質(飛翔物質)とは、密
度,ヤング率,ポアソン比及び直径を考慮した球状体の
物質であって、例えば直径0.3〜1mmの鋼球又は直
径0.1〜1mmの超硬合金を挙げることができる。ま
た、この飛翔物質を飛翔させるための所定速度は、例え
ば5〜100m/sを目安とすればよく、飛翔物質が鋼
球の場合は30〜100m/s、飛翔物質が超硬合金球
の場合は5〜60m/s、さらに球状体の大きさが直径
0.1〜0.4mmの場合は60〜100m/s、直径
0.4〜0.7mmの場合は30〜70m/s、直径
0.7〜1.0mmの場合は5〜40m/sからなるこ
とが好ましい。
Further, the method for producing the coated sintered alloy of the present invention will be described in detail. The substance having a predetermined characteristic (flying substance) that causes a flying collision from the coating surface means the density, Young's modulus, Poisson's ratio and It is a spherical substance considering the diameter, and examples thereof include a steel ball having a diameter of 0.3 to 1 mm and a cemented carbide having a diameter of 0.1 to 1 mm. The predetermined speed for flying the flying material may be, for example, 5 to 100 m / s as a guide. When the flying material is a steel ball, it is 30 to 100 m / s, and when the flying material is a cemented carbide ball. Is 5 to 60 m / s, further 60 to 100 m / s when the size of the spherical body is 0.1 to 0.4 mm in diameter, 30 to 70 m / s when the diameter is 0.4 to 0.7 mm, and 0 in diameter. In the case of 0.7 to 1.0 mm, it is preferably 5 to 40 m / s.

【0018】別の見方をすると、鋼球のように軟質な飛
翔物質でなる場合は、速度を速める方向とし、超硬合金
球のように硬質な飛翔物質の場合は、速度を遅くし、か
つできるだけ微細球のものが好ましい。
From another point of view, in the case of a soft flying material such as a steel ball, the speed is increased, and in the case of a hard flying material such as a cemented carbide ball, the speed is slowed, and Fine spheres are preferable as much as possible.

【0019】[0019]

【作用】本発明の被覆焼結合金は、基体の表面部に存在
する硬質相に付与された圧縮応力と、被膜に付与された
圧縮応力又は付与されてない被膜とのバランスでもって
合金全体の耐衝撃性,強度及び耐欠損性を高めており、
特に、前者の圧縮応力を付与された硬質相が被膜形成時
の工程中に被膜内に生じた微少クラック、もしくは応力
を付与するために被膜表面から付加した衝撃力によって
被膜内に生じた微少クラックの基体内部への進展を阻止
する作用をし、後者の被膜が実用時の新たな微少クラッ
クの発生を阻止する作用をし、新たな微少クラックが被
膜内に発生した場合にも、前者の硬質相が微少クラック
の基体内部への進展を阻止する2段防壁作用となってい
るものである。
The coated sintered alloy of the present invention balances the compressive stress applied to the hard phase existing on the surface of the substrate and the compressive stress applied to the coating or the coating not applied to the entire alloy. Has improved impact resistance, strength and fracture resistance,
In particular, the former hard phase to which a compressive stress is applied is a microcrack generated in the film during the process of forming the film, or a microcrack generated in the film by an impact force applied from the film surface to impart a stress. Of the former, the latter film acts to prevent the generation of new minute cracks during practical use, and even when new minute cracks occur in the film, the former hard The phase has a two-step barrier action that prevents the development of minute cracks inside the substrate.

【0020】[0020]

【実施例1】表1に示した組成成分の超硬合金の基体を
用いて、従来から行われているCVD法により、基体表
面に被膜を被覆させた。被膜は、表1に示した膜厚及び
膜質からなるもので、基体表面に第1層,第2層,第3
層を順次被覆して被覆焼結合金を得た。
Example 1 Using a cemented carbide substrate having the composition components shown in Table 1, the surface of the substrate was coated with a film by a conventional CVD method. The film has the film thickness and film quality shown in Table 1, and has a first layer, a second layer, and a third layer on the substrate surface.
The layers were sequentially coated to obtain a coated sintered alloy.

【0021】表1に示した構成でなる被覆焼結合金の被
膜表面に、表2に示した鋼球の平均直径及び衝突速度か
らなるショットピーニング条件でもって衝撃力を付加し
て、本発明品1〜7及び比較品1〜5を得た。
An impact force is applied to the coating surface of the coated sintered alloy having the constitution shown in Table 1 under the shot peening conditions consisting of the average diameter of the steel balls and the collision velocity shown in Table 2 to obtain the product of the present invention. 1 to 7 and comparative products 1 to 5 were obtained.

【0022】こうして得た本発明品1〜7及び比較品1
〜5の被膜表面からX線を照射し、X線回折法による被
膜の残留応力、基体表面部に存在する硬質相であるWC
の残留応力、及び基体表面部に存在する結合相の結晶構
造を調べて、表2に併記した。
Inventive products 1 to 7 and comparative product 1 thus obtained
To X-rays from the surface of the coating film, the residual stress of the coating film by the X-ray diffraction method, and WC which is a hard phase existing on the surface of the substrate.
The residual stress and the crystal structure of the binder phase existing on the surface of the substrate were examined, and the results are shown in Table 2.

【0023】残留応力の測定は、結晶X線回折装置を用
いて、Cu管球,Niフィルター,40kv電圧,30
mA電流の条件により発生させたX線で行い、硬質相で
あるWCは(301)面の結晶面における応力を測定
し、被膜は第1層の(224)面の結晶面における応力
を測定して求めたものである。
The residual stress was measured by using a crystal X-ray diffractometer with a Cu tube, Ni filter, 40 kv voltage and 30
Conducted with X-ray generated under the condition of mA current, WC which is a hard phase measures the stress on the (301) crystal face, and the film measures the stress on the (224) crystal face of the first layer. It was sought after.

【0024】基体表面の結合相の結晶構造の測定は、ロ
ーターフレックスタイプのCu管球でモノクロメーター
を使用し、60kv電圧,300mA電流の条件により
発生させたX線で行い、F.C.CについてはCo(1
00)面、h.C.PについてはCo(100)面の各
ピークのバックグランドを除いた積分強度比を算出して
求めたものである。
The crystal structure of the binder phase on the surface of the substrate was measured with an X-ray generated under the conditions of 60 kv voltage and 300 mA current by using a monochromator with a rotor flex type Cu tube. C. For C, Co (1
00) surface, h. C. P is obtained by calculating the integrated intensity ratio excluding the background of each peak on the Co (100) plane.

【0025】次に、本発明品1〜7及び比較品1〜5を
用いて、被削材:S48C(4本溝入り)、切削速度:
150m/min、送り:0.2mm/rev、切込
み:1.5mmによる乾式切削試験を行い、欠損又はチ
ッピングが発生して寿命になるまでの溝により生じる衝
撃回数を求めて表2に併記した。
Next, using the present invention products 1 to 7 and the comparative products 1 to 5, a work material: S48C (with four grooves), cutting speed:
A dry cutting test was carried out at 150 m / min, feed: 0.2 mm / rev, and incision: 1.5 mm, and the number of impacts caused by the groove until chipping or chipping occurred to the end of the life was calculated and listed in Table 2.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【実施例2】4Ni−16Co−10Mo2C−14T
aC−56TiC(重量%)組成の焼結合金の基体を用
いて、基体表面に従来のCVD法により膜厚及び膜質が
2μmTiC−2μmAl23−0.5μmTi(C,
N)−2.5μmAl23−0.5μmTiNの被膜を
順次被覆した被覆焼結合金を作製した。
[Example 2] 4Ni-16Co-10Mo 2 C- 14T
Using a sintered alloy substrate having an aC-56TiC (wt%) composition, a film thickness and film quality of 2 μm TiC- 2 μm Al 2 O 3 -0.5 μm Ti (C,
N) -2.5 μm Al 2 O 3 -0.5 μm A coated sintered alloy in which a coating of TiN was sequentially coated was prepared.

【0029】この被覆焼結合金の被膜表面にショットピ
ーニング法でもって平均直径0.4mmの鋼球を90m
/sの速度で衝突させて本発明品8を得た。本発明品8
の内、鋼球の平均直径のみ0.5mmとした以外は本発
明品8と同様に処理して、本発明品9を得た。
90 m of steel balls having an average diameter of 0.4 mm were formed on the surface of the coated sintered alloy by the shot peening method.
The product 8 of the present invention was obtained by colliding at a speed of / s. Invention product 8
Among them, the product 9 of the present invention was obtained by treating in the same manner as the product 8 of the present invention except that only the average diameter of the steel balls was changed to 0.5 mm.

【0030】次に、比較として、本発明品8の内、鋼球
の平均直径のみ0.1mmとした以外は本発明品8と同
様に処理して比較品6を得た。また、比較品6の内、鋼
球の平均直径のみ0.3mmとした以外は比較品6と同
様に処理して、比較品7を得た。さらに、比較品6の
内、被膜の膜厚及び膜質を7.5μmTiNの1層と
し、ショットピーニング法における鋼球の平均直径を
0.4mmとした以外は比較品6と同様にして比較品8
を得た。そして、ショットピーニング法による処理を施
さないで比較品6に用いた被覆焼結合金の状態を比較品
9とした。
Next, as a comparison, a comparative product 6 was obtained by treating in the same manner as the product 8 of the present invention except that only the average diameter of the steel balls in the product 8 of the present invention was 0.1 mm. Further, among Comparative Products 6, Comparative Product 7 was obtained by treating in the same manner as Comparative Product 6 except that only the average diameter of the steel balls was 0.3 mm. Further, among the comparative products 6, the comparative product 8 was prepared in the same manner as the comparative product 6 except that the film thickness and film quality of the coating was one layer of 7.5 μm TiN and the average diameter of the steel balls in the shot peening method was 0.4 mm.
Got The state of the coated sintered alloy used for the comparative product 6 without the treatment by the shot peening method was designated as the comparative product 9.

【0031】こうして得た本発明品8,9及び比較品6
〜9を実施例1で調査した方法と同様にして、TiCを
主成分とする固溶体の硬質相は(224)面の応力を、
被膜はTiCの(224)面の(比較品8はTiNの
(224)面について)応力を測定し、結合相の結晶構
造の結果と共に表3に示した。
Inventive products 8 and 9 and comparative product 6 thus obtained
The hard phase of the solid solution containing TiC as the main component is the stress of the (224) plane,
The stress of the (224) plane of TiC was measured for the film (for the (224) plane of TiN in Comparative product 8) and the results are shown in Table 3 together with the results of the crystal structure of the binder phase.

【0032】次いで、本発明品8,9及び比較品6〜9
を用いて、被削材:S45C(4本のV溝入り)、切削
速度:150m/s、送り:0.2mm/rev、切込
み:1.5mmによる乾式切削試験を行い、欠損又はチ
ッピングが発生して寿命になるまでのV溝により生じる
衝撃回数を求めて表3に併記した。
Next, products 8 and 9 of the present invention and comparative products 6 to 9
Using, the material to be cut: S45C (with 4 V-grooves), cutting speed: 150 m / s, feed: 0.2 mm / rev, depth of cut: 1.5 mm, dry cutting test is performed, and chipping or chipping occurs Then, the number of impacts caused by the V-groove until the end of its life was calculated and shown in Table 3.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】本発明の高硬度被覆焼結合金は、応力処
理をしてない従来の被覆焼結合金に比べて耐衝撃性,耐
欠損性において約5.9〜7.6倍も向上し、寿命もこ
れに伴って向上するという効果があり、応力処理をした
従来の被覆焼結合金又は本発明の範囲を外れた被覆焼結
合金に比べて、バラツキが少なく、品質管理も容易であ
り、耐衝撃性,耐欠損性において約12%〜16.8倍
も向上し、寿命もこれに伴って向上するという顕著な効
果がある。
The high hardness coated sintered alloy of the present invention is improved in impact resistance and fracture resistance by about 5.9 to 7.6 times as compared with the conventional coated sintered alloy which is not subjected to stress treatment. However, there is an effect that the life is also improved with this, compared to the conventional coated sintered alloy subjected to stress treatment or the coated sintered alloy outside the scope of the present invention, there is little variation, and quality control is easy. There is a remarkable effect that the impact resistance and the fracture resistance are improved by about 12% to 16.8 times, and the life is also improved accordingly.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 周期律表の4a,5a,6a族金属の炭
化物,窒化物及びこれらの相互固溶体の中の少なくとも
1種の硬質相と、Ni,Co又はNi−Co合金を主成
分とする結合相からなる焼結合金の基体の表面に化学蒸
着法により被膜を被覆してなる被覆焼結合金において、
該結合相は2〜12重量%からなり、該基体の表面部に
存在する該硬質相は30〜80kg/mm2の圧縮応力
が付与されており、該被膜は20kg/mm2以下の圧
縮応力が付与されているか、もしくは応力が付与されて
ないことを特徴とする高強度被覆焼結合金。
1. A main component of at least one hard phase among carbides and nitrides of metals of groups 4a, 5a and 6a of the periodic table and mutual solid solutions thereof, and Ni, Co or a Ni—Co alloy. In a coated sintered alloy obtained by coating a film by a chemical vapor deposition method on the surface of a sintered alloy substrate consisting of a binder phase,
The binder phase consists of 2 to 12 wt%, the rigid phase present in the surface portion of the base body is applied compressive stress 30~80kg / mm 2 is The coating 20 kg / mm 2 or less of compressive stress A high-strength coated sintered alloy characterized by being provided with or without stress.
【請求項2】 上記基体の表面部に存在する上記結合相
は、X線回折法において求める面心立方晶構造の結合相
(F.C.C)に対する六方晶構造の結合相(h.C.
P)の積分強度比が0.2以上(h.C.P/F.C.
C≧0.2)からなることを特徴とする請求項1記載の
高強度被覆焼結合金。
2. The binder phase existing on the surface of the substrate is a binder phase (hC) having a hexagonal crystal structure to a binder phase (FCC) having a face-centered cubic structure determined by X-ray diffractometry. .
P) has an integrated intensity ratio of 0.2 or more (h.C.P./F.C.
The high-strength coated sintered alloy according to claim 1, wherein C ≧ 0.2).
【請求項3】 上記被膜は、Tiの炭化物,窒化物,炭
酸化物,窒酸化物,Alの酸化物及びこれらの相互固溶
体の中の1種の膜が2層以上の多重層として形成されて
いることを特徴とする高強度被覆焼結合金。
3. The above-mentioned film is formed by forming one film of Ti carbide, nitride, carbon oxide, oxynitride, Al oxide and mutual solid solution thereof as a multi-layer of two or more layers. A high-strength coated sintered alloy characterized in that
JP28391092A 1992-09-29 1992-09-29 High strength coated sintered alloy Pending JPH06108258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28391092A JPH06108258A (en) 1992-09-29 1992-09-29 High strength coated sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28391092A JPH06108258A (en) 1992-09-29 1992-09-29 High strength coated sintered alloy

Publications (1)

Publication Number Publication Date
JPH06108258A true JPH06108258A (en) 1994-04-19

Family

ID=17671776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28391092A Pending JPH06108258A (en) 1992-09-29 1992-09-29 High strength coated sintered alloy

Country Status (1)

Country Link
JP (1) JPH06108258A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167564A1 (en) * 2000-06-23 2002-01-02 Linde Gas Aktiengesellschaft Cutting edge with a thermally sprayed coating and method for forming the coating
JP2010209398A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Drill made of cemented carbide having excellent breaking resistance
JP2011189505A (en) * 2005-03-29 2011-09-29 Sumitomo Electric Hardmetal Corp Edge replaceable cutting tip and method of manufacturing the same
WO2012026098A1 (en) * 2010-08-26 2012-03-01 住友金属工業株式会社 Method of producing cutting tool
WO2020067138A1 (en) 2018-09-28 2020-04-02 三菱マテリアル株式会社 Surface coated tin-based cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
WO2021157716A1 (en) 2020-02-05 2021-08-12 三菱マテリアル株式会社 Method for manufacturing cutting tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431972A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High-toughness coating material
JPH02254144A (en) * 1989-03-27 1990-10-12 Nippon Steel Corp Manufacture of coated cutting tool having excellent wear resistance and chipping resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431972A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High-toughness coating material
JPH02254144A (en) * 1989-03-27 1990-10-12 Nippon Steel Corp Manufacture of coated cutting tool having excellent wear resistance and chipping resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167564A1 (en) * 2000-06-23 2002-01-02 Linde Gas Aktiengesellschaft Cutting edge with a thermally sprayed coating and method for forming the coating
JP2011189505A (en) * 2005-03-29 2011-09-29 Sumitomo Electric Hardmetal Corp Edge replaceable cutting tip and method of manufacturing the same
JP2010209398A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Drill made of cemented carbide having excellent breaking resistance
WO2012026098A1 (en) * 2010-08-26 2012-03-01 住友金属工業株式会社 Method of producing cutting tool
JP2012045661A (en) * 2010-08-26 2012-03-08 Sumitomo Metal Ind Ltd Method of producing cutting tool
WO2020067138A1 (en) 2018-09-28 2020-04-02 三菱マテリアル株式会社 Surface coated tin-based cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
WO2021157716A1 (en) 2020-02-05 2021-08-12 三菱マテリアル株式会社 Method for manufacturing cutting tool

Similar Documents

Publication Publication Date Title
USRE40873E1 (en) Method of making grooving or parting insert
USRE39987E1 (en) Coated turning insert
JP4739235B2 (en) Surface coated cutting tool
WO2006046498A1 (en) Surface-coated cutting tool
JP2008183708A (en) Coated insert for milling and its manufacturing method
JP3127708B2 (en) Coated cemented carbide for cutting tools
JP2009090452A (en) Coated cutting tool for general turning of heat-resistant super-alloy
WO2006070538A1 (en) Surface coating cutter
JP2012512753A (en) Improved coated cutting insert for rough turning
JP2001254187A (en) Hard film-coated member
JP2000225506A (en) Cutting insert and manufacture thereof
KR20040084781A (en) Coated cutting tool insert for machining of cast irons
JPH06220571A (en) Sintered hard alloy and coated sintered hard alloy for cutting tool
KR101529726B1 (en) Coated cutting insert for milling applications
JPH0615717B2 (en) High toughness coating material and manufacturing method thereof
JPH06108258A (en) High strength coated sintered alloy
JP2603177B2 (en) Coated sintered alloy with excellent fracture resistance
JPH0892685A (en) High toughness coated sintered alloy
JPH06173014A (en) High strength coated sintered alloy
JPH05177411A (en) Cover cutting tool and its manufacture
JP3159572B2 (en) High-strength coated object
JPH0655311A (en) Surface-coated tungsten carbide base cemented carbide cutting tool excellent in wear-resistance and breakage-resistance
JPH05116003A (en) Tool member excellent in chipping resistance
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP3358696B2 (en) High strength coating

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970128