JPH06173014A - High strength coated sintered alloy - Google Patents

High strength coated sintered alloy

Info

Publication number
JPH06173014A
JPH06173014A JP4345232A JP34523292A JPH06173014A JP H06173014 A JPH06173014 A JP H06173014A JP 4345232 A JP4345232 A JP 4345232A JP 34523292 A JP34523292 A JP 34523292A JP H06173014 A JPH06173014 A JP H06173014A
Authority
JP
Japan
Prior art keywords
substrate
sintered alloy
compressive stress
coating
coated sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4345232A
Other languages
Japanese (ja)
Inventor
Manabu Sato
学 佐藤
Masakazu Okubo
昌和 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP4345232A priority Critical patent/JPH06173014A/en
Publication of JPH06173014A publication Critical patent/JPH06173014A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To apply stress to a hard phase and a coating on the surface part of a substrate in a sintered allay with a good balance and to improve its impact resistance and chipping resistance by applying compressive stress with a speci fied depth distribution to the hard layer on the surface part of the substrate from the surface of the substrate toward the inside. CONSTITUTION:This coated sintered allay is formed by coating the surface of a substrate constituted of a sintered alloy containing 84 to 98wt.% hard phase of at least one kind among the carbides and nitrides of 4a, 5a and 6a group metals and the mutual solid solution thereamong and a bonding phase essentially consisting of Co or an Ni-Co allay with a film. The surface of the substrate of the coated sintered allay is bombarded with flying substance such as steel balls to apply compressive stress from the surface of the substrate to a depth of at least 40mum inside. This compressive stress is gradually increased from the surface toward the inside, and the maximum compressed stress is attained on the surface part of the substrate at the inside of 2 to 20mum from the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐衝撃性,耐欠損性に
優れる高強度被覆焼結合金に関し、特に切削工具又は耐
摩耗工具に代表される工具用として最適な高強度被覆焼
結合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength coated sintered alloy having excellent impact resistance and chipping resistance, and particularly suitable for a tool represented by a cutting tool or a wear-resistant tool. It is about.

【0002】[0002]

【従来の技術】超硬合金及びサーメットに代表される焼
結合金の基体の表面に、高硬質な被膜を被覆してなる被
覆焼結合金は、大別すると、化学蒸着法(CVD法)に
よる被覆焼結合金と物理蒸着法(PVD法)による被覆
焼結合金がある。これらの被覆焼結合金は、製造条件に
基づく残留応力、又は被膜の材質と基体の材質による熱
膨張係数の差に基づく残留応力が被膜及び基体の表面部
に残在している。
2. Description of the Related Art A coated sintered alloy obtained by coating a surface of a substrate of a sintered alloy represented by cemented carbide and cermet with a highly hard coating is roughly classified by a chemical vapor deposition method (CVD method). There are coated sintered alloys and coated sintered alloys by physical vapor deposition (PVD method). In these coated sintered alloys, residual stress based on the manufacturing conditions or residual stress based on the difference in thermal expansion coefficient between the material of the coating and the material of the base remains on the surface of the coating and the base.

【0003】被覆焼結合金に内在する残留応力と被覆焼
結合金の諸特性との関係について検討されている代表的
なものとしては、山本らの日本金属学会誌50(3)
(1986)320、及び特開昭64−31972号公
報がある。また、被覆焼結合金の残留応力とその分布に
関して検討されているものとして、吉川らの熱処理29
(1)(1989)9がある。
As a representative example of the relationship between the residual stress inherent in the coated sintered alloy and various characteristics of the coated sintered alloy, Yamamoto et al., Journal of the Japan Institute of Metals 50 (3).
(1986) 320 and JP-A-64-31972. In addition, the heat treatment of Yoshikawa et al., 29, has been investigated as to the residual stress of the coated sintered alloy and its distribution.
There is (1) (1989) 9.

【0004】[0004]

【発明が解決しようとする課題】山本らの日本金属学会
誌50(3)(1986)320によると、CVD法に
よる被覆焼結合金は、基体の表面部に存在する硬質相で
ある炭化タングステン及び被膜である窒化チタンの両方
に引張応力が作用していると記載されている。そして、
山本らの同文献には、CVD法による被覆焼結合金は、
PVD法による被覆焼結合金又は被膜の被覆されてない
焼結合金に比べて、抗折強度及び破壊靭性値が極端に低
下するという問題が記載されている。
According to Yamamoto et al., Journal of the Japan Institute of Metals, 50 (3) (1986) 320, the coated sintered alloy by the CVD method contains tungsten carbide, which is a hard phase present on the surface of the substrate, and tungsten carbide. It is described that tensile stress acts on both of the titanium nitride films. And
In Yamamoto et al.'S reference, the coated sintered alloy by the CVD method is
It has been described that the flexural strength and fracture toughness values are extremely reduced as compared with a sintered sintered alloy obtained by the PVD method or an uncoated sintered alloy.

【0005】また、特開昭64−31972号公報に
は、CVD法による被覆焼結合金の基体表面部に存在す
る硬質相及び/又は被膜に、50kg/mm2以上の圧
縮応力を付与した被覆焼結合金が記載されている。同公
報の被覆焼結合金は、従来のCVD法による被覆焼結合
金の被膜表面からショットピーニング法又はサンドブラ
スト法等により衝撃力を付加して、基体表面部の硬質相
及び/又は被膜に存在する引張応力を圧縮応力とし、被
覆焼結合金の強度を顕著に高めたという優れた合金であ
るが、基体の結合相量,被膜の厚さ,被膜の膜質及び多
重層被膜によっては、逆に強度低下になるという問題が
ある。
Further, Japanese Patent Laid-Open No. 64-31972 discloses a coating obtained by applying a compressive stress of 50 kg / mm 2 or more to the hard phase and / or the coating existing on the surface of the substrate of the coated sintered alloy by the CVD method. Sintered alloys are described. The coated sintered alloy of the publication is present in the hard phase and / or the coating on the surface of the substrate by applying an impact force from the coating surface of the coated sintered alloy by the conventional CVD method by the shot peening method or the sandblast method. This is an excellent alloy in which tensile stress is used as compressive stress and the strength of the coated sintered alloy is remarkably increased. However, depending on the amount of binder phase of the substrate, the thickness of the coating, the quality of the coating and the multilayer coating, the strength may be reversed. There is a problem that it will decrease.

【0006】さらに、吉川らの熱処理29(1)(19
89)9によると、CVD法による被覆焼結合金には、
基体と被膜との界面近傍±0.3μmの範囲に限り、異
常な応力分布が存在すると記載されている。
Furthermore, the heat treatment of Yoshikawa et al. 29 (1) (19)
89) 9, according to the coated sintered alloy by the CVD method,
It is described that an abnormal stress distribution exists only in the range of ± 0.3 μm near the interface between the substrate and the coating.

【0007】本発明は、上述のような従来の問題点を解
決したもので、具体的には、基体表面部の硬質相と被膜
との両方にバランスよく応力を付与し、耐衝撃性及び耐
欠損性を最高に維持できるようにした被覆焼結合金の提
供を目的とするものである。
The present invention solves the above-mentioned conventional problems. Specifically, stress is applied in a well-balanced manner to both the hard phase and the coating on the surface of the substrate, and the impact resistance and resistance It is an object of the present invention to provide a coated sintered alloy capable of maintaining the maximum defectivity.

【0008】[0008]

【課題を解決するための手段】本発明者らは、被覆焼結
合金の基体表面部の硬質相と被膜とに内在する応力の制
御と、それぞれに付与する応力と切削工具としての性能
との関係について検討していた所、基体表面部の硬質相
と被膜とに付与される最適残留応力は、基体の結合相量
及び被膜の構成により異なり、基体表面部の硬質相に
は、基体の表面から基体の内部へ向ってある深さ分布の
圧縮応力を付与することにより、耐衝撃性及び耐欠損性
が顕著に優れるという知見を得て、本発明を完成するに
至ったものである。
Means for Solving the Problems The inventors of the present invention have made it possible to control the stresses inherent in the hard phase and the coating on the surface of the base body of the coated sintered alloy, and the stresses imparted to them and the performance as a cutting tool. As a result of studying the relationship, the optimum residual stress applied to the hard phase on the surface of the base and the coating differs depending on the amount of the binder phase of the base and the structure of the coating. The present invention has been completed based on the finding that impact resistance and fracture resistance are remarkably excellent by applying a compressive stress having a depth distribution from the inside to the inside of the substrate.

【0009】すなわち、本発明の高強度被覆焼結合金
は、周期律表の4a,5a,6a族金属の炭化物,窒化
物及びこれらの相互固溶体の中の少なくとも1種の硬質
相84〜98重量%と、残りNi,Co又はNi−Co
合金を主成分とする結合相からなる焼結合金の基体の表
面に被膜を被覆してなる被覆焼結合金であって、該基体
の表面から少なくとも40μm内部までの深さにおける
基体表面部に圧縮応力が付与されており、該基体の表面
部の圧縮応力が該基体の表面から内部に向って漸増し、
該基体の表面から2〜20μm内部における該基体表面
部で最大の圧縮応力となった後漸減して該基体の内部に
おける残留応力になっていることを特徴とする。
That is, the high-strength coated sintered alloy of the present invention comprises at least one hard phase of carbides, nitrides and mutual solid solutions of 4a, 5a and 6a metals in the periodic table in an amount of 84 to 98% by weight. % And the remaining Ni, Co or Ni-Co
A coated sintered alloy obtained by coating the surface of a substrate of a sintered alloy having a binder phase containing an alloy as a main component with a coating, and compressing the surface of the substrate at a depth of at least 40 μm from the surface of the substrate. A stress is applied, and the compressive stress of the surface portion of the substrate gradually increases from the surface of the substrate toward the inside,
The maximum compressive stress at the surface of the substrate within 2 to 20 μm from the surface of the substrate is followed by a gradual decrease to the residual stress inside the substrate.

【0010】本発明の被覆焼結合金における基体は、従
来から公知公用されている超硬合金又はサーメットでな
り、具体的には、例えばTiC,ZrC,HfC,V
C,NbC,TaC,WC,Cr32,Mo2C,Ti
N,ZrN,HfN,VN,NbN,TaN,Ti
(C,N),(Ti,Ta)C,(Ti,Ta,W)
C,(Ti,Ta,Nb,W)C,(Ti,Ta)
(C,N),(Ti,Ta,W)(C,N)の中の1種
以上の硬質相と、Ni,Co又はNi−Co合金、もし
くはこれらに硬質相の元素やFeが数%以下固溶してな
る結合相とからなるものである。これらの内、WCをベ
ースとする硬質相でなる超硬合金、又はTiCやTi
(C,N)をベースとする硬質相でなるサーメットから
なる基体の場合は、その効果が顕著になることから特に
好ましい。
The substrate of the coated sintered alloy of the present invention is a cemented carbide or cermet which has been publicly known and used conventionally, and specifically, for example, TiC, ZrC, HfC, V.
C, NbC, TaC, WC, Cr 3 C 2 , Mo 2 C, Ti
N, ZrN, HfN, VN, NbN, TaN, Ti
(C, N), (Ti, Ta) C, (Ti, Ta, W)
C, (Ti, Ta, Nb, W) C, (Ti, Ta)
(C, N), (Ti, Ta, W) (C, N) at least one hard phase and Ni, Co, or Ni-Co alloy, or a few percent of hard phase elements and Fe. Hereinafter, it is composed of a binder phase formed as a solid solution. Of these, cemented carbide with a hard phase based on WC, or TiC or Ti
In the case of a base body composed of a cermet having a hard phase based on (C, N), the effect becomes remarkable, which is particularly preferable.

【0011】基体を構成する結合相は、基体全体の2重
量%未満になると、硬質相に残存する応力を制御しても
その効果が弱く、逆に基体全体の16重量%を超えて多
くなると、本発明を構成する残留応力の範囲では、その
効果が弱くなるために、基体の結合相量を2〜16重量
%と定めた。従って、硬質相量は、結合相量と相対的関
係にあることから、84〜98重量%からなるものであ
る。
When the amount of the binder phase constituting the substrate is less than 2% by weight of the whole substrate, the effect is weak even if the stress remaining in the hard phase is controlled, and conversely, when it exceeds 16% by weight of the entire substrate. In the range of the residual stress that constitutes the present invention, the effect is weakened, so the amount of the binder phase of the substrate is set to 2 to 16% by weight. Therefore, the hard phase amount is 84 to 98 wt% because it has a relative relationship with the binder phase amount.

【0012】また、硬質相に付与された圧縮応力の分布
範囲である基体表面部深さ、別の表現をすると、基体の
表面から基体の内部への深さ方向に付与された基体の内
部と異なった残留応力範囲、すなわち、圧縮応力の分布
範囲が基体の表面から40μm未満の内部までになる
と、耐欠損性の低下が著しくなるために、基体の表面か
ら少なくとも40μmの内部と定めたものである。基体
表面部の圧縮応力の分布範囲が基体の表面から100μ
m内部を超えるようにするには、付与の仕方が非常に困
難となることから、特に、基体の表面から50〜100
μm内部までの深さが好ましい。
In addition, the depth of the substrate surface portion, which is the distribution range of the compressive stress applied to the hard phase, in other words, the inside of the substrate applied in the depth direction from the surface of the substrate to the inside of the substrate. When the residual stress range is different, that is, the compressive stress distribution range is less than 40 μm from the surface of the substrate, the fracture resistance is significantly deteriorated. Therefore, it is defined as at least 40 μm from the surface of the substrate. is there. The range of compressive stress distribution on the substrate surface is 100μ from the substrate surface
Since it is very difficult to apply the resin to the inside of m, it is particularly preferable that the distance from the surface of the substrate is 50 to 100.
The depth to the inside of μm is preferable.

【0013】さらに、基体表面部で最大の圧縮応力を示
す位置、すなわち圧縮応力の最大位置が基体の表面から
2μm未満の内部では、耐欠損性の低下が著しく、基体
の表面から20μmを超えた内部には、付与し難くなる
ことから、基体の表面から2〜20μm内部と定めたも
のである。このときの最大応力は、80〜250kg/
mm2であることが好ましい。
Further, in the position where the maximum compressive stress is present on the surface of the substrate, that is, in the inside where the maximum position of the compressive stress is less than 2 μm from the surface of the substrate, the fracture resistance is remarkably lowered and exceeds 20 μm from the substrate surface. Since it is difficult to apply inside, it is defined as 2 to 20 μm from the surface of the substrate. The maximum stress at this time is 80 to 250 kg /
It is preferably mm 2 .

【0014】本発明の被覆焼結合金における被膜は、被
膜材質としては、特に制限を受けないが、基体の熱膨張
係数と被膜材質の熱膨張係数との差が大きい程、その効
果が高く、具体的には、例えば周期律表の4a,5a,
6a族金属の炭化物,窒化物,酸化物,ホウ化物,Si
の炭化物,窒化物,Alの酸化物,窒化物及びこれらの
相互固溶体、ダイヤモンド,ダイヤモンド状カーボン,
立方晶窒化ホウ素を挙げることができる。この被膜の厚
さは、厚くしすぎると剥離しやすくなるために20μm
以下、特に10μm以下でなる場合はバラツキも小さ
く、性能的にも安定し、かつ優れた効果があるので好ま
しい。
The coating material in the coated sintered alloy of the present invention is not particularly limited as to the coating material, but the larger the difference between the thermal expansion coefficient of the substrate and the thermal expansion coefficient of the coating material, the higher the effect. Specifically, for example, the periodic table 4a, 5a,
Carbides, nitrides, oxides, borides, Si of 6a group metals
Carbides, nitrides, Al oxides, nitrides and their mutual solid solutions, diamond, diamond-like carbon,
Cubic boron nitride may be mentioned. The thickness of this coating is 20 μm because it tends to peel off if it is made too thick.
In particular, when the thickness is 10 μm or less, variations are small, performance is stable, and excellent effects are obtained, which is preferable.

【0015】また、被膜材質がTiの炭化物,窒化物,
炭酸化物,窒酸化物,Alの酸化物及びこれらの相互固
溶体の中の1種以上でなり、かつ2層以上の多重層で形
成されている場合には、基体の表面部に存在する硬質相
に付与された応力による耐欠損性への効果が顕著になる
ことから、好ましい。被膜の膜厚に応じて、特に、基体
の表面部の硬質相に付与される圧縮応力の分布範囲、圧
縮応力の最大位置及び最大圧縮応力値とのバランス関係
が重要であり、膜厚が厚くなるほど、または膜厚が一定
ならば被膜の総数が多くなるほど効果が高く、3層以上
の多層、さらに5層以上の多層でなる場合には一層顕著
な効果が発揮されるので好ましい。このときの被膜の残
留応力は、20kg/mm2以下の引張り応力または2
0kg/mm2以下の圧縮応力もしくは残留応力が付与
されてない零の状態にあることが好ましい。
Further, the coating material is Ti carbide, nitride,
A hard phase existing on the surface portion of the substrate when it is composed of one or more of carbonates, oxynitrides, oxides of Al and mutual solid solutions thereof and is formed of multiple layers of two or more layers. It is preferable because the stress imparted to the steel has a remarkable effect on the fracture resistance. Depending on the film thickness of the coating film, especially the distribution range of the compressive stress applied to the hard phase on the surface of the substrate, the maximum position of the compressive stress, and the balance relationship with the maximum compressive stress value are important. It is preferable, or if the film thickness is constant, that the larger the total number of coating films is, the higher the effect is, and it is preferable that a multilayer having 3 or more layers, and further a multilayer having 5 or more layers exhibit a more remarkable effect. The residual stress of the coating film at this time is 20 kg / mm 2 or less,
It is preferably in a zero state in which no compressive stress or residual stress of 0 kg / mm 2 or less is applied.

【0016】本発明の被覆焼結合金は、従来のCVD法
またはPVD法による被覆焼結合金の表面から最適衝撃
力を付加し、基体表面部の硬質相に付与される応力を制
御することにより作製することができる。具体的には、
例えばショットピーニング法又はサンドブラスト法でも
って、所定の特性を有する物質を所定速度で被覆焼結合
金の被膜表面に飛翔衝突させることにより作製すること
ができる。
The coated sintered alloy of the present invention is produced by applying an optimum impact force from the surface of the coated sintered alloy prepared by the conventional CVD method or PVD method to control the stress applied to the hard phase on the surface of the substrate. Can be made. In particular,
For example, a shot peening method or a sand blasting method can be used to produce a material having predetermined characteristics by causing the material having predetermined characteristics to fly and collide with the coating surface of the coated sintered alloy at a predetermined speed.

【0017】さらに、本発明の被覆焼結合金を作製する
方法について、詳細に説明すると、被膜表面から飛翔衝
突させる所定の特性を有する物質(飛翔物質)とは、密
度,ヤング率,ポアソン比及び直径を考慮した球状体の
物質であって、例えば直径0.3〜1mmの鋼球又は直
径0.1〜1mmの超硬合金を挙げることができる。ま
た、この飛翔物質を飛翔させるための所定速度は、例え
ば5〜100m/sを目安とすればよく、飛翔物質が鋼
球の場合は30〜100m/s、飛翔物質が超硬合金球
の場合は5〜60m/s、さらに球状体の大きさが直径
0.1〜0.4mmの場合は60〜100m/s、直径
0.4〜0.7mmの場合は30〜70m/s、直径
0.7〜1.0mmの場合は5〜40m/sからなるこ
とが好ましい。
Further, the method for producing the coated sintered alloy of the present invention will be described in detail. The substance having a predetermined characteristic (flying substance) that causes a flying collision from the coating surface means the density, Young's modulus, Poisson's ratio and It is a spherical substance considering the diameter, and examples thereof include a steel ball having a diameter of 0.3 to 1 mm and a cemented carbide having a diameter of 0.1 to 1 mm. The predetermined speed for flying the flying material may be, for example, 5 to 100 m / s as a guide. When the flying material is a steel ball, it is 30 to 100 m / s, and when the flying material is a cemented carbide ball. Is 5 to 60 m / s, further 60 to 100 m / s when the size of the spherical body is 0.1 to 0.4 mm in diameter, 30 to 70 m / s when the diameter is 0.4 to 0.7 mm, and 0 in diameter. In the case of 0.7 to 1.0 mm, it is preferably 5 to 40 m / s.

【0018】別の見方をすると、鋼球のように軟質な飛
翔物質でなる場合は、速度を速める方向とし、超硬合金
球のように硬質な飛翔物質の場合は、速度を遅くし、か
つできるだけ微細球のものが好ましい。基体の表面部の
硬質相に付与される圧縮応力の分布範囲、最大位置及び
最大圧縮応力値についての制御は、飛翔物質の形状の大
きさ、材質の硬さ及び衝撃力で行えばよく、具体的な目
安は、例えば形状を大きくする場合、材質の硬さを高く
する場合及び衝撃力を強くする場合には、分布範囲,最
大位置及び最大圧縮応力値が大きくなる傾向を示すもの
である。
From another point of view, in the case of a soft flying material such as a steel ball, the speed is increased, and in the case of a hard flying material such as a cemented carbide ball, the speed is slowed, and Fine spheres are preferable as much as possible. The distribution range of the compressive stress applied to the hard phase on the surface of the substrate, the maximum position, and the maximum compressive stress value may be controlled by the size of the shape of the flying material, the hardness of the material, and the impact force. As a general guide, when the shape is increased, the hardness of the material is increased, and the impact force is increased, the distribution range, the maximum position, and the maximum compressive stress value tend to increase.

【0019】[0019]

【作用】本発明の被覆焼結合金は、基体の表面部に存在
する硬質相に付与された圧縮応力が合金全体の耐衝撃
性,強度及び耐欠損性を高めており、特に、圧縮応力の
分布範囲及びその最大位置が被膜形成時の工程中に被膜
内に生じた微少クラック、もしくは応力を付与するため
に被膜表面から付加した衝撃力によって被膜内に生じた
微少クラックの基体内部への進展を阻止する作用をし、
新たな微少クラックが被膜内に発生した場合にも、後者
の最大位置が微少クラックの基体内部への進展を阻止す
る2段防壁作用となっているものである。
In the coated sintered alloy of the present invention, the compressive stress imparted to the hard phase existing on the surface of the substrate enhances the impact resistance, strength and fracture resistance of the entire alloy. The distribution range and its maximum position are microcracks generated in the film during the process of film formation, or the development of microcracks in the film due to the impact force applied from the film surface to impart stress to the inside of the substrate. Acts to prevent
Even when new microcracks are generated in the coating, the latter maximum position has a two-step barrier action that prevents the microcracks from propagating inside the substrate.

【0020】[0020]

【実施例1】表1に示した組成成分の超硬合金の基体を
用いて、従来から行われているCVD法により、基体表
面に被膜を被覆させた。被膜は、表1に示した膜厚及び
膜質からなるもので、基体表面に第1層,第2層,第3
層,第4層を順次被覆して被覆焼結合金を得た。
Example 1 Using a cemented carbide substrate having the composition components shown in Table 1, the surface of the substrate was coated with a film by a conventional CVD method. The film has the film thickness and film quality shown in Table 1, and has a first layer, a second layer, and a third layer on the substrate surface.
The layer and the fourth layer were sequentially coated to obtain a coated sintered alloy.

【0021】表1に示した構成でなる被覆焼結合金の被
膜表面に、表2に示した球状又は柱状の飛翔物質び衝突
速度からなるショットピーニング条件でもって衝撃力を
付加して、本発明品1〜10及び比較品1〜3を得た。
In the present invention, an impact force is applied to the coating surface of the coated sintered alloy having the constitution shown in Table 1 under the shot peening condition consisting of the spherical or columnar flying material and the collision velocity shown in Table 2. Products 1 to 10 and comparative products 1 to 3 were obtained.

【0022】こうして得た本発明品1〜10及び比較品
1〜3の被膜表面からX線を照射し、X線回折法によ
り、基体表面部に存在する硬質相であるWCの残留応
力、具体的には、基体の内部の残留応力とは異なった残
留応力の存在する基体の表面から内部までの範囲、(付
与された圧縮応力の分布範囲)、その分布範囲内で最大
の圧縮応力が付与されている基体の表面から内部までの
位置(最大位置)及びその最大位置における最大圧縮応
力値を調べて、表2に併記した。
The residual stress of WC, which is a hard phase existing on the surface of the substrate, was determined by X-ray diffractometry by irradiating X-rays from the coating surfaces of the inventive products 1-10 and comparative products 1-3 thus obtained. In particular, the range from the surface of the substrate where the residual stress different from the residual stress inside the substrate exists to the inside, (the distribution range of the applied compressive stress), the maximum compressive stress is applied within the range. The position (maximum position) from the surface of the substrate to the inside and the maximum compressive stress value at the maximum position were examined and are also shown in Table 2.

【0023】残留応力の測定は、結晶X線回折装置を用
いて、V管球,Tiフィルター,30kv電圧,10m
A電流の条件により発生させたX線で行い、硬質相であ
るWCは(111)面の結晶面における応力を測定して
求めたものである。また、基体の表面から内部への深さ
方向における残留応力の測定は、1μmのダイヤモンド
ペーストでラップ除去しながら、上述のX線回折法でも
って求めたものである。
The residual stress was measured by using a crystal X-ray diffractometer, a V tube, a Ti filter, a voltage of 30 kv, and a pressure of 10 m.
The WC, which is a hard phase, was obtained by measuring the stress in the crystal plane of the (111) plane, which was performed by X-rays generated under the condition of the A current. The residual stress in the depth direction from the surface of the substrate to the inside is measured by the above-mentioned X-ray diffraction method while removing the lap with 1 μm diamond paste.

【0024】尚、本発明品1〜10の基体表面部の圧縮
応力は、基体の表面から内部に向って漸増し、表2に記
載した最大位置で、最大圧縮応力となった後、さらに基
体の内部に向って漸減し、基体の内部における残留応力
に達していた。
The compressive stress on the surface of the substrate of Products 1 to 10 of the present invention gradually increased from the surface of the substrate toward the inside, and after reaching the maximum compressive stress at the maximum position shown in Table 2, the substrate was further compressed. Gradually decreasing toward the inside of the substrate, reaching the residual stress inside the substrate.

【0025】次に、本発明品1〜10及び比較品1〜3
と、さらに、ショットピーニング処理を施さない比較品
2に相当する被覆焼結合金を比較品4として用いて、被
削材:S48C(4本溝入り)、切削速度:150m/
min、送り:0.2mm/rev、切込み:1.5m
mによる乾式切削試験を行い、欠損又はチッピングが発
生して寿命になるまでの溝により生じる衝撃回数を求め
て表2に併記した。
Next, products 1 to 10 of the present invention and comparative products 1 to 3
Further, using a coated sintered alloy corresponding to the comparative product 2 not subjected to the shot peening treatment as the comparative product 4, the work material: S48C (with four grooves), the cutting speed: 150 m /
min, feed: 0.2 mm / rev, depth of cut: 1.5 m
The dry cutting test with m was performed, and the number of impacts caused by the groove until the end of the life due to chipping or chipping was obtained and the results are also shown in Table 2.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【実施例2】10Co−20TiC−10TaC−60
WC(重量%)組成の焼結合金の基体を用いて、従来か
ら行われているCVD法により、基体の表面に被膜を被
覆させた。被膜は、表3に示した膜厚及び膜質からなる
もので、基体の表面に第1層又は第1層〜第5層を順次
被覆して被覆焼結合金を得た。これらの被覆焼結合金の
被膜表面から表4に示すにショットピーニング条件でも
って衝撃力を付加し、本発明品11〜15及び比較品
5,6を得た。こうして得た本発明品11〜15及び比
較品5,6を実施例1と同方法でもって、基体の表面部
における残留応力分布を調べて、表4に併記した。
Example 2 10Co-20TiC-10TaC-60
By using a sintered alloy substrate having a WC (wt%) composition, a coating was applied to the surface of the substrate by the conventional CVD method. The coating film had the film thickness and film quality shown in Table 3, and the surface of the substrate was sequentially coated with the first layer or the first to fifth layers to obtain a coated sintered alloy. Impact forces were applied from the coating surface of these coated sintered alloys under the shot peening conditions shown in Table 4 to obtain inventive products 11 to 15 and comparative products 5 and 6. The present invention products 11 to 15 and the comparative products 5 and 6 thus obtained were examined for residual stress distribution on the surface portion of the substrate by the same method as in Example 1 and are also shown in Table 4.

【0029】尚、本発明品11〜15基体表面部の圧縮
応力分布状態は、実施例1の本発明品1〜10と同様の
形態を示した。
The products 11 to 15 of the present invention have the same compressive stress distribution on the surface of the substrate as the products 1 to 10 of the first embodiment.

【0030】次いで、本発明品11〜15及び比較品
5,6を用いて、被削材:S48C(4本のV溝入
り)、切削速度:150m/s、送り:0.2mm/r
ev、切込み:1.5mmによる乾式切削試験を行い、
欠損又はチッピングが発生して寿命になるまでのV溝に
より生じる衝撃回数を求めて表4に併記した。
Next, using the products 11 to 15 of the present invention and the comparative products 5 and 6, a work material: S48C (with four V grooves), a cutting speed: 150 m / s, and a feed: 0.2 mm / r.
ev, depth of cut: 1.5mm dry cutting test,
The number of impacts caused by the V-groove until the end of life due to chipping or chipping was determined and listed in Table 4.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】本発明の高強度被覆焼結合金は、応力処
理をしてない従来の被覆焼結合金に比べて耐衝撃性,耐
欠損性において約5.5倍〜16.7倍も向上し、寿命
もこれに伴って向上するという効果があり、応力処理を
した従来の被覆焼結合金又は本発明の範囲を外れた被覆
焼結合金に比べて、バラツキが少なく、品質管理も容易
であり、耐衝撃性,耐欠損性において約1.7倍〜4.
5倍も向上し、寿命もこれに伴って向上するという顕著
な効果がある。
The high-strength coated sintered alloy of the present invention is about 5.5 times to 16.7 times in impact resistance and fracture resistance as compared with the conventional coated sintered alloy which is not subjected to stress treatment. There is an effect that it improves, and the life is also improved accordingly. Compared with the conventional coated sintered alloy subjected to stress treatment or the coated sintered alloy outside the scope of the present invention, there is little variation and the quality control is easy. The impact resistance and fracture resistance are about 1.7 times to 4.
There is a remarkable effect that the life is improved five times and the life is also improved accordingly.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 29/02 29/16 C23C 16/30 7325−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical display C22C 29/02 29/16 C23C 16/30 7325-4K

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 周期律表の4a,5a,6a族金属の炭
化物,窒化物及びこれらの相互固溶体の中の少なくとも
1種の硬質相84〜98重量%と、残りNi,Co又は
NiCo合金を主成分とする結合相からなる焼結合金の
基体の表面に被膜を被覆してなる被覆焼結合金におい
て、該基体の表面から少なくとも40μm内部までの深
さにおける基体表面部に圧縮応力が付与されており、該
基体の表面部の圧縮応力が該基体の表面から内部に向っ
て漸増し、該基体の表面から2〜20μm内部における
該基体表面部で最大の圧縮応力となった後漸減して該基
体の内部における残留応力になっていることを特徴とす
る高強度被覆焼結合金。
1. At least one hard phase of carbides, nitrides and mutual solid solutions of 4a, 5a and 6a metals of the periodic table, 84 to 98% by weight, and the balance of Ni, Co or NiCo alloy. In a coated sintered alloy obtained by coating a surface of a base of a sintered alloy having a binder phase as a main component, a compressive stress is applied to the surface of the base at a depth of at least 40 μm from the surface of the base. The compressive stress on the surface of the substrate gradually increases from the surface of the substrate toward the inside, and gradually decreases after reaching the maximum compressive stress on the surface of the substrate within 2 to 20 μm from the surface of the substrate. A high-strength coated sintered alloy having a residual stress inside the substrate.
【請求項2】 上記最大の圧縮応力が80〜250kg
/mm2 であることを特徴とする請求項1記載の高強度
被覆焼結合金。
2. The maximum compressive stress is 80 to 250 kg.
/ Mm2 The high strength according to claim 1, wherein
Coated sintered alloy.
【請求項3】 上記被膜がTiの炭化物,窒化物,炭酸
化物,窒酸化物,Alの酸化物,窒化物及びこれらの相
互固溶体の中の少なくとも1種の単層又は多層からな
り、かつ該被膜に20kg/mm2以下の圧縮応力が付
与されていることを特徴とする請求項1又は2記載の高
強度被覆焼結合金。
3. The coating comprises a single layer or a multilayer of at least one of Ti carbide, nitride, carbon oxide, nitrous oxide, Al oxide, nitride and their mutual solid solution, and The high-strength coated sintered alloy according to claim 1 or 2, wherein a compressive stress of 20 kg / mm 2 or less is applied to the coating.
JP4345232A 1992-12-01 1992-12-01 High strength coated sintered alloy Withdrawn JPH06173014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4345232A JPH06173014A (en) 1992-12-01 1992-12-01 High strength coated sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4345232A JPH06173014A (en) 1992-12-01 1992-12-01 High strength coated sintered alloy

Publications (1)

Publication Number Publication Date
JPH06173014A true JPH06173014A (en) 1994-06-21

Family

ID=18375196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4345232A Withdrawn JPH06173014A (en) 1992-12-01 1992-12-01 High strength coated sintered alloy

Country Status (1)

Country Link
JP (1) JPH06173014A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480945B2 (en) 2004-09-22 2009-01-27 Playtex Products, Inc. Glove having a cuffed portion
DE102008009487A1 (en) * 2008-02-15 2009-08-27 Walter Ag Blast-treated cutting insert and method
US9238267B2 (en) 2011-09-16 2016-01-19 Walter Ag Cutting insert and method for production thereof
WO2023228688A1 (en) * 2022-05-27 2023-11-30 京セラ株式会社 Coated tool and cutting tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480945B2 (en) 2004-09-22 2009-01-27 Playtex Products, Inc. Glove having a cuffed portion
US8146174B2 (en) 2004-09-22 2012-04-03 Playtex Products, Inc. Glove having a cuffed portion
DE102008009487A1 (en) * 2008-02-15 2009-08-27 Walter Ag Blast-treated cutting insert and method
US9238267B2 (en) 2011-09-16 2016-01-19 Walter Ag Cutting insert and method for production thereof
WO2023228688A1 (en) * 2022-05-27 2023-11-30 京セラ株式会社 Coated tool and cutting tool

Similar Documents

Publication Publication Date Title
JP4339401B2 (en) CVD coated titanium-based carbonitride cutting tool insert
WO2006046498A1 (en) Surface-coated cutting tool
JP4854359B2 (en) Surface coated cutting tool
US8580376B2 (en) Cutting tool
WO2006064724A1 (en) Surface-covered cutting tool
JP2007160504A (en) Coated cutting tool insert
WO2006070538A1 (en) Surface coating cutter
JP2009090452A (en) Coated cutting tool for general turning of heat-resistant super-alloy
JP2000225506A (en) Cutting insert and manufacture thereof
JP2001254187A (en) Hard film-coated member
KR20040084781A (en) Coated cutting tool insert for machining of cast irons
JPWO2010050374A1 (en) Surface coating tool
JP2012512753A (en) Improved coated cutting insert for rough turning
JPH07252579A (en) Coated cemented carbide for cutting tool
JPH06220571A (en) Sintered hard alloy and coated sintered hard alloy for cutting tool
JP5127477B2 (en) Cutting tools
JPH0615717B2 (en) High toughness coating material and manufacturing method thereof
JPH08209335A (en) Coated hard member
JPH06108258A (en) High strength coated sintered alloy
JPH06173014A (en) High strength coated sintered alloy
JPH0892685A (en) High toughness coated sintered alloy
JP2603177B2 (en) Coated sintered alloy with excellent fracture resistance
JP2757581B2 (en) Surface coated cutting tool
JPH05177411A (en) Cover cutting tool and its manufacture
JPH0655311A (en) Surface-coated tungsten carbide base cemented carbide cutting tool excellent in wear-resistance and breakage-resistance

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201