USRE39987E1 - Coated turning insert - Google Patents

Coated turning insert Download PDF

Info

Publication number
USRE39987E1
USRE39987E1 US11/483,384 US48338406A USRE39987E US RE39987 E1 USRE39987 E1 US RE39987E1 US 48338406 A US48338406 A US 48338406A US RE39987 E USRE39987 E US RE39987E
Authority
US
United States
Prior art keywords
layer
thickness
cemented carbide
insert
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/483,384
Inventor
Bjorn Ljungberg
Leif Åkesson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Intellectual Property AB
Original Assignee
Sandvik Intellectual Property AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE9503056A external-priority patent/SE511210C2/en
Application filed by Sandvik Intellectual Property AB filed Critical Sandvik Intellectual Property AB
Priority to US11/483,384 priority Critical patent/USRE39987E1/en
Application granted granted Critical
Publication of USRE39987E1 publication Critical patent/USRE39987E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a coated cutting tool (cemented carbide insert) particularly useful for difficult cutting conditions such as turning of hot and cold forged low alloyed steel components like gear rings and axles used in the automotive industry and turning of stainless steel components like bars, tubes and flanges.
  • a coated cutting tool cemented carbide insert
  • Stainless and low alloyed steels are materials which, in general, are difficult to machine with coated or uncoated cemented carbide tools. Smearing of workpiece material onto the cutting edge and flaking of the coating often occur. The cutting conditions are particularly difficult during the turning of forged low alloyed components under wet conditions (using coolant).
  • the hot forged skin (0.05-0.2 mm) is generally decarburized and thus softer than the bulk material due to a mainly ferritic structure.
  • the cold forged skin (less than 0.05 mm) is cold-worked and, thus, harder due to a deformation (strain hardening) effect.
  • the ferrite/pearlite bulk structure of such a material is often “ferrite-striated,” i.e., the ferrite and pearlite form parallel stripes. This mixture of hard and soft materials makes the cutting conditions very difficult.
  • the cutting edge is worn by chemical wear, abrasive wear and by a so called adhesive wear.
  • the adhesive wear is often the tool life limiting wear.
  • Adhesive wear occurs when fragments or individual grains of the layers and later also parts of the cemented carbide are successively pulled away from the cutting edge as workpiece chips are formed.
  • the wear may also be accelerated by an additional wear mechanism. Coolant and workpiece material may penetrate into the cooling cracks of the coatings. This penetration often leads to a chemical reaction between workpiece material and coolant with the cemented carbide.
  • the Co-binder phase may oxidize in a zone near the crack and along the interface between the coating and the cemented carbide. After some time coating fragments are lost piece by piece.
  • Swedish Patent Application No. 9501286-0 discloses a coated cutting insert particularly useful for dry milling of grey cast iron.
  • the insert is characterized by a straight WC-Co cemented carbide body and a coating including a layer of TiC x N y O z with columnar grains and a top layer of fine grained ⁇ -Al 2 O 3 .
  • Swedish Patent Application No. 9502640-7 discloses a coated turning insert particularly useful for intermittent turning of low alloyed steel.
  • the insert is characterized by a WC-Co cemented carbide body having a highly W-alloyed Co-binder phase and a coating including a layer of TiC x N y O z with columnar grains and a top layer of fine grained, textured ⁇ -Al 2 O 3 .
  • An object of the invention is to avoid or alleviate problems associated with prior art cutting inserts.
  • a cutting tool insert for turning of steel comprises a cemented carbide body having a coating thereon, the cemented carbide body including WC, 5-11 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92.
  • the coating comprises a first layer of TiC x N y O z having a thickness of 0.1-2 ⁇ m and equiaxed grains ⁇ 0.5 ⁇ m in size, a second layer of TiC x N y O z having a thickness of 3-15 ⁇ m and columnar grains ⁇ 5 ⁇ m in diameter, and a third layer of a smooth, fine-grained ⁇ -Al 2 O 3 -layer having a thickness of 1-9 ⁇ m.
  • a method of coating an insert wherein a turning insert comprising a cemented carbide body including WC, 5-11 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92 is coated by coating the cemented carbide body with a first layer of TiC x N y O z having a thickness of 0.1-2 ⁇ m and equiaxed grains ⁇ 0.5 ⁇ m in size by chemical vapor deposition, coating the first layer with a second layer of TiC x N y O z having a thickness of 3-15 ⁇ m and columnar grains ⁇ 5 ⁇ m in diameter by chemical vapor deposition at a temperature of 700° to 900° C. while using acetonitrile as a source of carbon and nitrogen for the second layer, and coating the second layer with a third layer of a smooth, fine-g
  • the invention also provides a method of machining a workpiece with the coated cutting insert.
  • a workpiece is machined with a turning insert comprising a cemented carbide body having a coating thereon, the cemented carbide body including WC, 5-11 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92, the coating including a first layer of TiC x N y O z having a thickness of 0.1-2 ⁇ m and equiaxed grains ⁇ 0.5 ⁇ m in size, a second layer of TiC x N y O z having a thickness of 3-15 ⁇ m and columnar grains ⁇ 5 ⁇ m in diameter, and a third layer of smooth, fine-grained ⁇ -Al 2 O 3 having a thickness of 1-9 ⁇ m, the method comprising contacting the workpiece with a cutting edge of the insert,
  • FIG. 1 is a photomicrograph at 5000 ⁇ magnification of a coated insert according to the present invention in which A represents a cemented carbide body, B represents a TiC x N y O z -layer with equiaxed grains, C represents a TiC x N y O z -layer with columnar grains, D represents a ⁇ -Al 2 O 3 -layer with columnar like grains, and E represents an optional TiN-layer.
  • the invention provides an improvement in coated turning inserts especially useful for difficult cutting conditions involving turning of forged low alloyed steel components and stainless steel components.
  • coated turning inserts especially useful for difficult cutting conditions involving turning of forged low alloyed steel components and stainless steel components.
  • the coated turning insert according to the invention advantageously provides an improved cutting tool with excellent properties for turning of stainless steel and forged components of low alloyed steel.
  • a turning tool insert is provided with a cemented carbide body including 5-11, preferably 5-8, most preferably 6.5-8, wt % Co, 2-10, preferably 4-7.5, most preferably 5-7, wt % cubic carbides of metals from groups IVb, Vb or VIb of the periodic table of elements which preferably are Ti, Ta and/or Nb and balance WC.
  • the grain size of the WC is about 2 ⁇ m.
  • the cobalt binder phase is highly alloyed with W.
  • the CW-ratio is a function of the W content in the Co binder phase. A low CW-ratio corresponds to a high W-content in the binder phase.
  • the cemented carbide body may contain small amounts, ⁇ 1 volume %, of ⁇ -phase (M 6 C), without any detrimental effect.
  • a surface zone about 15 to 35 ⁇ m thick depleted of cubic carbides and often enriched (generally more than 25% enrichment) in binder phase can be present according to prior art such as disclosed in U.S. Pat. No. 4,610,931.
  • the cemented carbide may contain carbonitride or even nitride.
  • the coating preferably comprises the following layers:
  • a first (innermost) layer of TiC x N y O z with x+y+z 1, preferably z ⁇ 0.5, with a thickness of 0.1-2 ⁇ m and with equiaxed grains with size ⁇ 0.5 ⁇ m.
  • the outer part of this layer may contain oxygen, z ⁇ 0.5.
  • this layer may contain small amounts, e.g., 1-3 volume %, of the ⁇ - or the ⁇ -phases as determined by XRD-measurement.
  • the Al 2 O 3 -layer can have a thickness of 1-9 ⁇ m, preferably 1-3 ⁇ m or alternatively 4-8 ⁇ m and a surface roughness R max ⁇ 0.4 ⁇ m over a length of 10 ⁇ m.
  • this Al 2 O 3 -layer is the outermost layer but it may also be followed by further layers such as thin (about 0.1-1 ⁇ m) decorative layer of, e.g., TiN.
  • a WC-Co-based cemented carbide body having a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92, preferably 0.80-0.90, and preferably with a binder phase enriched surface zone is coated with the following layers:
  • a first (innermost) layer of TiC x N y O z with x+y+z 1, preferably z ⁇ 0.5, with a thickness of 0.1-2 ⁇ m and with equiaxed grains with size ⁇ 0.5 ⁇ m using known CVD-methods.
  • the exact conditions depend to a certain extent on the design of the equipment used.
  • a third (outer) layer of a smooth Al 2 O 3 -layer essentially consisting of ⁇ -Al 2 O 3 is deposited under conditions disclosed in EP-A-523021 (corresponding to U.S. Pat. application Ser. No. 08/452,853).
  • the Al 2 O 3 -layer has a thickness of 1-9 ⁇ m, preferably 1-3 ⁇ m or alternatively 4-8 ⁇ m and a surface roughness R max ⁇ 0.4 ⁇ m over a length of 10 ⁇ m.
  • the smooth coating surface can be obtained by a gentle wet-blasting the coating surface with fine grained (400-150 mesh) alumina powder or by brushing the edges with brushes based on, e.g., SiC as disclosed in Swedish Patent Application No. 9402543-4 (corresponding to U.S. Pat. application Ser. No. 08/497,934).
  • Insert A Cemented carbide turning tool inserts of style CNMG 120408-PM with the composition 7.5 wt % Co, 1.8 wt % TiC, 0.5 wt % TiC, 3.0 wt % TaC, 0.4 wt % NbC and balance WC, with a binder phase highly alloyed with W corresponding to a CW-ratio of 0.88 were coated with a 0.5 ⁇ m equiaxed TiCN-layer (with a high nitrogen content corresponding to an estimated C/N-ratio of 0.05) followed by a 7 ⁇ m thick TiCN-layer with columnar grains by using MTCVD-technique (temperature 885-850° C.
  • Insert B A commercially available cemented carbide grade in style CNMG 120408 from a leading carbide producer was selected for comparison in a turning test.
  • the carbide had a composition of 9.8 wt % Co, 0.2 wt % TiC, 2.0 wt % TaC, balance WC and a CW-ratio of 0.86.
  • the insert had a coating consisting of a 5 ⁇ m thick TiCN-layer followed by a 1.5 ⁇ m thick Al 2 O 3 -layer and a 0.5 ⁇ m TiN-layer. Light microscope examination showed that the insert had not been smoothed along the edgeline after the coating step.
  • Inserts A and B were compared in a turning test of a hot forged ring gear (diameter 206 mm, in TSCM 815H material). Each turning cycle performed on each component consisted of one facing cut, one longitudinal cut and one chamfering cut. The feed was 0.35 mm/rev and cutting speed around 230 m/min.
  • flank wear 150 components were machined with inserts A and B and obtained flank wear was measured and compared. Since the wear was much less developed on insert A it was allowed to cut further components, altogether 354 components. Obtained flank wear is shown in Table 1:
  • Microscope examination of the tested inserts showed tiny flaking on insert B while no visible flaking had occurred on insert A, not even after machining 354 components.
  • insert A according to the invention is superior and possesses longer tool life than insert B.
  • Insert D A commercially available cemented carbide grade in style CNMG 120408 from another leading carbide producer was selected for comparison in a turning test.
  • the chemical composition of the cemented carbide was: 7.6 wt % Co, 2.4 wt % TiC, 0.5 wt % TiN, 2.4 wt % TaC, 0.3 wt % NbC and balance WC.
  • the cemented carbide had a surface zone, about 20 ⁇ m thick, depleted from cubic carbides.
  • the composition of the cemented carbide was similar to that of insert A but had a higher CW-ratio of 0.93 and a different coating which consisted of a 5 ⁇ m TiCN-layer followed by a 3.5 ⁇ m TiC-layer, a 1.5 ⁇ m Al 2 O 3 -layer and a 0.5 ⁇ m TiN-layer. Light microscope examination showed that the insert had not been smoothed along the edgeline after the coating step.
  • the inserts were run to a predetermined flank wear value of 0.08 mm and the number of produced components was the evaluation criteria as set forth in Table 2.
  • Insert C Cemented carbide turning tool inserts of style WNMG 080408-PM with the same composition and CW-ratio of 0.88 as insert A were coated according to the same technique used to prepare insert A. XRD-measurement showed that the Al 2 O 3 -layer consisted of 100% ⁇ -phase. The inserts were brushed according to the same technique used to prepare insert A.
  • Insert E An insert in style WNMG 080408 from the same cemented carbide producer as insert D and with the same CW-ratio, carbide composition and coating as insert D was selected for comparison in a turning test. Light microscope examination showed that the insert had not been smoothed along the edgeline after the coating step.
  • Inserts C and E were compared in a facing turning test of a forged axle (length of 487 mm and a diameter of 27-65 mm, material 50CV4) with feed of 0.28-0.30 mm/rev and cutting speed around 160 m/min. Three axles were run per each cutting edge and the wear of the cutting edges was examined in a light microscope as set forth in Table 3.
  • Insert F Cemented carbide turning tool inserts of style CNMG 120408-PM from the same batch as insert A were coated according to Swedish Patent Application No. 9502640-7 (corresponding to U.S. Pat. application Ser. No. 08/675,034) with 0.5 thick equiaxed TiCN-layer followed by a 7 ⁇ m thick TiCN-layer with columnar grains, 1 ⁇ m thick equiaxed TiCN-layer and a 4 ⁇ m thick 012-textured ⁇ -Al 2 O 3 -layer. The inserts were wet-blasted using a water/Al 2 O 3 -slurry in order to smooth the coating surfaces.
  • Insert G Cemented carbide turning tool inserts of style CNMG 120408-PM with the composition 6.5 wt % Co and 8.8 wt % cubic carbides (3.3 wt % TiC, 3.4 wt % TaC and 2.1 wt % NbC) and balance WC were coated by the same technique used to prepare insert A.
  • the cemented carbide body had a CW-ratio of 1.0 and a surface zone about 23 ⁇ m thick depleted of cubic carbides and enriched in binder phase. XRD-measurement showed that the Al 2 O 3 -layer consisted only of the ⁇ -phase.
  • Insert A, F, G and B were compared in a turning test of a hot and cold forged ring gear of SCr420H material.
  • the ring gear had an outer diameter of 190 mm and an inner diameter of 98 mm.
  • Each turning cycle performed on each component consisted of three facing cuts and one longitudinal cut. Feed was 0.25-0.40 mm/rev and cutting speed around 200 m/min. 170 components were machined and the wear of the cutting edges was examined as set forth in Table 4.
  • insert F produced according to the Swedish patent application 9502640-7 (corresponding to U.S. Pat. application Ser. No. 08/675,034) generally performs well when turning low alloyed steels it can not always compete with insert A produced according to the present invention when turning some hot and cold forged low alloyed steel components.
  • Insert H Inserts from the same batch as insert A were coated according to the same technique used to prepare insert A with the exception that the process time for the Al 2 O 3 coating step was prolonged to 7.5 hours giving a 5.5 ⁇ m thick layer of Al 2 O 3 .
  • a thin (0.5 ⁇ m) decorative layer of TiN was deposited on top using a prior art technique.
  • Insert I Inserts of the type used to prepare insert H were coated with a 7 ⁇ m equiaxed layer of TiCN followed by a 5 ⁇ m thick layer of Al 2 O 3 -layer and a 0.5 ⁇ m top coating of TiN using a prior art technique.
  • Al 2 O 3 -layer consisted of a mixture of ⁇ - and ⁇ -Al 2 O 3 approximately in the ratio 30/70. Inserts H and A were brushed after coating in order to remove the TiN-layer and smooth the cutting edge.
  • Inserts H, A and I were tested in an intermittent longitudinal turning operation.
  • the workpiece material was a low alloyed low carbon steel (SCr420H) in the shape of a 22 mm thick ring with an outer diameter of 190 mm and an inner diameter of 30 mm.
  • SCr420H low alloyed low carbon steel
  • Each longitudinal passage over the ring thickness consisted of 22 in-cuts of 1 mm each. The number of passages over the ring thickness until flaking occurred was recorded for each insert as set forth in Table 5.
  • insert I has inferior flaking resistance compared to inserts H and A.
  • Insert H showed good results with respect to crater wear resistance and flaking resistance.
  • Insert A showed the best flaking resistance and can be used in cutting operations demanding extremely high flaking resistance.
  • Insert J was prepared from a cemented carbide turning tool insert in style TNMG 160408-MM with the composition of 7.5 wt % Co, 1.8 wt % TiC, 3.0 wt % TaC, 0.4 wt % NbC, balance WC and a CW-ratio of 0.88.
  • the cemented carbide had a surface zone about 25 ⁇ m thick, depleted from cubic carbides.
  • the insert was coated with an innermost 0.5 ⁇ m equiaxed TiCN-layer with a high nitrogen content, corresponding to an estimated C/N ratio of 0.05, followed by a 7.2 ⁇ m thick layer of columnar TiCN deposited using MT-CVD technique.
  • Insert K A commercially available cemented carbide turning tool insert TNMG 160408 from a leading cemented carbide producer was selected for comparison in a turning test.
  • the carbide had a composition of 9.0 wt % Co, 0.2 wt % TiC, 1.7 wt % TaC, 0.2 wt % NbC, balance WC and a CW-ratio of 0.90.
  • the insert had a coating consisting of 1.0 ⁇ m thick TiC-layer, 0.8 ⁇ m thick TiN-layer, 1.0 ⁇ m thick TiC-layer and outermost 0.8 ⁇ m thick TiN-layer. Examination in light optical microscope revealed no edge treatment subsequent to coating.
  • the inserts J and K were tested in longitudinal, dry, turning of a shaft of duplex stainless steel with a feed of 0.3 mm/rev., speed of 140 m/min and depth of cut of 2 mm. Total cutting time per component was 12 minutes.
  • One edge of insert J according to the invention completed one component whereas four edges were required to finalize one component using comparative insert K.

Abstract

A coated turning insert particularly useful for turning of forged components of stainless steel low alloyed steel. The insert is characterized by a WC-Co cemented carbide body having a highly W-alloyed Co-binder phase and a coating including an innermost layer of TiCxNyOz with columnar grains and a top layer of fine grained κ-Al2O3.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is a reissue of U.S. Pat. No. 5,786,069, filed on Aug. 28, 1996, which claims the benefit of priority to Swedish Application No. 9503056- 5 filed Sep. 1, 1995. The present application is related to commonly owned U.S. Pat. application Ser. Nos. 08/616,012; 08/675,034; 08/452,853 and 08/497,934.
1. Field of the Invention
The present invention relates to a coated cutting tool (cemented carbide insert) particularly useful for difficult cutting conditions such as turning of hot and cold forged low alloyed steel components like gear rings and axles used in the automotive industry and turning of stainless steel components like bars, tubes and flanges.
2. Background of the Invention
Stainless and low alloyed steels are materials which, in general, are difficult to machine with coated or uncoated cemented carbide tools. Smearing of workpiece material onto the cutting edge and flaking of the coating often occur. The cutting conditions are particularly difficult during the turning of forged low alloyed components under wet conditions (using coolant). The hot forged skin (0.05-0.2 mm) is generally decarburized and thus softer than the bulk material due to a mainly ferritic structure. The cold forged skin (less than 0.05 mm) is cold-worked and, thus, harder due to a deformation (strain hardening) effect. Furthermore, the ferrite/pearlite bulk structure of such a material is often “ferrite-striated,” i.e., the ferrite and pearlite form parallel stripes. This mixture of hard and soft materials makes the cutting conditions very difficult.
Further, when turning stainless and low alloyed steels using coated cemented carbide tools, the cutting edge is worn by chemical wear, abrasive wear and by a so called adhesive wear. The adhesive wear is often the tool life limiting wear. Adhesive wear occurs when fragments or individual grains of the layers and later also parts of the cemented carbide are successively pulled away from the cutting edge as workpiece chips are formed. Further, when wet turning is employed, the wear may also be accelerated by an additional wear mechanism. Coolant and workpiece material may penetrate into the cooling cracks of the coatings. This penetration often leads to a chemical reaction between workpiece material and coolant with the cemented carbide. The Co-binder phase may oxidize in a zone near the crack and along the interface between the coating and the cemented carbide. After some time coating fragments are lost piece by piece.
Swedish Patent Application No. 9501286-0 (corresponding to U.S. Pat. application Ser. No. 08/616,012) discloses a coated cutting insert particularly useful for dry milling of grey cast iron. The insert is characterized by a straight WC-Co cemented carbide body and a coating including a layer of TiCxNyOz with columnar grains and a top layer of fine grained α-Al2O3.
Swedish Patent Application No. 9502640-7 (corresponding to U.S. Pat. application Ser. No. 08/675,034) discloses a coated turning insert particularly useful for intermittent turning of low alloyed steel. The insert is characterized by a WC-Co cemented carbide body having a highly W-alloyed Co-binder phase and a coating including a layer of TiCxNyOz with columnar grains and a top layer of fine grained, textured α-Al2O3.
In view of the state of the art, there is a need for a cutting insert for machining low alloyed steel and stainless steel components, especially a coated cutting insert which exhibits improved wear, reduced flaking of the coating, and/or improved resistance to chemical attack.
SUMMARY OF THE INVENTION
An object of the invention is to avoid or alleviate problems associated with prior art cutting inserts.
According to one aspect of the invention, a cutting tool insert for turning of steel comprises a cemented carbide body having a coating thereon, the cemented carbide body including WC, 5-11 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92. The coating comprises a first layer of TiCxNyOz having a thickness of 0.1-2 μm and equiaxed grains <0.5 μm in size, a second layer of TiCxNyOz having a thickness of 3-15 μm and columnar grains <5 μm in diameter, and a third layer of a smooth, fine-grained κ-Al2O3-layer having a thickness of 1-9 μm.
According to another aspect of the invention, a method of coating an insert is provided wherein a turning insert comprising a cemented carbide body including WC, 5-11 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92 is coated by coating the cemented carbide body with a first layer of TiCxNyOz having a thickness of 0.1-2 μm and equiaxed grains <0.5 μm in size by chemical vapor deposition, coating the first layer with a second layer of TiCxNyOz having a thickness of 3-15 μm and columnar grains <5 μm in diameter by chemical vapor deposition at a temperature of 700° to 900° C. while using acetonitrile as a source of carbon and nitrogen for the second layer, and coating the second layer with a third layer of a smooth, fine-grained κ-Al2O3-layer having a thickness of 1-9 μm.
The invention also provides a method of machining a workpiece with the coated cutting insert. In the method, a workpiece is machined with a turning insert comprising a cemented carbide body having a coating thereon, the cemented carbide body including WC, 5-11 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92, the coating including a first layer of TiCxNyOz having a thickness of 0.1-2 μm and equiaxed grains <0.5 μm in size, a second layer of TiCxNyOz having a thickness of 3-15 μm and columnar grains <5 μm in diameter, and a third layer of smooth, fine-grained κ-Al2O3 having a thickness of 1-9 μm, the method comprising contacting the workpiece with a cutting edge of the insert, moving the insert relative to the workpiece and cutting material from the workpiece in contact with the cutting edge.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a photomicrograph at 5000× magnification of a coated insert according to the present invention in which A represents a cemented carbide body, B represents a TiCxNyOz-layer with equiaxed grains, C represents a TiCxNyOz-layer with columnar grains, D represents a κ-Al2O3-layer with columnar like grains, and E represents an optional TiN-layer.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention provides an improvement in coated turning inserts especially useful for difficult cutting conditions involving turning of forged low alloyed steel components and stainless steel components. Compared to the coated turning inserts disclosed in U.S. Pat. application Ser. No. 08/675,034, it has surprisingly been found that by replacing the textured α-Al2O3-layer of such turning inserts with a κ-Al2O3-layer, the coated turning insert according to the invention advantageously provides an improved cutting tool with excellent properties for turning of stainless steel and forged components of low alloyed steel.
According to one embodiment of the invention, a turning tool insert is provided with a cemented carbide body including 5-11, preferably 5-8, most preferably 6.5-8, wt % Co, 2-10, preferably 4-7.5, most preferably 5-7, wt % cubic carbides of metals from groups IVb, Vb or VIb of the periodic table of elements which preferably are Ti, Ta and/or Nb and balance WC. The grain size of the WC is about 2 μm. The cobalt binder phase is highly alloyed with W. The content of W in the binder phase can be expressed as the CW-ratio=Ms/(wt % Co)×(0.0161) , where Ms is the measured saturation magnetization of the cemented carbide body in kA/m hAm2 /kg and wt % Co is the weight percentage of Co in the cemented carbide. The CW-ratio is a function of the W content in the Co binder phase. A low CW-ratio corresponds to a high W-content in the binder phase.
It has now been found according to the invention that improved cutting performance is achieved if the cemented carbide body has a CW-ratio of 0.76-0.92, preferably 0.80-0.90. The cemented carbide body may contain small amounts, <1 volume %, of η-phase (M6C), without any detrimental effect. In a preferred embodiment, a surface zone about 15 to 35 μm thick depleted of cubic carbides and often enriched (generally more than 25% enrichment) in binder phase can be present according to prior art such as disclosed in U.S. Pat. No. 4,610,931. In this case, the cemented carbide may contain carbonitride or even nitride.
The coating preferably comprises the following layers:
A first (innermost) layer of TiCxNyOz with x+y+z=1, preferably z<0.5, with a thickness of 0.1-2 μm and with equiaxed grains with size <0.5 μm.
A second (intermediate) layer of TiCxNyOz with x+y+z=1, preferably with z=0 and x>0.3 and y>0.3, with a thickness of 3-15 μm, preferably 5-8 μm, with columnar grains and with an average grain diameter of <5 μm, preferably <2 μm. In an alternative embodiment, the outer part of this layer may contain oxygen, z<0.5.
A third layer of a smooth, fine-grained (grain size 0.5-2 μm) Al2O3 consisting essentially of the κ-phase. However, this layer may contain small amounts, e.g., 1-3 volume %, of the θ- or the α-phases as determined by XRD-measurement. The Al2O3-layer can have a thickness of 1-9 μm, preferably 1-3 μm or alternatively 4-8 μm and a surface roughness Rmax≦0.4 μm over a length of 10 μm. Preferably, this Al2O3-layer is the outermost layer but it may also be followed by further layers such as thin (about 0.1-1 μm) decorative layer of, e.g., TiN.
According to a method of the invention, a WC-Co-based cemented carbide body having a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92, preferably 0.80-0.90, and preferably with a binder phase enriched surface zone is coated with the following layers:
A first (innermost) layer of TiCxNyOz with x+y+z=1, preferably z<0.5, with a thickness of 0.1-2 μm and with equiaxed grains with size <0.5 μm using known CVD-methods.
A second layer of TiCxNyOz with x+y+z=1, preferably with z=0 or alternatively z<0.5 and x>0.3 and y>0.3, with a thickness of 3-15 μm, preferably 5-8 μm, with columnar grains and with an average grain diameter of <5 μm, preferably <2 μm, using preferably MTCVD-technique (using acetonitrile as the carbon and nitrogen source for forming the layer in the temperature range of 700-900° C.). The exact conditions, however, depend to a certain extent on the design of the equipment used.
A third (outer) layer of a smooth Al2O3-layer essentially consisting of κ-Al2O3 is deposited under conditions disclosed in EP-A-523021 (corresponding to U.S. Pat. application Ser. No. 08/452,853). The Al2O3-layer has a thickness of 1-9 μm, preferably 1-3 μm or alternatively 4-8 μm and a surface roughness Rmax<0.4 μm over a length of 10 μm. The smooth coating surface can be obtained by a gentle wet-blasting the coating surface with fine grained (400-150 mesh) alumina powder or by brushing the edges with brushes based on, e.g., SiC as disclosed in Swedish Patent Application No. 9402543-4 (corresponding to U.S. Pat. application Ser. No. 08/497,934).
The invention is additionally illustrated in connection with the following Examples which are to be considered as illustrative of the present invention. It should be understood, however, that the invention is not limited to the specific details of the Examples.
EXAMPLE 1
Insert A: Cemented carbide turning tool inserts of style CNMG 120408-PM with the composition 7.5 wt % Co, 1.8 wt % TiC, 0.5 wt % TiC, 3.0 wt % TaC, 0.4 wt % NbC and balance WC, with a binder phase highly alloyed with W corresponding to a CW-ratio of 0.88 were coated with a 0.5 μm equiaxed TiCN-layer (with a high nitrogen content corresponding to an estimated C/N-ratio of 0.05) followed by a 7 μm thick TiCN-layer with columnar grains by using MTCVD-technique (temperature 885-850° C. and CH3CN as the carbon/nitrogen source). In subsequent steps during the same coating cycle, a 1.5 μm thick layer of Al2O3 was deposited using a temperature 970° C and a concentration of H2S dopant of 0.4% as disclosed in EP-A-523021 (corresponding to U.S. Pat. application Ser. No. 08/452,853). A thin (0.5 μm) decorative layer of TiN was deposited on top according to known CVD-technique. XRD-measurement showed that the Al2O3-layer consisted of 100% κ-phase. The cemented carbide body had a surface zone about 25 μm thick, depleted from cubic carbides and with about 30% enrichment in binder phase. The coated inserts were brushed by a nylon straw brush containing SiC grains. Examination of the brushed inserts in a light microscope showed that the thin TiN-layer had been brushed away only along the cutting edge leaving there a smooth Rmax=0.3/μm Al2O3-layer surface. Coating thickness measurements on cross-sectioned brushed samples showed no reduction of the coating along the edge line except for the outer TiN-layer that was removed.
Insert B: A commercially available cemented carbide grade in style CNMG 120408 from a leading carbide producer was selected for comparison in a turning test. The carbide had a composition of 9.8 wt % Co, 0.2 wt % TiC, 2.0 wt % TaC, balance WC and a CW-ratio of 0.86. The insert had a coating consisting of a 5 μm thick TiCN-layer followed by a 1.5 μm thick Al2O3-layer and a 0.5 μm TiN-layer. Light microscope examination showed that the insert had not been smoothed along the edgeline after the coating step.
Inserts A and B were compared in a turning test of a hot forged ring gear (diameter 206 mm, in TSCM 815H material). Each turning cycle performed on each component consisted of one facing cut, one longitudinal cut and one chamfering cut. The feed was 0.35 mm/rev and cutting speed around 230 m/min.
First, 150 components were machined with inserts A and B and obtained flank wear was measured and compared. Since the wear was much less developed on insert A it was allowed to cut further components, altogether 354 components. Obtained flank wear is shown in Table 1:
TABLE 1
Number of measured flank wear,
components mm
insert A 150 0.07
(according to the invention)
insert A 354 0.08
(according to the invention)
insert B 150 0.10
(comparative)
Microscope examination of the tested inserts showed tiny flaking on insert B while no visible flaking had occurred on insert A, not even after machining 354 components.
It is obvious from the obtained flank wear that insert A according to the invention is superior and possesses longer tool life than insert B.
EXAMPLE 2
Insert D: A commercially available cemented carbide grade in style CNMG 120408 from another leading carbide producer was selected for comparison in a turning test. The chemical composition of the cemented carbide was: 7.6 wt % Co, 2.4 wt % TiC, 0.5 wt % TiN, 2.4 wt % TaC, 0.3 wt % NbC and balance WC. The cemented carbide had a surface zone, about 20 μm thick, depleted from cubic carbides. The composition of the cemented carbide was similar to that of insert A but had a higher CW-ratio of 0.93 and a different coating which consisted of a 5 μm TiCN-layer followed by a 3.5 μm TiC-layer, a 1.5 μm Al2O3-layer and a 0.5 μm TiN-layer. Light microscope examination showed that the insert had not been smoothed along the edgeline after the coating step.
Inserts A and D were compared in a facing turning test in a hot forged ring gear (outer diameter of 180 mm and inner diameter of 98 mm in a SCr420H material) with feed=0.25-0.35 mm/rev and cutting speed around 220 m/min. The inserts were run to a predetermined flank wear value of 0.08 mm and the number of produced components was the evaluation criteria as set forth in Table 2.
TABLE 2
Number of measured flank wear,
components mm
insert A edge 1 203 0.08 mm
(according to the invention)
insert A edge 2 226 0.08 mm
(according to the invention)
insert D 182 0.08 mm
(comparative)
EXAMPLE 3
Insert C: Cemented carbide turning tool inserts of style WNMG 080408-PM with the same composition and CW-ratio of 0.88 as insert A were coated according to the same technique used to prepare insert A. XRD-measurement showed that the Al2O3-layer consisted of 100% κ-phase. The inserts were brushed according to the same technique used to prepare insert A.
Insert E: An insert in style WNMG 080408 from the same cemented carbide producer as insert D and with the same CW-ratio, carbide composition and coating as insert D was selected for comparison in a turning test. Light microscope examination showed that the insert had not been smoothed along the edgeline after the coating step.
Inserts C and E were compared in a facing turning test of a forged axle (length of 487 mm and a diameter of 27-65 mm, material 50CV4) with feed of 0.28-0.30 mm/rev and cutting speed around 160 m/min. Three axles were run per each cutting edge and the wear of the cutting edges was examined in a light microscope as set forth in Table 3.
TABLE 3
insert C flank wear less than 0.07 mm
(according to the invention) to flaking
insert B flank wear less than 0.07 mm
(comparative) flaking and chipping along the edge
EXAMPLE 4
Insert F: Cemented carbide turning tool inserts of style CNMG 120408-PM from the same batch as insert A were coated according to Swedish Patent Application No. 9502640-7 (corresponding to U.S. Pat. application Ser. No. 08/675,034) with 0.5 thick equiaxed TiCN-layer followed by a 7 μm thick TiCN-layer with columnar grains, 1 μm thick equiaxed TiCN-layer and a 4 μm thick 012-textured α-Al2O3-layer. The inserts were wet-blasted using a water/Al2O3-slurry in order to smooth the coating surfaces.
Insert G: Cemented carbide turning tool inserts of style CNMG 120408-PM with the composition 6.5 wt % Co and 8.8 wt % cubic carbides (3.3 wt % TiC, 3.4 wt % TaC and 2.1 wt % NbC) and balance WC were coated by the same technique used to prepare insert A. The cemented carbide body had a CW-ratio of 1.0 and a surface zone about 23 μm thick depleted of cubic carbides and enriched in binder phase. XRD-measurement showed that the Al2O3-layer consisted only of the κ-phase.
Insert A, F, G and B were compared in a turning test of a hot and cold forged ring gear of SCr420H material.
The ring gear had an outer diameter of 190 mm and an inner diameter of 98 mm. Each turning cycle performed on each component consisted of three facing cuts and one longitudinal cut. Feed was 0.25-0.40 mm/rev and cutting speed around 200 m/min. 170 components were machined and the wear of the cutting edges was examined as set forth in Table 4.
TABLE 4
insert A no visible flaking of the coating, flank
(according to the invention) wear less than 0.07 mm
insert F some removal of the coating along the
(CW-ratio = 0.88) cutting edge, flank wear less than 0.08 mm
insert G substantial flaking along the cutting edge
(CW-ratio = 1.0) and flack wear more than 0.10 mm
insert B some removal of coating along the cutting
(comparative) edge, flank wear less than 0.08 mm
Although insert F produced according to the Swedish patent application 9502640-7 (corresponding to U.S. Pat. application Ser. No. 08/675,034) generally performs well when turning low alloyed steels it can not always compete with insert A produced according to the present invention when turning some hot and cold forged low alloyed steel components.
EXAMPLE 5
Insert H: Inserts from the same batch as insert A were coated according to the same technique used to prepare insert A with the exception that the process time for the Al2O3 coating step was prolonged to 7.5 hours giving a 5.5 μm thick layer of Al2O3. A thin (0.5 μm) decorative layer of TiN was deposited on top using a prior art technique.
Insert I: Inserts of the type used to prepare insert H were coated with a 7 μm equiaxed layer of TiCN followed by a 5 μm thick layer of Al2O3-layer and a 0.5 μm top coating of TiN using a prior art technique. XRD-analysis showed that the Al2O3-layer consisted of a mixture of α- and κ-Al2O3 approximately in the ratio 30/70. Inserts H and A were brushed after coating in order to remove the TiN-layer and smooth the cutting edge.
Inserts H, A and I were tested in an intermittent longitudinal turning operation. The workpiece material was a low alloyed low carbon steel (SCr420H) in the shape of a 22 mm thick ring with an outer diameter of 190 mm and an inner diameter of 30 mm. Each longitudinal passage over the ring thickness consisted of 22 in-cuts of 1 mm each. The number of passages over the ring thickness until flaking occurred was recorded for each insert as set forth in Table 5.
TABLE 5
number of passages
Insert before edge flaking
A (invention) 240
1.5 μm Al2O3
H (invention) 180
5.5 μm Al2O3
I (comparative)  40
5 μm Al2O3
Insert H and A were also compared in a cutting test in a ball-bearing steel (SKF25B, v=250 m/min. f=0.3 mm/r, depth of cut=2 mm). In this test crater wear was predominant. The inserts were run for 15 min. and the formed crater wear was measured as crater area in MM2 as set forth in Table 6.
TABLE 6
Insert crater area
A (invention) 0.9 mm2
1.5 μm Al2O3
H (invention) 0.5 mm2
5.5 μm Al2O3
From the test results above it is clear that the insert I has inferior flaking resistance compared to inserts H and A. Insert H showed good results with respect to crater wear resistance and flaking resistance. Insert A showed the best flaking resistance and can be used in cutting operations demanding extremely high flaking resistance.
EXAMPLE 6
Insert J: Insert J was prepared from a cemented carbide turning tool insert in style TNMG 160408-MM with the composition of 7.5 wt % Co, 1.8 wt % TiC, 3.0 wt % TaC, 0.4 wt % NbC, balance WC and a CW-ratio of 0.88. The cemented carbide had a surface zone about 25 μm thick, depleted from cubic carbides. The insert was coated with an innermost 0.5 μm equiaxed TiCN-layer with a high nitrogen content, corresponding to an estimated C/N ratio of 0.05, followed by a 7.2 μm thick layer of columnar TiCN deposited using MT-CVD technique. In subsequent steps during the same coating process, a 1.2 μm layer of Al2O3 consisting of pure κ-phase according to procedure disclosed in EP-A-523021 (corresponding to U.S. Pat. application Ser. No. 08/452,853) was deposited on the insert. A thin, 0.5 μm, TiN layer was deposited, during the same cycle, on top of the Al2O3 -layer. The coated insert was brushed by a SiC containing nylon straw brush after coating, removing the outer TiN layer on the edge.
Insert K: A commercially available cemented carbide turning tool insert TNMG 160408 from a leading cemented carbide producer was selected for comparison in a turning test. The carbide had a composition of 9.0 wt % Co, 0.2 wt % TiC, 1.7 wt % TaC, 0.2 wt % NbC, balance WC and a CW-ratio of 0.90. The insert had a coating consisting of 1.0 μm thick TiC-layer, 0.8 μm thick TiN-layer, 1.0 μm thick TiC-layer and outermost 0.8 μm thick TiN-layer. Examination in light optical microscope revealed no edge treatment subsequent to coating.
The inserts J and K were tested in longitudinal, dry, turning of a shaft of duplex stainless steel with a feed of 0.3 mm/rev., speed of 140 m/min and depth of cut of 2 mm. Total cutting time per component was 12 minutes.
Insert K suffered plastic deformation whereas insert J suffered some notch wear.
One edge of insert J according to the invention completed one component whereas four edges were required to finalize one component using comparative insert K.
The foregoing has described the principles, preferred embodiments and modes of operation of the present invention. However, the invention should not be construed as being limited to the particular embodiments discussed. Thus, the above-described embodiments should be regarded as illustrative rather than restrictive, and it should be appreciated that variations may be made in those embodiments by workers skilled in the art without departing from the scope of the present invention as defined by the following claims.

Claims (32)

1. A cutting tool insert for turning of steel comprising a cemented carbide body and a coating thereon, the cemented carbide body including WC, 5-11 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92, the coating comprising:
a first layer of TiCxNyOz having a thickness of 0.1-2 μm and equiaxed grains <0.5 μm in size;
a second layer of TiCxNyOz having a thickness of 3-15 μm and columnar grains <5 μm in diameter; and
a third layer of a smooth, fine-grained κ-Al2O3-layer having a thickness of 1-9 μm.
2. The cutting insert according to claim 1, wherein the κ-Al2O3-layer has a thickness of 1-3 μm.
3. The cutting insert according to claim 1, wherein the κ-Al2O3-layer has a thickness of 4-8 μm.
4. The cutting insert according to claim 1, wherein the cemented carbide body has a surface zone depleted of cubic carbides.
5. The cutting insert according to claim 1, wherein the cemented carbide body includes 6.5-8.0 wt % Co and has a CW-ratio of 0.80-0.90.
6. The cutting insert according to claim 1, further comprising a fourth layer of TiN.
7. The cutting insert according to claim 6, wherein the TiN-layer does not cover a cutting edge of the insert.
8. The cutting insert according to claim 1, wherein the first layer is in contact with the cemented carbide body and the second layer is in contact with the first layer and the third layer, the third layer having a grain size of 0.5 to 2 μm.
9. The cutting insert according to claim 1, wherein x+y+z=1 with z<0.5 in the first layer and x+y+z=1 with x>0.3 and y>0.3 in the second layer.
10. The cutting insert according to claim 6, wherein the fourth layer is in contact with the third layer and the fourth layer has a thickness of 0.1 to 1 μm.
11. The cutting insert according to claim 4, wherein the surface zone has a thickness of 15 to 35 μm and the cubic carbides include TiC, TaC and/or NbC.
12. A method of coating a turning insert comprising a cemented carbide body including WC, 5-11 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92, the method comprising:
coating the cemented carbide body with a first layer of TiCxNyOz having a thickness of 0.1-2 μm and equiaxed grains <0.5 μm in size by chemical vapor deposition;
coating the first layer with a second layer of TiCxNyOz having a thickness of 3-15 μm and columnar grains <5 μm in diameter by chemical vapor deposition at a temperature of 700° to 900° C. while using acetonitrile as a source of carbon and nitrogen for the second layer; and
coating the second layer with a third layer of a smooth, fine-grained κ-Al2O3-layer having a thickness of 1-9 μm.
13. The method of claim 12, wherein the κ-Al2O3-layer is deposited in a thickness of 1-3 μm.
14. The method of claim 12, wherein the κ-Al2O3-layer is deposited in a thickness of 4-8 μm.
15. The method of claim 12, wherein the cemented carbide body has a surface zone depleted from cubic carbides and the cubic carbides include TiC, TaC and/or NbC.
16. The method of claim 12, wherein the cemented carbide body includes 6.5-8.0 wt % Co and has a CW-ratio of 0.80-0.90.
17. The method of claim 12, further comprising depositing a fourth layer of TiN on the third layer.
18. The method of claim 17, further comprising removing the TiN-layer on a cutting edge of the insert.
19. The method of claim 12, wherein x+y+z=1 with z<0.5 in the first layer and x+y+z=1 with x>0.3 and y>0.3 in the second layer.
20. The method of claim 12, wherein the third layer is deposited so as to have a grain size of 0.5 to 2 μm.
21. The method of claim 17, wherein the fourth layer has a thickness of 0.1 to 1 μm.
22. The method of claim 15, wherein the surface zone has a thickness of 15 to 35 μm.
23. A method of machining a workpiece with a turning insert comprising a cemented carbide body having a coating thereon, the cemented carbide body including WC, 5-11 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.76-0.92, the coating including a first layer of TiCxNyOz having a thickness of 0.1-2 μm and equiaxed grains <0.5 μm in size, a second layer of TiCxNyOz having a thickness of 3-15 μm and columnar grains <5 μm in diameter, and a third layer of smooth, fine-grained κ-Al2O3 having a thickness of 1-9 μm, the method comprising contacting the workpiece with a cutting edge of the insert, moving the insert relative to the workpiece and cutting material from the workpiece in contact with the cutting edge.
24. The method of claim 23, wherein the workpiece comprises hot or cold forged low alloyed steel.
25. The method of claim 23, wherein the workpiece comprises stainless steel.
26. The method of claim 23, wherein the workpiece comprises a gear ring, axle, bar, tube or flange.
27. A cutting tool insert for turning of steel comprising a cemented carbide body and a coating thereon, the cemented carbide body including WC, 6.5-8 wt % Co and 2-10 wt % cubic carbides of groups IVb, Vb and/or VIb of the periodic table and a highly W-alloyed binder phase with a CW-ratio of 0.8-0.9, the coating comprising:
a first layer of TiCxNyOz having a thickness of 0.1-2 μm and equiaxed grains <0.5 μm in size;
a second layer of TiCxNyOz having a thickness of 3-15 μm and columnar grains <5 μm in diameter;
a third layer of a smooth, fine-grained κ-Al2O3-layer having a thickness of 1-9 μm; and
the cemented carbide body having a surface zone depleted of cubic carbides.
28. The cutting insert according to claim 27, wherein x+y+z=1 with z<0.5 in the first layer and x+y+z=1 with x>0.3 and y>0.3 in the second layer.
29. The cutting tool insert according to claim 1, wherein the CW-ratio is 0.80 - 0.90.
30. The method of claim 12, wherein the CW-ratio is 0.80 - 0.90.
31. The method of claim 23, wherein the CW-ratio is 0.80 - 0.90.
32. The cutting insert according to claim 27, wherein the CW-ratio is 0.80 - 0.90.
US11/483,384 1995-09-01 2006-07-10 Coated turning insert Expired - Lifetime USRE39987E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/483,384 USRE39987E1 (en) 1995-09-01 2006-07-10 Coated turning insert

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9503056A SE511210C2 (en) 1995-09-01 1995-09-01 Coated cutting tool insert
US08/703,965 US5786069A (en) 1995-09-01 1996-08-28 Coated turning insert
US11/483,384 USRE39987E1 (en) 1995-09-01 2006-07-10 Coated turning insert

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/703,965 Reissue US5786069A (en) 1995-09-01 1996-08-28 Coated turning insert

Publications (1)

Publication Number Publication Date
USRE39987E1 true USRE39987E1 (en) 2008-01-01

Family

ID=26662371

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/703,965 Ceased US5786069A (en) 1995-09-01 1996-08-28 Coated turning insert
US11/483,384 Expired - Lifetime USRE39987E1 (en) 1995-09-01 2006-07-10 Coated turning insert

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/703,965 Ceased US5786069A (en) 1995-09-01 1996-08-28 Coated turning insert

Country Status (3)

Country Link
US (2) US5786069A (en)
EP (1) EP0850324B1 (en)
WO (1) WO1997009463A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070283554A1 (en) * 2004-07-12 2007-12-13 Sandvik Intellectual Property Ab Cutting tool insert
US8080323B2 (en) 2007-06-28 2011-12-20 Kennametal Inc. Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9611781A (en) 1995-11-30 1999-02-23 Sandvik Ab Coated insert for turning and manufacturing method
KR100430360B1 (en) * 1995-11-30 2004-07-16 산드빅 악티에볼라그 Coated cutting insert and method of making it
SE9504304D0 (en) 1995-11-30 1995-11-30 Sandvik Ab Coated milling insert
SE509616C2 (en) * 1996-07-19 1999-02-15 Sandvik Ab Cemented carbide inserts with narrow grain size distribution of WC
SE511211C2 (en) * 1996-12-20 1999-08-23 Sandvik Ab A multilayer coated polycrystalline cubic boron nitride cutting tool
US6447890B1 (en) * 1997-06-16 2002-09-10 Ati Properties, Inc. Coatings for cutting tools
US6015614A (en) * 1997-11-03 2000-01-18 Seco Tools Ab Cemented carbide body with high wear resistance and extra tough behavior
DE19980940B4 (en) * 1998-04-14 2005-05-25 Sumitomo Electric Industries, Ltd. Coated carbide cutting tool
JP3573256B2 (en) * 1998-07-27 2004-10-06 住友電気工業株式会社 Al2O3-coated cBN-based sintered compact cutting tool
US6221469B1 (en) * 1998-12-09 2001-04-24 Seco Tools Ab Grade for steel
SE516017C2 (en) 1999-02-05 2001-11-12 Sandvik Ab Cemented carbide inserts coated with durable coating
US6146697A (en) * 1999-03-02 2000-11-14 Kennametal Inc. MT CVD process
SE9901244D0 (en) * 1999-04-08 1999-04-08 Sandvik Ab Cemented carbide insert
SE519828C2 (en) 1999-04-08 2003-04-15 Sandvik Ab Cut off a cemented carbide body with a binder phase enriched surface zone and a coating and method of making it
GB9909801D0 (en) * 1999-04-28 1999-06-23 Btg Int Ltd Ultrasound detectable instrument
SE9903090D0 (en) * 1999-09-01 1999-09-01 Sandvik Ab Coated milling insert
ATE273405T1 (en) * 1999-11-25 2004-08-15 Seco Tools Ab COATED CUTTING INSERT FOR MILLING AND TURNING APPLICATIONS
JP4437353B2 (en) * 2000-03-30 2010-03-24 株式会社タンガロイ Coated cutting tool and manufacturing method thereof
US6988858B2 (en) * 2001-02-28 2006-01-24 Kennametal Inc. Oxidation-resistant cutting assembly
US6689450B2 (en) * 2001-03-27 2004-02-10 Seco Tools Ab Enhanced Al2O3-Ti(C,N) multi-coating deposited at low temperature
SE522735C2 (en) * 2001-05-30 2004-03-02 Sandvik Ab Aluminum oxide coated cutting tool
EP1323847A3 (en) 2001-12-28 2005-09-14 Seco Tools Ab Coated cemented carbide body and method for use
SE523827C2 (en) * 2002-03-20 2004-05-25 Seco Tools Ab Coated cutting insert for high speed machining of low and medium alloy steels, ways of making a cutting insert and use of the cutting insert
SE526604C2 (en) * 2002-03-22 2005-10-18 Seco Tools Ab Coated cutting tool for turning in steel
JP4022865B2 (en) * 2002-09-27 2007-12-19 住友電工ハードメタル株式会社 Coated cutting tool
SE526674C2 (en) * 2003-03-24 2005-10-25 Seco Tools Ab Coated cemented carbide insert
SE527679C2 (en) * 2004-01-26 2006-05-09 Sandvik Intellectual Property Carbide body, especially spiral drill, and its use for rotary metalworking tools
SE527724C2 (en) * 2004-02-17 2006-05-23 Sandvik Intellectual Property Coated cutting tool for machining bimetal and method and use
DE102004010285A1 (en) * 2004-03-03 2005-09-29 Walter Ag Coating for a cutting tool and manufacturing process
US7455918B2 (en) * 2004-03-12 2008-11-25 Kennametal Inc. Alumina coating, coated product and method of making the same
US7581906B2 (en) * 2004-05-19 2009-09-01 Tdy Industries, Inc. Al2O3 ceramic tools with diffusion bonding enhanced layer
EP1609883B1 (en) * 2004-06-24 2017-09-20 Sandvik Intellectual Property AB Coated metal cutting tool
JP4466841B2 (en) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518258B2 (en) * 2004-08-11 2010-08-04 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518260B2 (en) * 2005-01-21 2010-08-04 三菱マテリアル株式会社 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
SE528672C2 (en) * 2005-01-31 2007-01-16 Sandvik Intellectual Property Carbide inserts for durability-demanding short-hole drilling and ways of making the same
SE529023C2 (en) * 2005-06-17 2007-04-10 Sandvik Intellectual Property Coated carbide cutter
SE530517C2 (en) * 2006-08-28 2008-06-24 Sandvik Intellectual Property Coated cemented carbide inserts, ways to manufacture them and their use for milling hard Fe-based alloys> 45 HRC
SE530735C2 (en) * 2006-10-18 2008-08-26 Sandvik Intellectual Property A coated carbide cutter, especially useful for turning steel
SE531670C2 (en) * 2007-02-01 2009-06-30 Seco Tools Ab Textured alpha-alumina coated cutting for metalworking
AT12293U1 (en) 2009-10-05 2012-03-15 Ceratizit Austria Gmbh CUTTING TOOL FOR MACHINING METALLIC MATERIALS
ES2567039T5 (en) 2011-09-16 2019-07-03 Walter Ag Alpha alumina coated cutting tool containing sulfur

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180400A (en) 1977-06-09 1979-12-25 Sandvik Aktiebolag Coated cemented carbide body and method of making such a body
GB2095702A (en) 1981-03-27 1982-10-06 Kennametal Inc Cemented carbides with binder enriched surface
JPS6190605A (en) 1984-10-09 1986-05-08 ワイケイケイ株式会社 Automatic finishing processing of slide fastener with slider
US4610931A (en) 1981-03-27 1986-09-09 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
US4619866A (en) 1980-07-28 1986-10-28 Santrade Limited Method of making a coated cemented carbide body and resulting body
EP0408535A1 (en) 1989-07-13 1991-01-16 Seco Tools Ab Multi-oxide coated carbide body and method of producing the same
US5071696A (en) 1989-06-16 1991-12-10 Sandvik Ab Coated cutting insert
JPH068008A (en) 1992-06-25 1994-01-18 Mitsubishi Materials Corp Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JPH06108254A (en) 1992-09-28 1994-04-19 Mitsubishi Materials Corp Cutting tool made of surface-coated wc-base sintered hard alloy
EP0594875A1 (en) 1992-10-22 1994-05-04 Mitsubishi Materials Corporation Multilayer coated hard alloy cutting tool
EP0653499A1 (en) 1993-05-31 1995-05-17 Sumitomo Electric Industries, Ltd. Coated cutting tool and method for producing the same
EP0685572A2 (en) 1994-05-31 1995-12-06 Mitsubishi Materials Corporation Coated hard-alloy blade member
EP0709484A1 (en) 1994-10-20 1996-05-01 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
US5545490A (en) 1994-06-21 1996-08-13 Mitsubishi Materials Corporation Surface coated cutting tool
US5635247A (en) 1995-02-17 1997-06-03 Seco Tools Ab Alumina coated cemented carbide body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2746036B2 (en) * 1992-12-22 1998-04-28 三菱マテリアル株式会社 Surface coated cutting tool

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180400A (en) 1977-06-09 1979-12-25 Sandvik Aktiebolag Coated cemented carbide body and method of making such a body
US4619866A (en) 1980-07-28 1986-10-28 Santrade Limited Method of making a coated cemented carbide body and resulting body
GB2095702A (en) 1981-03-27 1982-10-06 Kennametal Inc Cemented carbides with binder enriched surface
US4610931A (en) 1981-03-27 1986-09-09 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
JPS6190605A (en) 1984-10-09 1986-05-08 ワイケイケイ株式会社 Automatic finishing processing of slide fastener with slider
US5543176A (en) 1989-06-16 1996-08-06 Sandvik Ab CVD of Al2 O3 layers on cutting inserts
US5071696A (en) 1989-06-16 1991-12-10 Sandvik Ab Coated cutting insert
EP0408535A1 (en) 1989-07-13 1991-01-16 Seco Tools Ab Multi-oxide coated carbide body and method of producing the same
US5137774A (en) 1989-07-13 1992-08-11 Seco Tools Ab Multi-oxide coated carbide body and method of producing the same
JPH068008A (en) 1992-06-25 1994-01-18 Mitsubishi Materials Corp Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JPH06108254A (en) 1992-09-28 1994-04-19 Mitsubishi Materials Corp Cutting tool made of surface-coated wc-base sintered hard alloy
EP0594875A1 (en) 1992-10-22 1994-05-04 Mitsubishi Materials Corporation Multilayer coated hard alloy cutting tool
EP0653499A1 (en) 1993-05-31 1995-05-17 Sumitomo Electric Industries, Ltd. Coated cutting tool and method for producing the same
EP0685572A2 (en) 1994-05-31 1995-12-06 Mitsubishi Materials Corporation Coated hard-alloy blade member
US5545490A (en) 1994-06-21 1996-08-13 Mitsubishi Materials Corporation Surface coated cutting tool
EP0709484A1 (en) 1994-10-20 1996-05-01 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
US5652045A (en) 1994-10-20 1997-07-29 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
US5635247A (en) 1995-02-17 1997-06-03 Seco Tools Ab Alumina coated cemented carbide body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070283554A1 (en) * 2004-07-12 2007-12-13 Sandvik Intellectual Property Ab Cutting tool insert
US8080323B2 (en) 2007-06-28 2011-12-20 Kennametal Inc. Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same

Also Published As

Publication number Publication date
US5786069A (en) 1998-07-28
WO1997009463A1 (en) 1997-03-13
EP0850324A1 (en) 1998-07-01
EP0850324B1 (en) 2001-11-07

Similar Documents

Publication Publication Date Title
USRE39987E1 (en) Coated turning insert
EP0870073B1 (en) Coated cutting insert and method of making it
US5863640A (en) Coated cutting insert and method of manufacture thereof
USRE39999E1 (en) Coated turning insert and method of making it
EP0871796B1 (en) Coated milling insert and method of making it
EP0953065B1 (en) Coated cutting insert
EP1953258B1 (en) Texture-hardened alpha-alumina coated tool
US7985471B2 (en) Coated cutting tool
US8043729B2 (en) Coated cutting tool insert
US5942318A (en) Coated cutting insert
US20080187775A1 (en) Alumina Coated Grade
EP1100979B1 (en) Coated grooving or parting insert
KR100388759B1 (en) Coated turning insert
USRE40005E1 (en) Coated cutting insert

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 12