JPH06104297B2 - Chamfering equipment for semiconductor wafers - Google Patents

Chamfering equipment for semiconductor wafers

Info

Publication number
JPH06104297B2
JPH06104297B2 JP1110894A JP11089489A JPH06104297B2 JP H06104297 B2 JPH06104297 B2 JP H06104297B2 JP 1110894 A JP1110894 A JP 1110894A JP 11089489 A JP11089489 A JP 11089489A JP H06104297 B2 JPH06104297 B2 JP H06104297B2
Authority
JP
Japan
Prior art keywords
groove
grindstone
radius
electrode
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1110894A
Other languages
Japanese (ja)
Other versions
JPH02292164A (en
Inventor
公平 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP1110894A priority Critical patent/JPH06104297B2/en
Publication of JPH02292164A publication Critical patent/JPH02292164A/en
Publication of JPH06104297B2 publication Critical patent/JPH06104297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体ウエーハのエッジ部を回転砥石で研削し
て面取りを行う半導体ウエーハの面取り装置に関する。
TECHNICAL FIELD The present invention relates to a chamfering device for a semiconductor wafer, which chamfers an edge of a semiconductor wafer by grinding it with a rotary grindstone.

[従来の技術] この種の半導体ウエーハの面取り装置は、砥石の外周面
に第4図または第5図に示すような略V字状または略U
字状の断面形状の溝2a、2bが形成されており、砥石を回
転させながら矢印方向へ移動させることにより、半導体
ウエーハ10のエッジ部の面取りが行われる。第5図に示
す〜はこの移動の順番を示す。両断面とも、底部に
半径R1、R2の円弧A1B1、A2B2を有し、開口端E1、E2とこ
の円弧の一端B1、B2とが直線で結ばれた形状となってい
る。例えば、半導体ウエーハ10の厚さ0.6〜0.7mmに対
し、円弧の半径R1、R2は0.25mm、溝の奥行きD1、D2は1m
m、溝の開口幅W1、W2はそれぞれ1.16mm、6mm、側面の傾
斜角θは22゜である。
[Prior Art] This type of semiconductor wafer chamfering device has a substantially V-shaped or U-shaped structure as shown in FIG. 4 or FIG.
Grooves 2a and 2b having a V-shaped cross-section are formed, and the edge portion of the semiconductor wafer 10 is chamfered by moving the grindstone in the direction of the arrow while rotating. 5 to show the order of this movement. Both cross sections have arcs A 1 B 1 and A 2 B 2 with radii R 1 and R 2 at the bottom, and open ends E 1 and E 2 and one ends B 1 and B 2 of this arc are connected by a straight line. It has a curved shape. For example, for a semiconductor wafer 10 thickness of 0.6 to 0.7 mm, arc radii R 1 and R 2 are 0.25 mm, and groove depths D 1 and D 2 are 1 m.
m, the opening widths W 1 and W 2 of the grooves are 1.16 mm and 6 mm, respectively, and the side surface inclination angle θ is 22 °.

この面取りの際、研削能力を維持するために、陰極ブロ
ックをこの溝に接近させ、導電性砥石を陽極とし、両極
間に電解液を流しながら直流電圧を印加することによ
り、砥石の電解ドレッシングが可能である。
At the time of this chamfering, in order to maintain the grinding ability, the cathode block is brought close to this groove, the conductive grindstone is used as an anode, and a DC voltage is applied while flowing an electrolytic solution between both electrodes, so that the electrolytic dressing of the grindstone is performed. It is possible.

[発明が解決しようとする課題] しかし、電解ドレッシングは砥石の溝の面に沿って均一
に行われず、第4、5図中の一点鎖線で示す如く、溝の
底側部での電解ドレッシングが著しくなり、面取り形状
が一点鎖線で示す如く変形する。この場合、例えば半導
体ウエーハ10の鏡面にホトレジストを被着すると、この
段状部で盛り上がり、面取りの傾斜が小さい場合にはマ
スクの接近が妨げられる。あるいはかかる段状部が形成
されなくても、半導体ウエーハの面取り部の形状が不揃
いとなる。したがって、このような変形前に砥石を取り
換える必要がある。
[Problems to be Solved by the Invention] However, electrolytic dressing is not performed uniformly along the surface of the groove of the grindstone, and electrolytic dressing on the bottom side of the groove is not performed as indicated by the alternate long and short dash line in FIGS. It becomes remarkable and the chamfered shape is deformed as shown by the alternate long and short dash line. In this case, for example, when a photoresist is applied to the mirror surface of the semiconductor wafer 10, the stepped portion rises, and when the chamfering inclination is small, the mask is prevented from approaching. Alternatively, even if such a stepped portion is not formed, the chamfered portion of the semiconductor wafer has an uneven shape. Therefore, it is necessary to replace the grindstone before such deformation.

本発明の目的は、上記問題点に鑑み、砥石の溝の形状を
長期間にわたって初期の形状に保持することができる半
導体ウエーハの面取り装置を提供することにある。
In view of the above problems, an object of the present invention is to provide a chamfering device for a semiconductor wafer, which can maintain the shape of the groove of the grindstone in the initial shape for a long period of time.

[課題を解決するための手段] この目的を達成すために、本発明に係る半導体ウエーハ
の面取り装置では、外周面に回転対称な面取り用溝が面
取り用溝が形成された導電性砥石と、該砥石をその回転
対称中心線の回りに回転させる手段と、該溝に向かい合
う表面の形状が該溝の表面と略同一形状であり、該溝の
表面に接近して配置される電極と、該溝と該電極との向
かい合う表面間に電解液を流す手段と、該砥石と該電極
との間に直流電圧を印加する手段とを有し、該回転対称
中心線を通る平面と該溝の表面との交線は、中央部が該
回転対称中心線側に窪んだ凹形であり、凹部の底部と側
部の境界部である底側部が0.4mm以上の曲率半径の曲線
部である。
[Means for Solving the Problems] In order to achieve this object, in a chamfering device for a semiconductor wafer according to the present invention, a conductive grindstone in which a chamfering groove having rotationally symmetrical chamfering grooves is formed on an outer peripheral surface, A means for rotating the grindstone about its rotational symmetry center line; an electrode whose surface facing the groove is substantially the same as the surface of the groove; and an electrode which is arranged close to the surface of the groove, A surface having a plane passing through the rotational symmetry center line and a surface of the groove, having means for flowing an electrolytic solution between the surfaces of the groove and the electrode facing each other, and means for applying a DC voltage between the grindstone and the electrode. The line of intersection with is a concave shape in which the central portion is depressed toward the rotational symmetry center line side, and the bottom side portion which is the boundary portion between the bottom portion and the side portion of the concave portion is a curved portion having a radius of curvature of 0.4 mm or more.

前記交線は、さらに、前記凹部とその両側との境界部で
ある溝端部が、前記底側部の曲率半径の1.5〜2.5倍の曲
率半径の曲線部であることが好ましい。
It is preferable that, in the intersecting line, a groove end portion that is a boundary portion between the concave portion and both sides thereof is a curved portion having a curvature radius of 1.5 to 2.5 times a curvature radius of the bottom side portion.

この溝のさらに具体的な断面形状は、例えば、第2図に
示すような略V字状又は第3図に示すような略U字状で
ある。
The more specific cross-sectional shape of the groove is, for example, a substantially V shape as shown in FIG. 2 or a substantially U shape as shown in FIG.

電極の材料としては、成型が容易でありかつ電解液に対
し耐薬品性があるもの、特にグラファイトが好ましい。
As a material for the electrode, a material that is easy to mold and has chemical resistance to an electrolytic solution, particularly graphite is preferable.

[作用] このような断面形状の溝を有する砥石では、溝の底側部
での電解作用の集中が大きく低減され、長期間にわたっ
て好ましい初期の断面形状を維持することができる。
[Operation] With a grindstone having a groove having such a cross-sectional shape, concentration of electrolytic action at the bottom side of the groove is greatly reduced, and a preferable initial cross-sectional shape can be maintained for a long period of time.

砥石外周面の溝の断面形状において、溝端部を、底側部
の曲率半径の1.5〜2.5倍の曲率半径の曲線部とすれば、
溝端部での集中的な電解ドレッシングが防止されて、上
記効果が高められる。
In the cross-sectional shape of the groove on the outer peripheral surface of the grindstone, if the groove end is a curved portion having a radius of curvature of 1.5 to 2.5 times the radius of curvature of the bottom side,
The intensive electrolytic dressing at the groove ends is prevented, and the above effect is enhanced.

研削作業及び電解ドレッシングの繰り返しによって、砥
石刃先が消耗するため、電極の形状微修正が必要となる
が、グラファイトで電極を形成した場合には、グラファ
イトの加工容易性によりこの微修正が良好に行われる。
The grinding wheel edge is consumed by repeated grinding work and electrolytic dressing, so it is necessary to finely modify the shape of the electrode.However, when the electrode is made of graphite, this fine modification is well performed due to the ease of processing of graphite. Be seen.

[実施例] 以下、図面に基づいて本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below with reference to the drawings.

(1)第1実施例 第1図は半導体ウエーハの面取り装置の概略構成を示
す。
(1) First Embodiment FIG. 1 shows a schematic configuration of a semiconductor wafer chamfering device.

クランプ装置12は一対のクランプディスク12a、12bを備
えており、半導体ウエーハ10は、下方の回転自在なクラ
ンプディスク12a上に同心に載置された後、上昇されて
クランプディスク12bに押し付けられ、クランプディス
ク12bが回転駆動されて一体的に回転される。
The clamp device 12 includes a pair of clamp disks 12a and 12b.The semiconductor wafer 10 is concentrically placed on the lower rotatable clamp disk 12a and then lifted to be pressed against the clamp disk 12b. The disk 12b is rotationally driven and integrally rotated.

一方、コアディスク14の上下両面には、サイドディスク
16、18が同心に固着されている。サイドディスク16、18
の半径は同一であり、コアディスク14の半径よりも大き
く、コアディスク14の周面部にはリング状の溝が形成さ
れている。この溝に、リング状の面取り用砥石20が固着
されている。この砥石20の結合剤は導電性であり、鋳造
ボンド又は鋳鉄ファイバーボンドが好ましい。また、砥
石20の砥粒は例えば#2,000の高番手砥粒である。砥石2
0の外周面には、回転対称なリング状の溝20aが形成され
ている。この溝20aの表面は、コアディスク14の中心線
に垂直な対称面を有しており、その対称図形の一方側
は、第2図に示す如く、底部に半径R3の円弧A1B1を有
し、この円弧A1B1と側部の略直線E1C1とを曲線B1C1が滑
らかに接続している。また、開口部には半径R4の円弧E1
F1を有している。
On the other hand, on both the upper and lower sides of the core disc 14, side discs
16 and 18 are fixed concentrically. Side disc 16, 18
Have the same radius and are larger than the radius of the core disk 14, and a ring-shaped groove is formed in the peripheral surface portion of the core disk 14. A ring-shaped chamfering grindstone 20 is fixed to the groove. The binder of the grindstone 20 is electrically conductive and is preferably a cast bond or cast iron fiber bond. The abrasive grains of the grindstone 20 are, for example, # 2,000 high count abrasive grains. Whetstone 2
On the outer peripheral surface of 0, a rotationally symmetrical ring-shaped groove 20a is formed. The surface of the groove 20a has a plane of symmetry perpendicular to the center line of the core disk 14, and one side of the symmetric figure has an arc A 1 B 1 with a radius R 3 at the bottom as shown in FIG. The curved line B 1 C 1 smoothly connects the circular arc A 1 B 1 and the side straight line E 1 C 1 . In addition, the opening has an arc E 1 with a radius R 4
Have F 1 .

半導体ウエーハの面取りは、曲線B1C1部と円弧A1B1部で
加工されるので、開口部の半径R4は、本発明と直接的に
無関係であるが、電解ドレッシングのときにこの開口部
で集中的な電解除去が行われないようにするために、R3
>R1、好ましくはR4=1.5〜2.5R3とする。
Since the chamfering of the semiconductor wafer is processed by the curve B 1 C 1 part and the arc A 1 B 1 part, the radius R 4 of the opening is not directly related to the present invention. R 3 is used to prevent intensive electrolytic removal at the opening.
> R 1 , preferably R 4 = 1.5 to 2.5R 3 .

略直線C1E1の傾斜角θ及び奥行きD3は第4図に示すもの
と同一である。
The inclination angle θ and the depth D 3 of the substantially straight line C 1 E 1 are the same as those shown in FIG.

第1図において、コアディスク14、サイドディスク16及
び18は、ロータリシャフト22の一端部に同心に固着さ
れ、このロータリシャフト22は不図示のモータにより回
転される。
In FIG. 1, a core disk 14, side disks 16 and 18 are concentrically fixed to one end of a rotary shaft 22, and the rotary shaft 22 is rotated by a motor (not shown).

砥石20の研削能力を持続させるために、研削中におい
て、電解ドレッシングが行われる。
In order to maintain the grinding ability of the grindstone 20, electrolytic dressing is performed during grinding.

すなわち、溝20aに対向して陰極ブロック24が配置され
ている。この陰極ブロック24の表面形状は溝20aの表面
形状と略同一である。陰極ブロック24は、カーボン又は
グラファイトのような導電性かつ成形容易な材料で、砥
石20の溝20aに押付成形される。陰極ブロック24は絶縁
性の陰極ブロックホルダ26に嵌合保持され、陰極ブロッ
クホルダ26は逆L字状のアーム28の一端に固着され、ア
ーム28の他端は接離機構30、昇降機構32を介して固定台
34の一端部に取り付けられている。接離機構30、昇降機
構32には、それぞれこれらを操作するためのマイクロメ
ータヘッド30a、32aが取り付けられており、マイクロメ
ータヘッド30a、32aを回転させると、陰極ブロック24は
第1図左右方向、上下方向へと移動される。
That is, the cathode block 24 is arranged so as to face the groove 20a. The surface shape of the cathode block 24 is substantially the same as the surface shape of the groove 20a. The cathode block 24 is made of an electrically conductive and easily moldable material such as carbon or graphite, and is pressed into the groove 20a of the grindstone 20. The cathode block 24 is fitted and held by an insulative cathode block holder 26, and the cathode block holder 26 is fixed to one end of an inverted L-shaped arm 28, and the other end of the arm 28 includes a contacting / separating mechanism 30 and a lifting mechanism 32. Through fixed base
It is attached to one end of 34. Micrometer heads 30a and 32a for operating the contacting / separating mechanism 30 and the elevating mechanism 32 are attached respectively. When the micrometer heads 30a and 32a are rotated, the cathode block 24 is moved in the left-right direction in FIG. , Moved up and down.

陰極ブロック24は配線を介して直流パルス電源36のマイ
ナス端子に接続されている。一方、固定された絶縁性の
支持棒38の下端に陽極ブロック40が取付けられ、この陽
極ブロック40が導電性のサイドディスク16に接触してい
る。陽極ブロック40は直流パルス電源36のプラス端子に
接続されている。したがって、陰極ブロック24と砥石20
との間隙にパルス電界が形成される。
The cathode block 24 is connected to the negative terminal of the DC pulse power supply 36 via wiring. On the other hand, an anode block 40 is attached to the lower end of the fixed insulating support rod 38, and this anode block 40 is in contact with the conductive side disk 16. The anode block 40 is connected to the positive terminal of the DC pulse power supply 36. Therefore, the cathode block 24 and the grindstone 20
A pulsed electric field is formed in the gap between and.

陰極ブロック24と陰極ブロックホルダ26には複数本の孔
41が穿設され、これらが共通に供給管42に連通されてお
り、電解液が供給管42に供給されて陰極ブロック24と砥
石20との間隙に流される。この電界液は、導電性(抵抗
率2×1014Ωcm程度)を有する水溶性研削後、例えば市
販されているノリタケクールAFC-M(ノリタケ株式会社
製)あるいは、水溶性ケミカルソリューション ジョン
ソンJC-707(ジョンソン株式社製)などを20〜50倍に希
釈したものであり、冷却液としての機能も果たす。
Cathode block 24 and cathode block holder 26 have multiple holes.
41 are bored, and these are commonly connected to a supply pipe 42, and an electrolytic solution is supplied to the supply pipe 42 to flow into the gap between the cathode block 24 and the grindstone 20. This electrolytic solution is electrically conductive (resistivity of about 2 × 10 14 Ωcm) and is water-soluble ground. For example, commercially available Noritake Cool AFC-M (manufactured by Noritake Co., Ltd.) or water-soluble chemical solution Johnson JC-707. (Manufactured by Johnson Co., Ltd.) is diluted 20 to 50 times, and also functions as a cooling liquid.

一方、砥石20に対し、陰極ブロック24と直径方向反対側
にノズル44が配置されており、接触するシリコンウエー
ハ10と砥石20とにこのノズル44から研削液が噴射され
る。この検索液は前記電界液と同一の液を用いることが
できる。
On the other hand, a nozzle 44 is arranged on the side opposite to the cathode block 24 in the diameter direction with respect to the grindstone 20, and the grinding liquid is jetted from the nozzle 44 to the silicon wafer 10 and the grindstone 20 which are in contact with each other. As the search liquid, the same liquid as the electrolytic liquid can be used.

上記構成において、砥石20と陰極ブロック24との間隔を
0.1〜0.7mmに調整し、ロータリシャフト22を例えば1200
〜1500rapmで回転させながらロータリシャフト22と固定
台34とを一体的に第1図左方へ移動させる。そして、第
2図に示す如くシリコンウエーハ10を砥石20の溝20aに
接触させてそのエッジを研削し、ロータリシャフト22の
左方向への移動を停止させて、シリコンウエーハ10を例
えば50sec/rev,で回転させることにより、シリコンウエ
ーハ10の全周の面取りを行う。
In the above configuration, the distance between the grindstone 20 and the cathode block 24
Adjust the rotary shaft 22 to, for example, 1200
The rotary shaft 22 and the fixed base 34 are integrally moved to the left in FIG. 1 while rotating at ˜1500 rapm. Then, as shown in FIG. 2, the silicon wafer 10 is brought into contact with the groove 20a of the grindstone 20 and the edge thereof is ground, and the movement of the rotary shaft 22 to the left is stopped to move the silicon wafer 10 to, for example, 50 sec / rev, Chamfering is performed on the entire circumference of the silicon wafer 10 by rotating with.

(2)試験例 上記装置を用い、第4図に示す断面形状の砥石及び第2
図に示す断面形状の砥石20を用いて面取りを行ったとこ
ろ、前者の砥石ではシリコンウエーハ10を50枚程度面取
りすると第4図一点鎖線で示す如く溝の底部が段状とな
ったが、後者の砥石20では50枚面取りしても溝20aの段
面形状には変化が認められず、300枚程度で前者の50枚
のときと同程度の段部が形成された。
(2) Test Example Using the above apparatus, a grindstone having a sectional shape shown in FIG.
When chamfering was performed using the grindstone 20 having the sectional shape shown in the figure, when chamfering about 50 silicon wafers 10 with the former grindstone, the bottom of the groove was stepped as shown by the dashed line in FIG. No change was observed in the step surface shape of the groove 20a even when chamfering 50 pieces with the whetstone No. 20, and about 300 pieces formed the same step portion as the former 50 pieces.

ただし、溝の形状を決定する寸法は、厚さ0.6mm、直径1
25mmのシリコンウエーハに対し、第2、4図において、 R1=0.25mm R3=0.5mm R4=1.0mm D1=1.0mm D3=1.3mm W1=1.16mm θ=22゜であった。
However, the dimensions that determine the shape of the groove are 0.6 mm in thickness and 1 in diameter.
For a 25 mm silicon wafer, R 1 = 0.25 mm R 3 = 0.5 mm R 4 = 1.0 mm D 1 = 1.0 mm D 3 = 1.3 mm W 1 = 1.16 mm θ = 22 ° in Figs. It was

なお、R3を0.4mmにして同様の試験を行っても本発明の
効果が得られた。
The effect of the present invention was obtained even when the same test was performed with R 3 set to 0.4 mm.

(3)第2実施例 第3図は、第5図に対応した第2実施例の砥石の溝20b
の断面形状を示す。他の点は第1実施例と同一である。
この溝20bの形状は、底面が開口端面に平行な直線であ
り、側部が、底部の半径R5の円弧A2B2とを有し、この円
弧A2B2と側部の略直線E2F2とを曲線B2C2が滑らかに接続
し、開口部には半径の円弧E2F2を有する形状である。
半径R5、R6、曲線A2B2C2E2F2の形状、略直線C2E2の傾斜
角θ及び溝の奥行きD4は第5図に示すものと同一であ
る。半径は上記同様に、好ましくは半径の1.5〜2.5
倍である。
(3) Second Embodiment FIG. 3 shows the groove 20b of the grindstone of the second embodiment corresponding to FIG.
The cross-sectional shape of The other points are the same as in the first embodiment.
The shape of this groove 20b is such that the bottom surface is a straight line parallel to the opening end surface, the side portion has an arc A 2 B 2 with a radius R 5 of the bottom portion, and this arc A 2 B 2 and the substantially straight line of the side portion. The curve B 2 C 2 is smoothly connected to E 2 F 2, and the opening has an arc E 2 F 2 with a radius of 6 .
The radii R 5 , R 6 , the shape of the curve A 2 B 2 C 2 E 2 F 2 , the inclination angle θ of the substantially straight line C 2 E 2 and the groove depth D 4 are the same as those shown in FIG. Radius 6 is the same as above, preferably radius 5 is 1.5 to 2.5
Double.

この溝20bの作用効果は第2図に示す溝20aの作用効果と
同一であるのでその説明を省略する。
The function and effect of the groove 20b is the same as the function and effect of the groove 20a shown in FIG.

[発明の効果] 本発明に係る半導体ウエーハの面取り装置では、回転砥
石の外周面の断面形状において、溝の底側部が曲率半径
0.4mm以上の曲線部となっているので、溝の底側部での
電解作用の集中が大きく低減され、長期間にわたって好
ましい初期の断面形状を維持することがきるという優れ
た効果を奏し、砥石の交換を頻繁に行う必要がなくなり
作業効率の向上及び半導体ウエーハの製造コスト低減に
寄与するところが大きい。
[Advantages of the Invention] In the chamfering device for a semiconductor wafer according to the present invention, in the sectional shape of the outer peripheral surface of the rotary grindstone, the bottom side of the groove has a radius of curvature
Since it is a curved portion of 0.4 mm or more, the concentration of electrolytic action at the bottom side of the groove is greatly reduced, and it has an excellent effect that it is possible to maintain a preferable initial cross-sectional shape for a long period of time. It is not necessary to frequently replace the wafers, which contributes to the improvement of work efficiency and the reduction of the manufacturing cost of the semiconductor wafer.

また、砥石外周面の溝の断面形状において、溝端部を、
底側部の曲率半径の1.5〜2.5倍の曲率半径の曲線部とす
ることにより、溝端部での集中的な電解ドレッシングが
防止されて、上記効果が高められる。
Further, in the cross-sectional shape of the groove on the outer peripheral surface of the grindstone, the groove end,
By forming the curved portion with a radius of curvature 1.5 to 2.5 times the radius of curvature of the bottom side portion, intensive electrolytic dressing at the groove end is prevented, and the above effect is enhanced.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の第1実施例に係り、第1図
は半導体ウエーハの面取り装置の概略構成図、 第2図は第1図に示す溝20aの拡大断面図である。 第3図は第2実施例の砥石の溝の形状を示す断面図であ
る。 第4図及び第5図はそれぞれ第2図及び第3図に対応し
た従来の砥石の溝の形状を示す断面図である。 図中、 10:シリコンウエーハ 12:クランプ装置 14:コアディスク 16、18:サイドディスク 20:砥石 22:ロータリシャフト 24:陰極ブロック 26:陰極ブロックホルダ 28:アーム 36:直流パルス電源 40:陽極ブロック 42:電解液供給管 44:研削液用ノズル
1 and 2 relate to a first embodiment of the present invention. FIG. 1 is a schematic configuration diagram of a chamfering device for a semiconductor wafer, and FIG. 2 is an enlarged sectional view of a groove 20a shown in FIG. FIG. 3 is a sectional view showing the groove shape of the grindstone of the second embodiment. FIGS. 4 and 5 are sectional views showing the shapes of the grooves of the conventional grindstone corresponding to FIGS. 2 and 3, respectively. In the figure, 10: Silicon wafer 12: Clamping device 14: Core disk 16, 18: Side disk 20: Grindstone 22: Rotary shaft 24: Cathode block 26: Cathode block holder 28: Arm 36: DC pulse power supply 40: Anode block 42 : Electrolyte supply pipe 44: Grinding liquid nozzle

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】外周面に回転対称な面取り用溝(20a,20
b)が形成された導電性砥石(20)と、 該砥石(20)をその回転対称中心線の回りに回転させる
手段と、 該溝(20a,20b)に向かい合う表面の形状が該溝の表面
と略同一形状であり、該溝の表面に接近して配置される
電極(24)と、 該溝(20a,20b)と該電極(24)との向かい合う表面間
に電解液を流す手段と、 該砥石(20)と該電極(24)との間に直流電圧を印加す
る手段とを有し、 該回転対称中心線を通る平面と該溝(20a,20b)の表面
との交線は、中央部が該回転対称中心線側に窪んだ凹形
であり、凹部の底部と側部の境界部である底側部が0.4m
m以上の曲率半径(R3,R5)の曲線部(A1B1,A2B2)であ
ることを特徴とする半導体ウエーハの面取り装置。
1. A chamfering groove (20a, 20a) having rotational symmetry on the outer peripheral surface.
b) a conductive grindstone (20) having formed therein, means for rotating the grindstone (20) around its rotational symmetry center line, and the shape of the surface facing the groove (20a, 20b) is the surface of the groove. An electrode (24) having substantially the same shape as that of the electrode (24) arranged close to the surface of the groove, and a means for flowing an electrolytic solution between the surfaces of the groove (20a, 20b) and the electrode (24) facing each other, A means for applying a DC voltage between the grindstone (20) and the electrode (24), the line of intersection between the plane passing through the rotational symmetry center line and the surface of the groove (20a, 20b) is The central part has a concave shape that is recessed toward the rotational symmetry center line side, and the bottom side part that is the boundary part between the bottom part and the side part of the recess is 0.4 m.
A chamfering device for a semiconductor wafer, which is a curved portion (A 1 B 1 , A 2 B 2 ) having a radius of curvature (R 3 , R 5 ) of m or more.
【請求項2】前記交線は、前記凹部とその両側との境界
部である溝端部が、前記底側部の曲率半径(R3,R5)の
1.5〜2.5倍の曲率半径(R4,R5)の曲線部であることを
特徴とする請求項1記載の装置。
2. The intersection line has a groove end portion which is a boundary portion between the concave portion and both sides thereof and has a radius of curvature (R 3 , R 5 ) of the bottom side portion.
The apparatus according to claim 1, wherein the curved portion has a radius of curvature (R 4 , R 5 ) of 1.5 to 2.5 times.
【請求項3】前記溝の断面形状は略V字状であることを
特徴とする請求項2記載の装置。
3. The device according to claim 2, wherein the cross-sectional shape of the groove is substantially V-shaped.
【請求項4】前記溝の断面形状は略U字状であることを
特徴とする請求項2記載の装置。
4. The device according to claim 2, wherein the cross-sectional shape of the groove is substantially U-shaped.
【請求項5】前記電極(24)はグラファイト又はカーボ
ンで形成されていることを特徴とする請求項2記載の装
置。
5. Device according to claim 2, characterized in that the electrode (24) is made of graphite or carbon.
JP1110894A 1989-04-27 1989-04-27 Chamfering equipment for semiconductor wafers Expired - Lifetime JPH06104297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1110894A JPH06104297B2 (en) 1989-04-27 1989-04-27 Chamfering equipment for semiconductor wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110894A JPH06104297B2 (en) 1989-04-27 1989-04-27 Chamfering equipment for semiconductor wafers

Publications (2)

Publication Number Publication Date
JPH02292164A JPH02292164A (en) 1990-12-03
JPH06104297B2 true JPH06104297B2 (en) 1994-12-21

Family

ID=14547383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110894A Expired - Lifetime JPH06104297B2 (en) 1989-04-27 1989-04-27 Chamfering equipment for semiconductor wafers

Country Status (1)

Country Link
JP (1) JPH06104297B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120003A1 (en) * 1991-06-18 1992-12-24 Mueller Georg Nuernberg DEVICE AND METHOD FOR EDGE-ROUNDING SEMICONDUCTOR RODS
AU3042097A (en) * 1996-06-15 1998-01-07 Unova U.K. Limited Improvements in and relating to grinding machines
JP2002263995A (en) * 2001-03-09 2002-09-17 Inst Of Physical & Chemical Res Method and device for grinding spherical surface
JP2007088143A (en) * 2005-09-21 2007-04-05 Elpida Memory Inc Edge grinding device
CN104952719A (en) * 2014-03-25 2015-09-30 株洲南车时代电气股份有限公司 Method for shaping table surface of semiconductor chip
CN113798927A (en) * 2020-06-15 2021-12-17 重庆大学 Electric field auxiliary abrasive belt grinding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169294U (en) * 1984-10-04 1986-05-12
JPS61125193U (en) * 1985-01-23 1986-08-06

Also Published As

Publication number Publication date
JPH02292164A (en) 1990-12-03

Similar Documents

Publication Publication Date Title
US8101060B2 (en) Methods and apparatuses for electrochemical-mechanical polishing
US7056194B2 (en) Semiconductor processing methods of removing conductive material
JPH06104297B2 (en) Chamfering equipment for semiconductor wafers
JP4421021B2 (en) Electric discharge molding unit and cutting device
WO2023139834A1 (en) Chuck device
JPS6247131A (en) Reactive ion etching device
JP3494463B2 (en) Whetstone electrolytic dressing device
JP2000263545A (en) Method for cutting silicon ingot
KR20230151481A (en) Anodization-assisted grinding device and anodization-assisted grinding method
JP2632627B2 (en) Wire electric discharge machining
JPS62120918A (en) Method and device for cutting difficult-to-cut material
JP3194621B2 (en) Method and apparatus for generating spherical surface
JP2639811B2 (en) Discharge forming method of blade edge
JPH0623667A (en) Electrolytic dressing device for metal bond grinding wheel
JPS6244315A (en) Continuous electric discharge grinder
JP2002036110A (en) Method and device for supplying power to grinding apparatus
JPH05104439A (en) Electrolytic dressing and grinding device
JP2000288884A (en) Electrolytic in-process dressing device
JP2022127446A (en) Fluid polishing device and fluid polishing method
JPS5823547Y2 (en) electrolytic grinding equipment
JPH04360765A (en) Contact discharge dressing-truing method and device, and electrode member therefor
JPH05138533A (en) Polishing device and method
JPS6228160A (en) Manufacturing device for semiconductor device
JPS6150717A (en) Electrolytic discharging grindstone and electrolytic discharge machining method
JPH10151525A (en) Precision electrochemical machining method and its device