JPH05138533A - Polishing device and method - Google Patents

Polishing device and method

Info

Publication number
JPH05138533A
JPH05138533A JP33424791A JP33424791A JPH05138533A JP H05138533 A JPH05138533 A JP H05138533A JP 33424791 A JP33424791 A JP 33424791A JP 33424791 A JP33424791 A JP 33424791A JP H05138533 A JPH05138533 A JP H05138533A
Authority
JP
Japan
Prior art keywords
grinding tool
conductive
grinding
conductive grinding
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33424791A
Other languages
Japanese (ja)
Inventor
Masaru Saeki
優 佐伯
Manabu Tomitani
学 富谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP33424791A priority Critical patent/JPH05138533A/en
Publication of JPH05138533A publication Critical patent/JPH05138533A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To carry out a stable grinding work with high accuracy while electrolytic in-process dressing of a grinding tool being achieved in a uniform manner. CONSTITUTION:A cathode 3 which is of approximate shape of a surface to be worked 2 of a conductive grinding tool 1 is held by keeping a micro clearance between the cathode and the surface to be worked 2. A weak electrolytic coolant 5 is supplied form a nozzle 4 to a space between the cathode 3 and the surface to be worked 2. A plurality of grooves 6 are formed underside of the cathode 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解インプロセスドレ
ッシング研削法による光学素子の研削装置および方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for grinding an optical element by electrolytic in-process dressing grinding method.

【0002】[0002]

【従来の技術】従来、光学素子に対して従属研削加工方
式による球面研削を行なう研削装置に電解インプロセス
ドレッシング研削法がある。この電解インプロセスドレ
ッシング法を適用した例としては、例えば特開平3−6
0974号公報記載の発明がある。
2. Description of the Related Art Conventionally, there is an electrolytic in-process dressing grinding method as a grinding apparatus for performing spherical grinding on an optical element by a subordinate grinding method. An example of applying this electrolytic in-process dressing method is, for example, Japanese Patent Laid-Open No. 3-6.
There is an invention described in 0974.

【0003】上記発明を、装置の要部の構成を示す図7
を用いて説明する。被加工部材71を、その被加工部材
71における2つの被加工面の曲率中心を通る軸を回転
軸として回転自在に保持し、被加工部材71の2つの被
加工面に対向して揺動かつ回転自在に配設した2つの導
電性研削工具72a,72b加工面と所定距離配設した
2つの導電性研削工具72a,導電性研削工具72bの
加工面と所定距離lを保って陰電極73a,73bを配
設する。この陰電性73a,73bと導電性研削工具7
2a,72bとの間に弱電性クーラント74a,74b
を供給しながら導電性研削工具72a,72bを陽極と
して電解ドレッシングを行ない、導電性研削工具72
a,72bによって被加工部材71の2つの被加工面を
同時に研削加工しようとするものである。
FIG. 7 showing the construction of the main part of the apparatus according to the above invention.
Will be explained. The workpiece 71 is rotatably held with an axis passing through the centers of curvature of the two workpiece surfaces of the workpiece 71 as a rotation axis, and swings while facing the two workpiece surfaces of the workpiece 71. Two conductive grinding tools 72a, 72b rotatably arranged and two conductive grinding tools 72a arranged at a predetermined distance from the processed surface, and a negative electrode 73a while maintaining a predetermined distance 1 from the processed surface of the conductive grinding tool 72b, 73b is provided. This anionic 73a, 73b and conductive grinding tool 7
2a and 72b and weak electric coolants 74a and 74b
Of the conductive grinding tools 72a, 72b as an anode while performing electrolytic dressing.
By using a and 72b, two workpiece surfaces of the workpiece 71 are simultaneously ground.

【0004】[0004]

【発明が解決しようとする課題】電解インプロセスドレ
ッシング研削法による研削加工を行なうためには導電性
研削工具の加工面の面積に対して1/4〜1/6の面積
の陰電極を配設せねばならない。また、加工を安定して
行なうためには導電性研削工具の加工面に対向する陰電
極の対向面の全面と導電性研削工具の加工面との間に常
に十分な弱電性クーラントが供給されていることが不可
欠である。
In order to perform grinding by the electrolytic in-process dressing grinding method, a negative electrode having an area of 1/4 to 1/6 of the area of the processed surface of the conductive grinding tool is provided. I have to do it. Also, in order to perform stable machining, sufficient weak electric coolant should always be supplied between the entire surface of the opposite surface of the negative electrode facing the machined surface of the conductive grinding tool and the machined surface of the conductive grinding tool. Is essential.

【0005】前記従来例において、導電性研削工具72
と陰電性73の位置関係を導電性研削工具72の上面か
ら見ると、図8のようになる。被加工部材71に対して
従属研削加工方式による球面研削を行なう場合、導電性
研削工具72は被加工部材71の全面を覆えるだけの広
い加工面の面積が必要であり、必然的に陰電極73の面
積も広くなる。従って、前記従来例においては陰電極7
3の面積が広いため、陰電極73と導電性研削工具72
との間に十分な弱電性クーラント74を供給することが
できず、導電性研削工具72に対して安定した電解ドレ
ッシングができないばかりか、導電性研削工具72の偏
磨耗が発生しやすい。また、高速で加工を行なうために
は導電性研削工具72の回転速度を上げるが、その場合
に遠心力も大きくなり、さらに弱電性クーラント74の
安定した供給ができなくなる問題があった。
In the conventional example, the conductive grinding tool 72 is used.
8 is a top view of the conductive grinding tool 72 showing the positional relationship between the negative electrode 73 and the negative electrode 73. When spherical grinding is performed on the workpiece 71 by the subordinate grinding method, the conductive grinding tool 72 needs to have a large surface area for covering the entire surface of the workpiece 71, and the cathode electrode is inevitably necessary. The area of 73 also becomes large. Therefore, in the conventional example, the negative electrode 7
Since the area of 3 is large, the negative electrode 73 and the conductive grinding tool 72
In addition to being unable to supply a sufficient amount of weakly electrically conductive coolant 74, stable electrolytic dressing cannot be performed on the conductive grinding tool 72, and uneven wear of the conductive grinding tool 72 is likely to occur. Further, in order to perform high-speed processing, the rotation speed of the conductive grinding tool 72 is increased, but in that case, the centrifugal force is also increased, and there is a problem that the weakly-electrically charged coolant 74 cannot be stably supplied.

【0006】因って、本発明は前記従来技術における問
題点に鑑みて開発されたもので、電解インプロセスドレ
ッシング研削法を適用する場合、陰電極と導電性研削工
具との間に十分な弱電性クーラントを供給し、安定した
ムラのない電解ドレッシングを行なう研削装置および方
法の提供を目的とする。
Therefore, the present invention was developed in view of the above-mentioned problems in the prior art. When the electrolytic in-process dressing grinding method is applied, a sufficient weak electric current is provided between the negative electrode and the conductive grinding tool. An object of the present invention is to provide a grinding apparatus and method for supplying a stable coolant to perform stable and uniform electrolytic dressing.

【0007】[0007]

【課題を解決するための手段および作用】本発明は、回
転自在に保持した被加工部材の被加工面に対向し揺動か
つ回転自在に配設した導電性研削工具へ陽極を印加し、
かつ前記導電性研削工具の加工面と所定距離を保って配
設した電極に陰極を印加するとともに、前記導電性研削
工具と電極との間に弱電性クーラントを供給しつつ被加
工部材を研削加工する電解インプロセスドレッシング研
削方法において、前記電極の導電性研削工具との対向面
に形成された溝に前記弱電性のクーラントを供給しつつ
研削加工する方法である。
SUMMARY OF THE INVENTION According to the present invention, an anode is applied to a conductive grinding tool which is rotatably and rotatably arranged so as to face a surface of a workpiece to be rotatably held.
In addition, a cathode is applied to the electrode arranged at a predetermined distance from the processed surface of the conductive grinding tool, and a workpiece is ground while supplying a weak electric coolant between the conductive grinding tool and the electrode. In the electrolytic in-process dressing grinding method, the grinding is performed while supplying the weakly-electrolyte coolant to the groove formed on the surface of the electrode facing the conductive grinding tool.

【0008】また、被加工部材を回転自在に保持するワ
ーク保持部と、前記被加工部材の被加工面に対向して揺
動かつ回転自在に配設した導電性研削工具と、該導電性
研削工具の加工面との対向面に溝を形成するとともに所
定距離を保って配設した電極と、前記導電性研削工具に
陽極を前記電極に陰極をそれぞれ印加する電源と、前記
導電性研削工具と電極との間に弱電性クーラントを供給
する供給部とから構成したものである。
Further, a work holding portion for rotatably holding a workpiece, a conductive grinding tool which is arranged so as to oscillate and rotate so as to face the surface of the workpiece, and the conductive grinding. An electrode having a groove formed on the surface facing the machined surface of the tool and arranged at a predetermined distance, a power source for applying an anode to the conductive grinding tool and a cathode to the electrode, and the conductive grinding tool. It is composed of a supply unit for supplying a weakly electric coolant between the electrodes.

【0009】図1および図2は本発明の概念図で、図1
は平面図、図2は図1のA−A’線断面図である。1は
導電性研削工具で、この導電性研削工具1には導電性研
削工具1の加工面2と近似形状をした陰電極3が加工面
2と微小間隔lをあけて保持されている。また、ノズル
4より弱電性クーラント5が陰電極3と加工面2との間
に供給される。さらに、図2に示すように、陰電極3の
下面には複数の溝6が形成されている。
1 and 2 are conceptual diagrams of the present invention.
2 is a plan view, and FIG. 2 is a sectional view taken along the line AA ′ of FIG. Reference numeral 1 denotes a conductive grinding tool, and a negative electrode 3 having a shape similar to that of the processed surface 2 of the conductive grinding tool 1 is held at the conductive surface of the conductive grinding tool 1 with a minute gap 1 therebetween. In addition, the weakly electric coolant 5 is supplied from the nozzle 4 between the negative electrode 3 and the processed surface 2. Further, as shown in FIG. 2, a plurality of grooves 6 are formed on the lower surface of the negative electrode 3.

【0010】以上の構成により、加工中ノズル4より噴
出した弱電性クーラント5は回転軸のまわりを矢印B方
向に回転する。そして、導電性研削工具1の回転運動に
より、加工面2と陰電極3との間に導かれるが、陰電極
3に設けられた溝6に導かれて、陰電極3の全面にまん
べんなく行きわたる。
With the above structure, the weakly electrically conductive coolant 5 ejected from the nozzle 4 during processing rotates about the rotation axis in the direction of arrow B. Then, the conductive grinding tool 1 is rotated to be guided between the processing surface 2 and the negative electrode 3, but is guided to the groove 6 provided in the negative electrode 3 and evenly spreads over the entire surface of the negative electrode 3. ..

【0011】[0011]

【実施例1】図3および図4は本実施例で用いる装置を
示し、図3は側部断面図、図4は概略平面図である。本
実施例に示した研削装置は、導電性研削工具の加工面の
球心を中心に揺動する球心研削機を用いた場合の実施例
である。
Embodiment 1 FIGS. 3 and 4 show an apparatus used in this embodiment, FIG. 3 is a side sectional view, and FIG. 4 is a schematic plan view. The grinding apparatus shown in the present embodiment is an embodiment in which a ball center grinder that swings around the ball center of the processed surface of the conductive grinding tool is used.

【0012】被加工部材11はホルダ12に接着剤で固
着され、カンザシ13により回転軸Yを中心として回転
自在に保持されている。また、被加工部材11の被加工
面14には被加工面14と同一曲率を有する加工面15
を備える導電性研削工具16が球心Oを中心に揺動かつ
回転軸Xを中心に回転自在に対向配設されている。さら
に、導電性研削工具16の加工面15と対向して微小間
隔(0.1〜0.2mm)を保ち、加工面15と対向する
面に複数の溝17を形成した扇形状の陰電極18が配設
されている。
The member 11 to be processed is fixed to the holder 12 with an adhesive, and is held rotatably about the rotation axis Y by the hammer 13. Further, the processed surface 14 of the processed member 11 has a processed surface 15 having the same curvature as the processed surface 14.
An electroconductive grinding tool 16 including is arranged so as to oppose so as to swing around a ball center O and be rotatable about a rotation axis X. Further, a fan-shaped negative electrode 18 is provided in which a plurality of grooves 17 are formed on the surface facing the processing surface 15 while maintaining a minute gap (0.1 to 0.2 mm) facing the processing surface 15 of the conductive grinding tool 16. Are arranged.

【0013】そして、前記導電性研削工具16には回転
軸19に摺接させて配設した給電ブラシ20を介して電
解ドレス電源21の陽極に電気的に接続するとともに、
前記陰電極18を前記電解ドレス電源21の陰極に電気
的に接続することにより構成されている。また、前記導
電性研削工具16と陰電極18との間、並びに導電性研
削工具16と被加工部材11の被加工面14との間に、
弱電性クーラント22を供給するノズル23,24がそ
れぞれ配設されている。
Then, the conductive grinding tool 16 is electrically connected to the anode of the electrolytic dressing power source 21 through a power feeding brush 20 which is disposed in sliding contact with the rotary shaft 19, and
The negative electrode 18 is electrically connected to the cathode of the electrolytic dressing power source 21. Further, between the conductive grinding tool 16 and the negative electrode 18, and between the conductive grinding tool 16 and the work surface 14 of the work member 11,
Nozzles 23 and 24 for supplying the weak electric coolant 22 are provided respectively.

【0014】供給される弱電性クーラント22は導電性
研削工具16の回転による遠心力にて飛散しないよう
に、弱電性クーラント22の吐出方向を陰電極18の側
面に対して垂直に、かつ導電性研削工具16の回転方向
と同一方向に配置している。また、前記陰電極18の溝
17のパターン形状は陰電極18の側面から反対側の側
面へ向うに従い、導電性研削工具16の中心より外径方
向に向うように設けられている。
In order that the supplied weak electric coolant 22 is not scattered by the centrifugal force generated by the rotation of the conductive grinding tool 16, the discharge direction of the weak electric coolant 22 is perpendicular to the side surface of the negative electrode 18 and is made conductive. It is arranged in the same direction as the rotation direction of the grinding tool 16. Further, the pattern shape of the groove 17 of the negative electrode 18 is provided so as to extend from the center of the conductive grinding tool 16 toward the outer diameter direction from the side surface of the negative electrode 18 to the opposite side surface.

【0015】前記、導電性研削工具16の回転揺動軸と
陰電極18とは回転揺動駆動機構(図示省略)に連結さ
れるとともに、導電性研削工具16は導電性研削工具1
6を回転揺動軸の軸心方向に移動する移動機構(図示省
略)に連結されている。また、導電性研削工具16はダ
イヤモンド粉末等の砥粒とCu,Sn,Fe,Ni等の
金属粉末とを特殊配合にて混合し、熱処理した焼結合金
により形成したものである。さらに、前記ノズル23,
24は弱電性クーラント22の供給源(図示省略)に連
結するとともに、供給量等を制御する制御部(図示省
略)を備えることにより構成されている。
The rotary rocking shaft of the conductive grinding tool 16 and the negative electrode 18 are connected to a rotary rocking drive mechanism (not shown), and the conductive grinding tool 16 is the conductive grinding tool 1.
6 is connected to a moving mechanism (not shown) that moves 6 in the axial direction of the rotary rocking shaft. Further, the conductive grinding tool 16 is formed of a sintered alloy obtained by mixing abrasive grains such as diamond powder and metal powder such as Cu, Sn, Fe and Ni in a special mixture and heat-treating them. Furthermore, the nozzle 23,
The reference numeral 24 is configured by being connected to a supply source (not shown) of the weak electric coolant 22 and having a control unit (not shown) for controlling the supply amount and the like.

【0016】以上の構成から成る装置を用いての研削方
法は、導電性研削工具16の加工面15を被加工部材1
1の被加工面14に当接するとともに、これを回転かつ
球心Oを中心に揺動させてノズル23,24より弱電性
クーラント22を供給し、さらに電解ドレス電源21よ
り導電性研削工具16と陰電極18とに電流を供給しな
がら、前記被加工部材11の被加工面14を研削加工す
るものである。
In the grinding method using the apparatus having the above-mentioned structure, the work surface 15 of the conductive grinding tool 16 is machined to the work piece 1
While contacting the work surface 14 of No. 1 and rotating and swinging the same about the spherical center O, the weakly electrically conductive coolant 22 is supplied from the nozzles 23 and 24, and further, the electrically conductive grinding tool 16 from the electrolytic dressing power source 21. The workpiece surface 14 of the workpiece 11 is ground while supplying a current to the negative electrode 18.

【0017】本実施例によれば、研削加工中はノズル2
4より供給される弱電性クーラント22が溝17に導か
れる形で陰電極18の全面に行きわたり、導電性研削工
具16の加工面15全体が均等に電解ドレッシングされ
ることになり、精度のよい研削加工を連続して行なえ
る。
According to this embodiment, the nozzle 2 is operated during the grinding process.
The weakly conductive coolant 22 supplied from No. 4 spreads over the entire surface of the negative electrode 18 in a form of being guided to the groove 17, and the entire machined surface 15 of the conductive grinding tool 16 is electrolytically dressed uniformly. Grinding can be performed continuously.

【0018】尚、導電性研削工具16は本実施例の材質
に限定するものではなく、例えばダイヤモンド粉末等の
砥粒とCu,Su,Fe,Ni等の金属粉末や導電性樹
脂を結合材とした砥石により構成することも可能であ
る。
The conductive grinding tool 16 is not limited to the material of this embodiment, and for example, abrasive grains such as diamond powder and metal powder such as Cu, Su, Fe, Ni or conductive resin is used as a binder. It is also possible to use a grindstone.

【0019】[0019]

【実施例2】図5は本実施例で用いる装置の概略平面図
である。本実施例は、前記実施例1におけるノズル24
の弱電性クーラントの吐出口が陰電極18の溝17の弱
電性クーラントの入り際にチューブ31,マニフォール
ド32を介して直結されている。その他の構成は前記実
施例1の構成と同一であり、同一符号を付してその説明
を省略する。
Second Embodiment FIG. 5 is a schematic plan view of an apparatus used in this embodiment. In this embodiment, the nozzle 24 in the first embodiment is used.
The discharge port of the weak electric coolant is directly connected via the tube 31 and the manifold 32 when the weak electric coolant in the groove 17 of the negative electrode 18 enters. The other structure is the same as that of the first embodiment, and the same reference numerals are given and the description thereof is omitted.

【0020】上記構成の装置を用いての研削方法は、陰
電極18に形成された溝17の弱電性クーラントの入り
際に、弱電性クーラントが直結供給されるため、導電性
研削工具16の加工面15と陰電極18との間へ確実に
弱電性クーラントが入りこみ、なおかつ溝17にそって
陰電極18の全面に弱電性クーラントが行きわたる。
In the grinding method using the apparatus having the above-mentioned structure, when the weakly electric coolant enters the groove 17 formed in the negative electrode 18, the weakly electric coolant is directly connected and supplied, so that the conductive grinding tool 16 is machined. The weak electric coolant surely enters between the surface 15 and the negative electrode 18, and the weak electric coolant spreads along the groove 17 over the entire surface of the negative electrode 18.

【0021】本実施例によれば、前記実施例1と比べ、
更に均一で効率のよい電解ドレッシングが行え、精度の
よい研削加工を続けることができる。
According to this embodiment, as compared with the first embodiment,
Further, uniform and efficient electrolytic dressing can be performed, and accurate grinding can be continued.

【0022】[0022]

【実施例3】図6は本実施例で用いる装置の側部断面図
である。本実施例は、前記実施例1における陰電極18
の溝17がT字型の溝41に形成されている。その他の
構成は前記実施例1の構成と同一であり、同一符号を付
してその説明を省略する。
Third Embodiment FIG. 6 is a side sectional view of an apparatus used in this embodiment. In this embodiment, the negative electrode 18 in the first embodiment is used.
The groove 17 is formed in the T-shaped groove 41. The other structure is the same as that of the first embodiment, and the same reference numerals are given and the description thereof is omitted.

【0023】上記構成の装置を用いての研削方法は、溝
41がT字型を形成しているために、溝41内を流れる
弱電性クーラントの流量が多く、より確実に陰電極18
の全面へ弱電性クーラントを行き渡らせることができ
る。また、溝41がT字型のために、陰電極18におけ
る加工面15と対向する部分の面積を減少させることな
く、弱電性クーラントの溝41内の流量を増加させられ
るので、電解ドレッシングを安定して行なうことができ
る。
In the grinding method using the apparatus having the above-mentioned structure, since the groove 41 has a T-shape, the flow rate of the weak electric coolant flowing in the groove 41 is large, and the cathode 18 can be more reliably discharged.
The weak electric coolant can be spread over the entire surface of the. Further, since the groove 41 is T-shaped, the flow rate of the weakly-electrolyte coolant in the groove 41 can be increased without reducing the area of the portion of the negative electrode 18 facing the processed surface 15, thus stabilizing the electrolytic dressing. You can do it.

【0024】本実施例によれば、前記実施例2と同様に
精度のよい研削加工を続けることができる。
According to this embodiment, it is possible to continue highly accurate grinding as in the case of the second embodiment.

【0025】[0025]

【発明の効果】以上説明した様に、本発明に係る研削装
置および方法によれば、光学素材の従属加工方式による
球面研削を電解インプロセスドレッシング研削法によっ
て、均一に研削工具をドレッシングしながら精度よく安
定して研削加工を続けることができる。
As described above, according to the grinding apparatus and method according to the present invention, the spherical grinding by the subordinate machining method of the optical material is accurately performed by the electrolytic in-process dressing grinding method while uniformly dressing the grinding tool. Grinding can be continued with good stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の概念図である。FIG. 1 is a conceptual diagram of the present invention.

【図2】本発明の概念図である。FIG. 2 is a conceptual diagram of the present invention.

【図3】実施例1を示す側部断面図である。FIG. 3 is a side sectional view showing the first embodiment.

【図4】実施例1を示す概略平面図である。FIG. 4 is a schematic plan view showing the first embodiment.

【図5】実施例2を示す概略平面図である。FIG. 5 is a schematic plan view showing a second embodiment.

【図6】実施例3を示す側部断面図である。FIG. 6 is a side sectional view showing a third embodiment.

【図7】従来例を示す要部の構成図である。FIG. 7 is a configuration diagram of a main part showing a conventional example.

【図8】従来例を示す概略平面図である。FIG. 8 is a schematic plan view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 導電性研削工具 2 加工面 3 陰電極 4 ノズル 5 弱電性クーラント 6 溝 1 conductive grinding tool 2 processing surface 3 negative electrode 4 nozzle 5 weak electric coolant 6 groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転自在に保持した被加工部材の被加工
面に対向して揺動かつ回転自在に配設した導電性研削工
具へ陽極を印加し、かつ前記導電性研削工具の加工面と
所定距離を保って配設した電極に陰極を印加するととも
に、前記導電性研削工具と電極との間に弱電性クーラン
トを供給しつつ被加工部材を研削加工する電解インプロ
セスドレッシング研削方法において、前記電極の導電性
研削工具との対向面に形成された溝に前記弱電性クーラ
ントを供給しつつ研削加工することを特徴とする研削方
法。
Claim: What is claimed is: 1. An anode is applied to a conductive grinding tool oscillating and rotatably arranged so as to oppose a surface to be processed of a member to be rotatably held, In the electrolytic in-process dressing grinding method, in which a cathode is applied to the electrodes arranged at a predetermined distance, and a workpiece is ground while supplying a weakly electric coolant between the conductive grinding tool and the electrodes, A grinding method, characterized in that grinding is performed while supplying the weakly electric coolant to a groove formed on a surface of the electrode facing the conductive grinding tool.
【請求項2】 被加工部材を回転自在に保持するワーク
保持部と、前記被加工部材の被加工面に対向して揺動か
つ回転自在に配設した導電性研削工具と、該導電性研削
工具の加工面との対向面に溝を形成するとともに所定距
離を保って配設した電極と、前記導電性研削工具に陽極
を前記電極に陰極をそれぞれ印加する電源と、前記導電
性研削工具と電極との間に弱電性クーラントを供給する
供給部とから構成したことを特徴とする研削装置。
2. A work holding part for rotatably holding a member to be machined, a conductive grinding tool which is arranged so as to oscillate and rotate so as to face a surface to be machined of the member to be machined, and the conductive grinding. An electrode having a groove formed on the surface facing the machined surface of the tool and arranged at a predetermined distance, a power source for applying an anode to the conductive grinding tool and a cathode to the electrode, and the conductive grinding tool. A grinding device comprising a supply unit for supplying a weakly electric coolant between the electrode and the electrode.
JP33424791A 1991-11-22 1991-11-22 Polishing device and method Withdrawn JPH05138533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33424791A JPH05138533A (en) 1991-11-22 1991-11-22 Polishing device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33424791A JPH05138533A (en) 1991-11-22 1991-11-22 Polishing device and method

Publications (1)

Publication Number Publication Date
JPH05138533A true JPH05138533A (en) 1993-06-01

Family

ID=18275196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33424791A Withdrawn JPH05138533A (en) 1991-11-22 1991-11-22 Polishing device and method

Country Status (1)

Country Link
JP (1) JPH05138533A (en)

Similar Documents

Publication Publication Date Title
JPH0343144A (en) Method and device for grinding lens
JPH0343145A (en) Grinding device
JP4104199B2 (en) Molded mirror grinding machine
JP3530562B2 (en) Lens grinding method
JPH05138533A (en) Polishing device and method
JPH11262860A (en) Extremely precise grinding method and device
JP3294347B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPH0639644A (en) Grinding machine
JP3304163B2 (en) Electrolytic in-process dressing grinding machine
JP3194626B2 (en) Electrolytic in-process dressing method and apparatus
JPH05345272A (en) Electrolytic dressing grinding method and device
JPH05104430A (en) Electro-chemical machining for concave lens
JPH06114733A (en) Grinding wheel shaping method by on-machine discharge truing method
JPH07186029A (en) Spherical surface formation working method and device
JPH0360974A (en) Method and device for simultaneously electrolytic grinding two surfaces
JPH07195261A (en) Spherical grinding method and device thereof
JP3194621B2 (en) Method and apparatus for generating spherical surface
JPH06335853A (en) Grinding and device therefor
KR940006010Y1 (en) Grinding device
JPH06344254A (en) Grinding method and apparatus
JPH05138520A (en) Lens grinding method and device
JPH07328907A (en) Spherical surface creative processing method and device thereof
JPH07186031A (en) Spherical surface grinding method and device
JPH08197423A (en) Grinding method and grinding device
JPH06328358A (en) Grinding method and its device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204