JPH06101575B2 - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPH06101575B2
JPH06101575B2 JP61194504A JP19450486A JPH06101575B2 JP H06101575 B2 JPH06101575 B2 JP H06101575B2 JP 61194504 A JP61194504 A JP 61194504A JP 19450486 A JP19450486 A JP 19450486A JP H06101575 B2 JPH06101575 B2 JP H06101575B2
Authority
JP
Japan
Prior art keywords
unit power
layer
power generation
type
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61194504A
Other languages
Japanese (ja)
Other versions
JPS6350075A (en
Inventor
金雄 渡邉
行雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61194504A priority Critical patent/JPH06101575B2/en
Priority to US07/084,947 priority patent/US4776894A/en
Priority to FR878711691A priority patent/FR2602913B1/en
Publication of JPS6350075A publication Critical patent/JPS6350075A/en
Publication of JPH06101575B2 publication Critical patent/JPH06101575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は複数個の単位発電素子を積層した光起電力装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a photovoltaic device in which a plurality of unit power generating elements are stacked.

(ロ) 従来の技術 特開昭55-125680号公報等に開示された如く、pin、pn-n
+等の半導体接合を有する単位発電素子を2重、3重或
いはそれ以上に多重に積層せしめた所謂タンデム構造の
光起電力装置は既に知られている。この様なタンデム構
造の光起電力装置は光入射側から見て前段の単位発電素
子に於いて発電に寄与することなく透過した光を、後段
の単位発電素子に於いて吸収することができトータル的
な光電変換効率を上昇せしめることができる。また各単
位発電素子の上記i型層やn-型層のように光入射がある
と主として光キャリアを発生する光活性層の光学的禁止
帯幅(Egopt)を調整すれば各単位発電素子に於ける感
光ピーク波長をシフトせしめることができ、より一層の
光電変換効率の上昇が図れる。
(B) Prior art As disclosed in Japanese Patent Laid-Open No. 55-125680, pin, pn - n
A photovoltaic device having a so-called tandem structure, in which unit power generating elements having semiconductor junctions such as + are stacked in a double, triple or more layers, is already known. Such a tandem structure photovoltaic device can absorb the transmitted light without contributing to power generation in the unit power generation element in the front stage when viewed from the light incident side, and can absorb the light in the unit power generation element in the rear stage. The photoelectric conversion efficiency can be increased. Moreover, if the optical bandgap (Egopt) of the photoactive layer that mainly generates photocarriers when light is incident, such as the i-type layer or the n type layer of each unit power generation element, is adjusted, each unit power generation element It is possible to shift the photosensitivity peak wavelength in the photosensitivity and further increase the photoelectric conversion efficiency.

上記光活性層で発生した電子及び正孔の光キャリアは、
該光活性層を挾むp型層及びn型層が作る接合電界に引
かれて、電子はn型層に向って移動すると共に、正孔は
p型層に向って移動して集電され外部に取り出される。
従って、単位発電素子にあっては実際に発電に寄与する
i型層やn-型層のように不純物が全くドーブされていな
いか、僅かにドーブされた光活性層のみならず上記接合
電界を形成するための不純物層が不可欠な存在である。
The photo carriers of electrons and holes generated in the photoactive layer are
The electrons move toward the n-type layer and the holes move toward the p-type layer and are collected by the junction electric field created by the p-type layer and the n-type layer sandwiching the photoactive layer. It is taken out.
Accordingly, the unit power generation contributes i-type layer actually generation In the element and n - or impurities as type layer is not at all Dove, the junction field not only photoactive layer slightly Dove The impurity layer for forming is indispensable.

然し乍ら、この様に接合電界を形成するために不可欠な
不純物層と光活性層と同じく光入射経路に介在せしめら
れる結果、斯る不純物層に於ける光吸収が多くなると光
活性層への光到達率が減少し、光電変換効率の大幅な低
下を招く。
However, like the impurity layer and the photoactive layer, which are indispensable for forming a junction electric field, they are interposed in the light incident path as a result, and when the light absorption in the impurity layer increases, the light reaches the photoactive layer. The rate is reduced, and the photoelectric conversion efficiency is significantly reduced.

特開昭57-95677号公報、特開昭57-104276号公報及び特
開昭57-136377号公報には、一つの単位発電素子からな
る光起電力装置に於いて、光活性層の光入射側前方に配
置される不純物層、所謂窓層を光活性層より光学的禁止
帯幅Egoptの広いアモルファスシリコンカーバイド、ア
モルファスシリコンナイトライドのワイドバンドギャッ
プ材料によって構成することにより、斯る窓層に於ける
光吸収の低減を図る技術が開示されている。
JP-A-57-95677, JP-A-57-104276, and JP-A-57-136377 disclose that in a photovoltaic device including one unitary power generating element, light is incident on a photoactive layer. In the window layer, the impurity layer disposed on the front side, that is, a so-called window layer is made of a wide bandgap material such as amorphous silicon carbide having a wider optical bandgap Egopt than the photoactive layer or amorphous silicon nitride. A technique for reducing light absorption is disclosed.

従って、斯るワイドバンドギャップ材料の光吸収の低減
作用を、タンデム構造に於いて発電に殆ど寄与しない接
合電界形成用の不純物層に適用すれば当該不純物層に於
ける光吸収を可及的に減少させ、光電変換効率の上昇を
図ることができる。
Therefore, if the effect of reducing the light absorption of such a wide band gap material is applied to the impurity layer for forming the junction electric field that hardly contributes to power generation in the tandem structure, the light absorption in the impurity layer can be minimized. The photoelectric conversion efficiency can be increased by decreasing the amount.

一方、アモルファスシリコンを主体とする光起電力装置
に於いて、長時間強い光が照射せしめられると、その光
電変換効率が低下することが知られており、近年光電変
換効率を上昇せしめるための研究と、経時劣化の低減の
ための研究とが並行して行なわれている。即ち、初期の
光電変換効率の上昇が達成できたとしても、経時劣化が
著しければ光電変換効率の上昇は相殺され、逆に長時間
経過後には従来構造の光電変換効率を下回ることも発生
する。
On the other hand, in a photovoltaic device mainly composed of amorphous silicon, it has been known that the photoelectric conversion efficiency thereof is lowered when it is irradiated with strong light for a long time. In recent years, research for increasing the photoelectric conversion efficiency has been performed. And research for reducing deterioration over time are being conducted in parallel. That is, even if the initial increase in the photoelectric conversion efficiency can be achieved, the increase in the photoelectric conversion efficiency is canceled if the deterioration over time is significant, and conversely, after a long time, the photoelectric conversion efficiency of the conventional structure may be lowered. .

(ハ) 発明が解決しようとする問題点 本発明光起、電力装置は上述の如く複数個の単位発電素
子を積層した所謂タンデム構造に於いて、発電に殆ど寄
与しない接合電界形成用の不純物層に於ける光吸収をワ
イドバンドギャップ材料を使用することにより、可及的
に減少させると共に、経時劣化を抑圧しようとするもの
である。
(C) Problems to be Solved by the Invention In the photovoltaic and electric power device of the present invention, in a so-called tandem structure in which a plurality of unit power generating elements are laminated as described above, an impurity layer for forming a junction electric field that hardly contributes to power generation. By using a wide bandgap material, the light absorption in (1) is reduced as much as possible and the deterioration over time is suppressed.

(ニ) 問題点を解決するための手段 本発明光起電力装置は上記問題点を解決するために、相
隣り合う単位発電素子の接触界面に配置される不純物層
として、p型のアモルファスシリコンオキシナイトライ
ドと、n型のアモルファスシリコンカーバイドとを用い
たことを特徴とする。
(D) Means for Solving the Problems In order to solve the above problems, the photovoltaic device of the present invention uses a p-type amorphous silicon oxide as an impurity layer arranged at a contact interface between adjacent unit power generating elements. It is characterized by using nitride and n-type amorphous silicon carbide.

(ホ) 作用 上述の如くp型のアモルファスシリコンオキシナイトラ
イドとn型のアモルファスシリコンカーバイドのワイド
バンドギャップ材料を相隣り合う単位発電素子の接触界
面に配置することによって、当該アモルファスシリコン
オキシナイトライドとアモルファスシリコンカーバイド
の各層は前段の単位発電素子に於ける光活性層で吸収さ
れなかった入射光を後段の単位発電素子に透過させると
共に、経時劣化に対しても有効に作用する。
(E) Action As described above, by arranging the wide band gap material of p-type amorphous silicon oxynitride and n-type amorphous silicon carbide at the contact interface between adjacent unit power generation elements, the amorphous silicon oxynitride Each layer of amorphous silicon carbide transmits incident light that has not been absorbed by the photoactive layer in the unit power generation element in the previous stage to the unit power generation element in the subsequent stage, and effectively acts against deterioration over time.

(ヘ) 実施例 第1図は本発明光起電力装置の基本構造を示す模式的断
面図で、ガラス等の透光性且つ絶縁性の基板(1)の一
方の主面にITO、SnO2等に代表される透光性導電酸化物
(TCO)の受光面電極(2)を形成した後、夫々が単独
で実質的に発電素子として機能する第1及び第2の単位
発電素子(SC1)(SC2)が第1の単位発電素子(SC1
を上記受光面電極(2)と接した状態で順次積層されて
いる。そして、第2の単位発電素子(SC2)の露出面で
ある光入射方向から見て背面に、Al、Ag、Al/Ti、Al/Ti
Ag、TCO/Ag、TCO/Al、TCO/Al/Ti等の単層乃至三層構造
の背面電極(3)が結合されるている。
(F) Example FIG. 1 is a schematic sectional view showing the basic structure of the photovoltaic device of the present invention. ITO, SnO 2 is provided on one main surface of a transparent and insulating substrate (1) such as glass. After forming the light-receiving surface electrode (2) of a translucent conductive oxide (TCO) typified by, for example, each of the first and second unit power generating elements (SC 1 ) (SC 2 ) is the first unitary power generation element (SC 1 )
Are sequentially stacked in contact with the light-receiving surface electrode (2). Then, Al, Ag, Al / Ti, Al / Ti are formed on the back surface of the second unit power generation element (SC 2 ) which is the exposed surface when viewed from the light incident direction.
A back electrode (3) having a single-layer or three-layer structure of Ag, TCO / Ag, TCO / Al, TCO / Al / Ti, etc. is connected.

上記第1・第2の単位発電素子(SC1)(SC2)の各々
は、アモルファスシリコン(a−Si)を主体とし、Si
H4、SiF4、SiH4+SiF4、Si2H6等のシリコン化合物ガス
を主原料ガスとし、適宜p型、n型の価電子制御用のB2
H6、PH3等の不純物ガスや、ワイドバンドギャップ用のC
H4、C2H6、C2H2、NH3、NO等のワイドバンドギャップ用
ガスを添加した原料ガスによるプラズマ分解や低圧水銀
ランプを使用した光分解等により形成される。そして、
各単位発電素子(SC1)(SC2)は、上記価電子制御用の
不純物ガスを全く含まない状態で形成されたノンドーブ
なi型層か、僅かに不純物を含んだスライトリィドーブ
な層からなる光活性層(41)(42)と、該光活性層
(41)(42)で形成された光キャリアの移動を促進する
接合電界を発生させるべく当該光活性層(41)(42)を
挾んだp型或いはn型の不純物層(5d11)(5d12)、
(5d21)(5d22)と、からなり、光入射側から見て、pi
n/pin或いはnip/nipのタンデム構造を備えている。
Each of the first and second unit power generating elements (SC 1 ) (SC 2 ) is mainly composed of amorphous silicon (a-Si)
A silicon compound gas such as H 4 , SiF 4 , SiH 4 + SiF 4 , Si 2 H 6 is used as a main raw material gas, and B 2 for controlling p-type and n-type valence electrons is appropriately used.
Impurity gas such as H 6 and PH 3 and C for wide band gap
It is formed by plasma decomposition with a raw material gas to which a wide band gap gas such as H 4 , C 2 H 6 , C 2 H 2 , NH 3 , and NO is added, or photolysis using a low-pressure mercury lamp. And
Each unit power generation element (SC 1 ) (SC 2 ) is composed of a non-dove i-type layer formed without containing the impurity gas for controlling the valence electrons or a slightly dry layer containing a slight amount of impurities. photoactive layer as a (4 1) (4 2), the photoactive layer (4 1) (4 2) so as to generate a junction field that promotes movement of the optical carriers is formed in the photoactive layer (4 1 ) (4 2 ) sandwiched between p-type or n-type impurity layers (5d 11 ) (5d 12 ),
(5d 21 ) (5d 22 ), and when viewed from the light incident side, pi
It has a tandem structure of n / pin or nip / nip.

而して、本発明の特徴は互いに相隣り合う第1・第2の
単位発電素子(SC1)(SC2)のn/p或いはp/n接触界面に
配置される不純物層(5d12)(5d21)として、数種のワ
イドバンドギャップ材料の組合せの内から、n型のアモ
ルファスシリコンカーバイド(a−Si1-XCX)と、p型
のアモルファスシリコンオキシナイトライド(a−Si
1-2XNXOX)との組合せを選択したところにある。
Thus, the feature of the present invention is that the impurity layer (5d 12 ) arranged at the n / p or p / n contact interface of the first and second unit power generating elements (SC 1 ) (SC 2 ) adjacent to each other. As (5d 21 ), n-type amorphous silicon carbide (a-Si 1-X C X ) and p-type amorphous silicon oxynitride (a-Si) are selected from combinations of several kinds of wide band gap materials.
1-2X N X O X ).

下記第1表は光起電力装置の基本特性(初期値)である
開放電圧Voc(V)、短絡電流Isc(mA)、フィルファク
タFF(%)、光電変換効率η(%)につき本発明構造の
実施例と従来構造の比較例とを赤道直下の太陽光線(AM
−1)を擬似的に照射する照射強度100mW/cm2のソーラ
シュミレータを用いて測定した実測値をまとめたもので
ある。
Table 1 below shows the structure of the present invention with respect to the basic characteristics (initial values) of the photovoltaic device, which are the open circuit voltage Voc (V), the short circuit current Isc (mA), the fill factor FF (%), and the photoelectric conversion efficiency η (%). Example and the comparative example of the conventional structure
This is a summary of the actual measurement values measured by using a solar simulator with an irradiation intensity of 100 mW / cm 2 that artificially irradiates -1).

斯る測定に供せられた光起電力装置は何れも光入射側か
ら見て、ガラス基板(1)/TCO受光面電極(2)/pin接
合型第1単位発電素子(SC1)/pin接合型第2単位発電
素子(SC2)/Al背面電極(3)のタンデム構造であり、
第1単位発電素子(SC1)と第2単位発電素子(SC2)と
の接触界面には、第1単位発電素子(SC1)の不純物層
(5d12)はn型であり、第2単位発電素子(SC2)のそ
れ(5d21)はp型が夫々配置された。そして、接触界面
を構成する第1単位発電素子(SC1)の不純物層(5
d12)と第2単位発電素子(SC2)の不純物層(5d21)の
組成のみを可変とし、他の構成要素は実施例及び比較例
ともに共通仕様とした。第1・第2の単位発電素子(SC
1)(SC2)は特開昭56-114387号公報に開示された、当
該アモルファスシリコンを主体とする単位発電素子(SC
1)(SC2)の製造方法として一般的な三室分離式プラズ
マCVD法を用いて製造した。本実施例に於けるプラズマC
VD条件を第2表に記すと共に、斯るCVD条件により製造
された構造を第3表に示す。
The photovoltaic devices used for such measurement are all viewed from the light incident side, the glass substrate (1) / TCO light receiving surface electrode (2) / pin junction type first unit power generating element (SC 1 ) / pin It is a tandem structure of the junction type second unit power generation element (SC 2 ) / Al back electrode (3),
At the contact interface between the first unit power generating element (SC 1 ) and the second unit power generating element (SC 2 ), the impurity layer (5d 12 ) of the first unit power generating element (SC 1 ) is n-type, and the second Each of the unit power generation elements (SC 2 ) (5d 21 ) was a p-type. Then, the impurity layer (5) of the first unit power generation element (SC 1 ) constituting the contact interface is formed.
Only the composition of d 12 ) and the impurity layer (5d 21 ) of the second unit power generating element (SC 2 ) was made variable, and the other constituents were made common specifications in both the example and the comparative example. 1st and 2nd unit power generation element (SC
1 ) (SC 2 ) is a unit power generating element (SC) mainly composed of the amorphous silicon disclosed in JP-A-56-114387.
1 ) (SC 2 ) was manufactured using the general three-chamber separation plasma CVD method. Plasma C in this embodiment
Table 2 shows the VD conditions, and Table 3 shows the structure produced under such CVD conditions.

共通条件 電源:13.56MHz高周波電源 SiH4ガス流量:5〜10(SCCM) ガス圧力:0.3〜0.5(Torr) 一方、比較対象となった比較例1は、実施例に於ける第
2単位発電素子(SC2)のa−Si0.90.050.05の界面
不純物層(5d21)に代って第1単位発電素子(SC1)の
不純物層(5d11)や(5d12)と同じa−Si0.90.1を用
いた構成にあり、また比較例2は実施例に於けるa−Si
0.90.1のn型界面不純物層(5d12)やa−Si0.9
0.050.05のp型界面不純物層(5d21)に代ってa−Si
0.90.1を用いた構成にある。斯る構成の異なる接合界
面の構成を第4表にまとめて示す。
Common conditions Power supply: 13.56MHz high frequency power supply SiH 4 Gas flow rate: 5-10 (SCCM) Gas pressure: 0.3-0.5 (Torr) On the other hand, Comparative Example 1 which is a comparison target is the first unit instead of the interface impurity layer (5d 21 ) of a-Si 0.9 N 0.05 O 0.05 of the second unit power generating element (SC 2 ) in the example. The power generation element (SC 1 ) has the same a-Si 0.9 C 0.1 as the impurity layers (5d 11 ) and (5d 12 ) of the power generation element (Comparative Example 2).
0.9 C 0.1 n-type interface impurity layer (5d 12 ) or a-Si 0.9 N
0.05 O 0.05 a-Si instead of p-type interface impurity layer (5d 21 ).
In the configuration using 0.9 N 0.1 . Table 4 shows the configurations of the bonding interfaces having different configurations.

尚、各実施例乃至比較例のa−Si1-2XNxOx、a−Si1-XN
X、a−Si1-XCXは光学的禁止帯幅Egoptがa−Siよりワ
イドな約2.0(eV)になるべくSiに対するN、Oまたは
Cの含有量が上述の如く調整されている。
The a-Si 1-2X NxOx and a-Si 1-X N of each of the examples and comparative examples
The content of N, O or C in X , a-Si 1-X C X is adjusted as described above so that the optical bandgap Egopt is about 2.0 (eV) wider than a-Si.

この様に第1・第2単位発電素子(SC1)(SC2)の接合
界面の不純物層(5d12)(5d21)として同じ光学的禁止
帯幅Egoptを持つa−Si1-XCX、a−Si1-XNXにより構成
する場合、同一材料より構成するよりもn型層としてa
−Si1-XCXを用いると共にp型層としてa−Si1-2XNXOX
を用いた時に光起電力装置に於ける基本特性の改善が見
られた。
Thus, a-Si 1-X C having the same optical bandgap Egopt as the impurity layers (5d 12 ) (5d 21 ) at the junction interface of the first and second unit power generating elements (SC 1 ) (SC 2 ) When composed of X , a-Si 1-X N X , it is a n-type layer rather than composed of the same material.
-Si 1-X C X and a-Si 1-2X N X O X as a p-type layer
The improvement of the basic characteristics in the photovoltaic device was observed when using the.

一方、上記構成に於ける実施例及び比較例につき経時劣
化について測定した。劣化試験は、赤道直下の太陽光線
の光強度100mW/cm2の5倍の強度である500mW/cm2のAM−
1光を5時間照射したときの光電変換効率を測定し初期
値に対する劣化率を求める光劣化試験と、200℃50時間
経過後の光電変換効率の初期値に対する劣化率を求める
熱劣化試験とを夫々個別に施した。その結果が第5表に
示してある。
On the other hand, the deterioration over time was measured for the examples and comparative examples having the above-mentioned constitution. The deterioration test was conducted with an AM- of 500 mW / cm 2 which is five times as strong as the light intensity of 100 mW / cm 2 of the sun rays just below the equator.
A photo-deterioration test that measures the photoelectric conversion efficiency when irradiated with 1 light for 5 hours and obtains the deterioration rate with respect to the initial value, and a heat deterioration test that obtains the deterioration rate with respect to the initial value of the photoelectric conversion efficiency after 200 ° C. 50 hours have passed. Each was applied individually. The results are shown in Table 5.

この様に本発明実施例は比較例1、2に比して光起電力
装置の基本特性のみならず光及び/または熱による経時
劣化についても優れていることが判明した。
As described above, it was found that the examples of the present invention are superior to the comparative examples 1 and 2 not only in the basic characteristics of the photovoltaic devices but also in deterioration over time due to light and / or heat.

第2図は本発明実施例と比較例1の第1単位発電素子
(SC1)に於けるn型界面不純物層(5d12)のカーボン
含有量(x)と光電変換効率(η)の関係をx=0、0.
02、0.03、0.05、0.1、0.2、0.3、0.5の各々につき調査
したものである。斯る測定に於いては第2単位発電素子
(SC2)のp型界面不純物層(5d21)として、第4表記
載の如く本実施例がa−Si0.90.050.05、比較例1
がa−Si0.90.1の固定比率の膜を用いた。この測定結
果からn型界面不純物層(5d12)に於けるカーボン含有
量(x)を可変しても、同一の含有量にあってはp型界
面不純物層(5d21)としてa−Si1-2XNXOXを用いた本発
明実施例の光電変換効率(η)がa−Si1-XCXを用いる
比較例1を上回ることが判る。
FIG. 2 shows the relationship between the carbon content (x) of the n-type interface impurity layer (5d 12 ) and the photoelectric conversion efficiency (η) in the first unit power generating element (SC 1 ) of the example of the present invention and Comparative Example 1. X = 0,0.
02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5 were investigated. In this measurement, as the p-type interface impurity layer (5d 21 ) of the second unit power generation element (SC 2 ), this example was a-Si 0.9 N 0.05 O 0.05 and Comparative example 1 as shown in Table 4.
A-Si 0.9 C 0.1 fixed ratio film was used. From this measurement result, even if the carbon content (x) in the n-type interface impurity layer (5d 12 ) was changed, a-Si 1 was obtained as the p-type interface impurity layer (5d 21 ) with the same content. It can be seen that the photoelectric conversion efficiency (η) of the example of the present invention using -2X N X O X is higher than that of Comparative example 1 using a-Si 1 -X C X.

一方、本発明実施例と比較例1の第2単位発電素子(SC
2)のp型界面不純物層(5d21)の窒素及び酸素含有量
(x)及びカーボン含有量(x)と光電変換効率(η)
の関係が第3図に示されている。斯る測定にあっては第
1単位発電素子(SC1)のn型界面不純物層(5d12)と
して、第4表記載の如く本実施例及び比較例1ともにa
−Si0.90.1の固定比率の膜を共通に用いた。この測定
結果からp型界面不純物層(5d21)に於ける窒素及び酸
素含有量(x)を可変しても、斯る含有量に於けるEgop
tがほぼ等しくなるカーボン含有量(x)にあってはp
型界面不純物層(5d21)としてa−Si1-2XNXOXを用いた
本発明実施例の光電変換効率(η)がa−Si1-XCXを用
いる比較例1を上回ることが確認された。
On the other hand, the second unit power generating element (SC
2 ) Nitrogen and oxygen content (x) and carbon content (x) of the p-type interface impurity layer (5d 21 ) and photoelectric conversion efficiency (η)
The relationship is shown in FIG. In such measurement, as the n-type interface impurity layer (5d 12 ) of the first unit power generating element (SC 1 ), as shown in Table 4, in both the present Example and Comparative Example 1, a
A fixed ratio film of -Si 0.9 C 0.1 was used in common. From this measurement result, even if the nitrogen and oxygen contents (x) in the p-type interface impurity layer (5d 21 ) were varied, the Egop in such contents was changed.
If the carbon content (x) is such that t is almost equal, p
The photoelectric conversion efficiency (η) of the example of the present invention using a-Si 1-2X N X O X as the type interface impurity layer (5d 21 ) is higher than that of Comparative example 1 using a-Si 1-X C X. Was confirmed.

尚、上記実施例にあっては2個の単位発電素子のタンデ
ム構造について説明したが3個或いはそれ以上のタンデ
ム構造に本発明は適用可能である。
Although the tandem structure of two unit power generating elements has been described in the above embodiment, the present invention is applicable to a tandem structure of three or more unit power generating elements.

(ト) 発明の効果 本発明光起電力装置は以上の説明から明らかな如く、相
隣り合う単位発電素子の接触界面に配置されるn型のア
モルファスシリコンカーバイドとp型のアモルファスシ
リコンオキシナイトライドの各不純物層は前段の単位発
電素子に於ける光活性層で吸収されなかった入射光を後
段の単位発電素子に透過させると共に経時劣化に対して
も有効に作用するので、発電に殆ど寄与しない接合電界
形成用の不純物層に於ける光吸収を可及的に減少させる
ことができ、経時劣化の抑圧と相侯って光電変換効率の
上昇を図ることができる。
(G) Effect of the Invention As is clear from the above description, the photovoltaic device of the present invention includes an n-type amorphous silicon carbide and a p-type amorphous silicon oxynitride arranged at the contact interface between adjacent unit power generation elements. Each impurity layer transmits incident light that was not absorbed by the photoactive layer in the unit power generation element in the previous stage to the unit power generation element in the subsequent stage, and also acts effectively against deterioration over time, so that the junction hardly contributes to power generation. Light absorption in the impurity layer for forming an electric field can be reduced as much as possible, and the photoelectric conversion efficiency can be increased in combination with the suppression of deterioration over time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明光起電力装置の一実施例を示す模式的断
面図、第2図は本発明実施例と比較例1のn型界面不純
物層(a−Si1-XCX)に於けるカーボン含有量と光電変
換効率との関係を示す特性図、第3図は本発明実施例と
比較例1のp型界面不純物層(a−Si1-2XNXOX:a−Si
1-XCX)に於ける窒素及び酸素含有量またはカーボン含
有量と光電変換効率との関係を示す特性図、である。 (1)……基板、(2)……受光面電極、(3)……背
面電極、(41)(42)……光活性層、(5d11)(5d12
(5d21)(5d22)……不純物層、(SC1)……第1単位
発電素子、(SC2)……第2単位発電素子。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the photovoltaic device of the present invention, and FIG. 2 is an n-type interface impurity layer (a-Si 1-X C X ) of the embodiment of the present invention and Comparative Example 1. FIG. 3 is a characteristic diagram showing the relationship between the carbon content and the photoelectric conversion efficiency in FIG. 3, and FIG. 3 is a p-type interface impurity layer (a-Si 1-2X N X O X : a-Si) of Example of the present invention and Comparative Example 1.
FIG. 3 is a characteristic diagram showing the relationship between the nitrogen and oxygen content or the carbon content in 1-X C X ) and the photoelectric conversion efficiency. (1) ... substrate, (2) ... light-receiving surface electrode, (3) .... back electrode (4 1) (4 2) ...... photoactive layer, (5d 11) (5d 12)
(5d 21 ) (5d 22 ) ... Impurity layer, (SC 1 ) ... 1st unit power generation element, (SC 2 ) ... 2nd unit power generation element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アモルファスシリコンを主体とする単位発
電素子を複数個積層した光起電力装置であって、相隣り
合う単位発電素子の接触界面に配置される不純物層とし
て、p型のアモルファスシリコンオキシナイトライド
と、n型のアモルファスシリコンカーバイドとを用いた
ことを特徴とする光起電力装置。
1. A photovoltaic device in which a plurality of unit power generation elements mainly composed of amorphous silicon are stacked, and a p-type amorphous silicon oxynitride is used as an impurity layer arranged at a contact interface between adjacent unit power generation elements. A photovoltaic device comprising a nitride and an n-type amorphous silicon carbide.
JP61194504A 1986-08-18 1986-08-20 Photovoltaic device Expired - Lifetime JPH06101575B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61194504A JPH06101575B2 (en) 1986-08-20 1986-08-20 Photovoltaic device
US07/084,947 US4776894A (en) 1986-08-18 1987-08-13 Photovoltaic device
FR878711691A FR2602913B1 (en) 1986-08-18 1987-08-18 PHOTOVOLTAIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61194504A JPH06101575B2 (en) 1986-08-20 1986-08-20 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPS6350075A JPS6350075A (en) 1988-03-02
JPH06101575B2 true JPH06101575B2 (en) 1994-12-12

Family

ID=16325616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61194504A Expired - Lifetime JPH06101575B2 (en) 1986-08-18 1986-08-20 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPH06101575B2 (en)

Also Published As

Publication number Publication date
JPS6350075A (en) 1988-03-02

Similar Documents

Publication Publication Date Title
JP2740284B2 (en) Photovoltaic element
US4776894A (en) Photovoltaic device
JP3490964B2 (en) Photovoltaic device
US6288325B1 (en) Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
US5256887A (en) Photovoltaic device including a boron doping profile in an i-type layer
JPS6249672A (en) Amorphous photovoltaic element
JP2005101151A (en) Photovoltaic element and its manufacturing method
KR20080045598A (en) Solar cell and method of manufacturing the same
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JPH09162431A (en) Parallel integrated solar battery
US4857115A (en) Photovoltaic device
JP2680579B2 (en) Photovoltaic device
JPS6050973A (en) Semiconductor device
JPH073876B2 (en) Photovoltaic device
JP2669834B2 (en) Stacked photovoltaic device
JPH06101575B2 (en) Photovoltaic device
JP2632740B2 (en) Amorphous semiconductor solar cell
JP4911878B2 (en) Semiconductor / electrode contact structure and semiconductor element, solar cell element, and solar cell module using the same
JPS6347987A (en) Photovoltaic device
RU2569164C2 (en) Thin-film solar cell
JP2634812B2 (en) Semiconductor device
JPS61292377A (en) Amorphous silicon photo-cell
JP3143392B2 (en) Stacked solar cell
JPH0685291A (en) Semiconductor device and its manufacture
JPH0444433B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term