JPH0610029A - Production of ultralow carbon steel - Google Patents

Production of ultralow carbon steel

Info

Publication number
JPH0610029A
JPH0610029A JP19168092A JP19168092A JPH0610029A JP H0610029 A JPH0610029 A JP H0610029A JP 19168092 A JP19168092 A JP 19168092A JP 19168092 A JP19168092 A JP 19168092A JP H0610029 A JPH0610029 A JP H0610029A
Authority
JP
Japan
Prior art keywords
molten steel
steel
ladle
vacuum tank
splash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19168092A
Other languages
Japanese (ja)
Inventor
Eiju Matsuno
英寿 松野
Yoshiteru Kikuchi
良輝 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19168092A priority Critical patent/JPH0610029A/en
Publication of JPH0610029A publication Critical patent/JPH0610029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To remarkably quicken the decarburizing speed and to obtain a steel extremely low in carbon content by adding hydrogen into splash in a vacuum vessel at the latter stage of decarburization for which the carbon content in the molten steel becomes a specific value or lower at the tiame of executing the production of an ultralow carbon steel by an RH type vacuum degassing refining method. CONSTITUTION:The molten steel 5 is circulated between a ladle 4 and a vacuum 1 to decarburize the molten metal 5 in the ladle 4. Then, at the latter stage of the decarburization for which carbon content in the molten steel 5 becomes <=50ppm, one or more among the gaseous hydrogen, the hydrogen diluted with inert gas and solid metal hydride are added toward the splash 5a spattered from the molten steel 5 sucked up into the vacuum vessel 1 from a lance 7. By this method, an oxygen-enriched film or an iron oxide film generated on the splash 5a is reduced to promote the decarburizing reaction of the splash 5a. Thus, the ultralow carbon steel having <=20ppm carbon content is efficiently produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、RH式真空脱ガス精
錬法によって、炭素含有量が20ppm 以下の極低炭素鋼を
製造するための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra low carbon steel having a carbon content of 20 ppm or less by an RH type vacuum degassing refining method.

【0002】[0002]

【従来の技術】工業的に極低炭素鋼を製造する方法とし
て、RH式真空脱ガス精錬法が広く使用れている。この
ようなRH式真空脱ガス精錬法によって極低炭素鋼を製
造するに際し、近年、品質の高級化、および、生産性の
向上が要求されており、そのための種々の方法が提案さ
れている。
2. Description of the Related Art The RH type vacuum degassing refining method is widely used as a method for industrially producing ultra-low carbon steel. In producing ultra-low carbon steel by such an RH-type vacuum degassing refining method, in recent years, higher quality and higher productivity have been required, and various methods have been proposed for that purpose.

【0003】例えば、特公昭62-6611 号公報には、RH
式真空脱ガス精錬法によって極低炭素鋼を製造するに際
し、溶鋼精錬用真空槽の底壁に連結された、上昇管およ
び下降管からなる浸漬管の断面形状を楕円形に形成し
て、その断面積を大にし、これにより、取鍋内の溶鋼
の、真空槽との間の循環量を増大させて、鋼中の不純物
の除去速度を向上させる方法(以下、先行技術という)
が開示されている。
For example, Japanese Patent Publication No. 62-6611 discloses RH.
When manufacturing ultra-low carbon steel by the vacuum degassing refining method, the dip tube connected to the bottom wall of the molten steel refining vacuum tank is formed into an elliptical cross-sectional shape, A method of increasing the cross-sectional area, thereby increasing the circulation amount of molten steel in the ladle with the vacuum chamber, and improving the removal rate of impurities in the steel (hereinafter referred to as prior art)
Is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、先行技
術によっては、ある程度、不純物の除去速度は向上し得
ても、その大幅な向上は望めず、しかも、浸漬管の裏張
り耐火物が激しく損傷するために、処理コストの上昇を
招いていた。従って、特に、炭素含有量が20ppm以下の
極低炭素鋼を、工業的に且つ効率的に製造するための方
法は、未だ確立されていない。
However, according to the prior art, even if the removal rate of impurities can be improved to some extent, it cannot be expected to be greatly improved, and further, the refractory lining the dip tube is severely damaged. Therefore, the processing cost is increased. Therefore, in particular, a method for industrially and efficiently producing a very low carbon steel having a carbon content of 20 ppm or less has not been established yet.

【0005】従って、この発明の目的は、上述した問題
を解決し、RH式真空脱ガス精錬法によって極低炭素鋼
を製造するに際し、脱炭速度を著しく早め、これによっ
て、炭素含有量が20ppm 以下の極低炭素鋼を効率的に製
造するための方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and to significantly speed up the decarburization rate in producing an ultra-low carbon steel by the RH type vacuum degassing refining method, whereby the carbon content is 20 ppm. It is to provide a method for efficiently producing the following ultra-low carbon steel.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上述した
問題を解決すべく鋭意研究を重ねた。その結果、RH式
真空脱ガス精錬法によって極低炭素鋼を製造するに際
し、溶鋼の炭素含有量が50ppm 以下になった脱炭の後期
に、真空槽内に吸い上げられた溶鋼から飛散するスプラ
ッシュに向け水素を添加して、スプラッシュ表面の酸化
膜を還元し、スプラッシュを脱炭反応サイトとすれば、
炭素含有量が20ppm 以下の極低炭素鋼を効率的に製造し
得ることを知見した。
[Means for Solving the Problems] The present inventors have conducted extensive studies to solve the above-mentioned problems. As a result, when producing ultra-low carbon steel by the RH-type vacuum degassing refining method, in the latter stage of decarburization when the carbon content of the molten steel has dropped to 50 ppm or less, the splash scattered from the molten steel sucked into the vacuum tank If hydrogen is added to reduce the oxide film on the splash surface and the splash is used as a decarburization reaction site,
It has been found that an extremely low carbon steel having a carbon content of 20 ppm or less can be efficiently produced.

【0007】この発明は、上記知見に基づいてなされた
ものであって、溶鋼精錬用真空槽の底壁に、下方に向っ
て突出するように垂直に連結された上昇管および下降管
を、前記真空槽の下方に位置する取鍋内に収容された溶
鋼中に浸漬し、前記真空槽内を減圧しながら、前記上昇
管から不活性ガスを吹き込んで、前記取鍋内の溶鋼を前
記上昇管を通して前記真空槽内に吸い上げ、前記溶鋼を
前記真空槽内において脱ガスし、そして、前記真空槽内
に吸い上げた溶鋼を、前記下降管を通って前記取鍋内に
戻して、前記溶鋼を、前記取鍋と前記真空槽との間を循
環させ、かくして、前記取鍋内の溶鋼を脱炭し、極低炭
素鋼を製造する方法において、前記溶鋼の炭素含有量が
50ppm 以下になった脱炭の後期に、前記真空槽内に吸い
上げられた溶鋼から飛散するスプラッシュに向けて、気
体水素、不活性ガスによって希釈された水素、および、
固体金属水素化物のうちの少なくとも1つを添加するこ
とに特徴を有するものである。
The present invention has been made on the basis of the above-mentioned findings, and an ascending pipe and a descending pipe vertically connected to the bottom wall of a molten steel refining vacuum chamber so as to project downward are described above. It is immersed in molten steel contained in a ladle located below the vacuum tank, and while depressurizing the inside of the vacuum tank, an inert gas is blown from the rising pipe to move the molten steel in the ladle to the rising pipe. Through the vacuum tank, degass the molten steel in the vacuum tank, and the molten steel sucked in the vacuum tank is returned to the ladle through the downcomer, the molten steel, In the method of circulating between the ladle and the vacuum tank, thus decarburizing the molten steel in the ladle, to produce an ultra-low carbon steel, the carbon content of the molten steel is
At the latter stage of decarburization of 50 ppm or less, toward the splash scattered from the molten steel sucked in the vacuum tank, gaseous hydrogen, hydrogen diluted with an inert gas, and
It is characterized by adding at least one of solid metal hydrides.

【0008】[0008]

【作用】RH式真空脱ガス精錬法によって極低炭素鋼を
製造するに際し、脱炭反応が生じる場所としては、上昇
管から不活性ガスが吹き込まれた溶鋼中、真空槽内に吸
い上げられた溶鋼の表面、または、真空槽内に吸い上げ
られた溶鋼の表面から飛散するスプラッシュ等が考えら
れる。
When the ultra low carbon steel is produced by the RH type vacuum degassing refining method, the decarburization reaction occurs in the molten steel in which the inert gas is blown from the rising pipe, and the molten steel sucked up in the vacuum tank. Splashes scattered from the surface of the molten steel or the surface of the molten steel sucked up in the vacuum chamber can be considered.

【0009】上記のうち、真空槽内に吸い上げられた溶
鋼の表面から飛散するスプラッシュの脱炭反応は、精錬
前期における、鋼中の炭素含有量が多い間には、鋼中の
酸素と結びついて進行する。しかしながら、精錬が進ん
で、鋼中の炭素量が少なくなると、スプラッシュ中の酸
素量が、炭素量に比べて非常に多くなる。酸素は表面吸
着性を有しているので、スプラッシュ中の酸素量が多く
なると、スプラッシュ表面に、酸素が集まって、酸素富
化膜や酸化鉄膜が生成する。その結果、溶鋼の脱炭反応
が阻害される。
Of the above, the decarburization reaction of the splashes scattered from the surface of the molten steel sucked up in the vacuum chamber is associated with oxygen in the steel during the early refining period while the carbon content in the steel is high. proceed. However, as refining progresses and the carbon content in the steel decreases, the oxygen content in the splash becomes much larger than the carbon content. Since oxygen has a surface adsorptive property, when the amount of oxygen in the splash increases, oxygen gathers on the splash surface to form an oxygen-enriched film or an iron oxide film. As a result, the decarburization reaction of molten steel is hindered.

【0010】そこで、この発明においては、溶鋼の炭素
含有量が50ppm 以下になった脱炭の後期に、真空槽内に
吸い上げられた溶鋼から飛散するスプラッシュに向けて
水素を添加する。このようにして添加された水素によっ
て、スプラッシュ表面に生成した酸素富化膜や酸化鉄膜
が還元される結果、スプラッシュの脱炭反応が促進さ
れ、これによって、炭素含有量が20ppm 以下の極低炭素
鋼を効率的に製造することができる。
Therefore, in the present invention, hydrogen is added toward the splashes scattered from the molten steel sucked up in the vacuum chamber in the latter stage of decarburization when the carbon content of the molten steel becomes 50 ppm or less. The hydrogen added in this way reduces the oxygen-enriched film and iron oxide film formed on the splash surface, and as a result, the decarburization reaction of the splash is promoted, which results in an extremely low carbon content of 20 ppm or less. Carbon steel can be efficiently manufactured.

【0011】真空槽内に吸い上げられた溶鋼から飛散す
るスプラッシュに向けて添加する水素としては、気体水
素、アルゴン等の不活性ガスによって希釈された気体水
素、または、水素化ジルコニウム、水素化チタン等の固
体金属水素化物等があり、これらのうちの少なくとも1
つをスプラッシュに向けて添加する。
The hydrogen added to the splashes scattered from the molten steel sucked up in the vacuum tank is gaseous hydrogen, gaseous hydrogen diluted with an inert gas such as argon, zirconium hydride, titanium hydride or the like. Solid metal hydrides, etc., and at least one of these
One is added to the splash.

【0012】図1は、この発明の方法を実施するための
装置の一例を示す概略垂直断面図である。図1に示すよ
うに、溶鋼精錬用真空槽1の底壁1aには、下方に向って
突出するように垂直に、上昇管2および下降管3が連結
されている。上昇管2および下降管3の各々の下部は、
真空槽1の下方に位置する取鍋4内に収容された溶鋼5
中に浸漬されている。上昇管2には、不活性ガスの吹込
み管6が連結されている。真空槽1の一方の側壁1bに
は、真空槽1内に吸い上げられた溶鋼5から飛散するス
プラッシュに向けて、気体水素、不活性ガスによって希
釈された水素、および、固体金属水素化物のうちの少な
くとも1つを添加するためのランス7が設けられてい
る。8は、真空槽1内を減圧するための、真空ポンプに
接続された導管である。
FIG. 1 is a schematic vertical sectional view showing an example of an apparatus for carrying out the method of the present invention. As shown in FIG. 1, an ascending pipe 2 and a descending pipe 3 are vertically connected to a bottom wall 1a of a molten steel refining vacuum tank 1 so as to project downward. The lower part of each of the ascending pipe 2 and the descending pipe 3 is
Molten steel 5 contained in a ladle 4 located below the vacuum tank 1.
It is immersed in. An inert gas blowing pipe 6 is connected to the rising pipe 2. On one side wall 1b of the vacuum chamber 1, one of gaseous hydrogen, hydrogen diluted with an inert gas, and solid metal hydride toward the splash scattered from the molten steel 5 sucked up in the vacuum chamber 1 A lance 7 is provided for adding at least one. Reference numeral 8 is a conduit connected to a vacuum pump for reducing the pressure in the vacuum chamber 1.

【0013】真空槽1内を減圧しながら、上昇管2に連
結された吹込み管6を通して、不活性ガスを吹き込ん
で、取鍋4内の溶鋼5を、上昇管2を通して真空槽1内
に吸い上げ、そして、真空槽1内に吸い上げた溶鋼5
を、下降管3を通って取鍋4内に戻して、溶鋼5を、取
鍋4と真空槽1との間を循環させ、取鍋4内の溶鋼5を
脱炭する。溶鋼5の炭素含有量が50ppm 以下になった脱
炭の後期に、ランス7より、真空槽1内に吸い上げられ
た溶鋼5から飛散するスプラッシュ5aに向けて、気体水
素、不活性ガスによって希釈された水素、および、固体
金属水素化物のうちの少なくとも1つを添加する。その
結果、上述したように、添加された水素によって、スプ
ラッシュ5aの表面に生成した酸素富化膜や酸化鉄膜が還
元されて、スプラッシュ5aの脱炭反応が促進される。
While decompressing the inside of the vacuum chamber 1, an inert gas is blown through the blowing pipe 6 connected to the rising pipe 2 to move the molten steel 5 in the ladle 4 into the vacuum chamber 1 through the rising pipe 2. Molten steel 5 sucked up and sucked into the vacuum chamber 1
Is returned to the inside of the ladle 4 through the downcomer pipe 3, the molten steel 5 is circulated between the ladle 4 and the vacuum tank 1, and the molten steel 5 in the ladle 4 is decarburized. In the latter stage of decarburization when the carbon content of the molten steel 5 becomes 50 ppm or less, it is diluted with gaseous hydrogen and an inert gas from the lance 7 toward the splash 5a scattered from the molten steel 5 sucked up in the vacuum tank 1. Hydrogen and at least one of solid metal hydrides are added. As a result, as described above, the added hydrogen reduces the oxygen-enriched film and the iron oxide film formed on the surface of the splash 5a, thereby promoting the decarburization reaction of the splash 5a.

【0014】ランス7より、スプラッシュ5aに向けた気
体水素等の添加は、溶鋼の炭素含有量が50ppm 以下にな
った脱炭の後期に行うことが必要である。炭素含有量が
50ppm 超の溶鋼中に気体水素等を添加すると、炭素と酸
素との反応力が、ある程度維持されている状態で、溶存
酸素の量を減らすことになり、その反応力が減少する結
果、逆に脱炭反応が遅くなる問題が生ずる。
From the lance 7, it is necessary to add gaseous hydrogen or the like toward the splash 5a in the latter stage of decarburization when the carbon content of the molten steel becomes 50 ppm or less. The carbon content is
If gaseous hydrogen or the like is added to molten steel exceeding 50 ppm, the amount of dissolved oxygen will be reduced while the reaction force between carbon and oxygen is maintained to some extent, and as a result, the reaction force will decrease. There is a problem that the decarburization reaction becomes slow.

【0015】[0015]

【実施例】次に、この発明を、実施例により比較例と対
比しながら更に詳述する。図1に示した、溶鋼処理能力
250tのRH式真空脱ガス精錬装置を使用し、下記表1に
示す化学成分組成の溶鋼を脱炭した。
EXAMPLES Next, the present invention will be described in more detail by way of examples in comparison with comparative examples. Molten steel processing capacity shown in Fig. 1
A 250 ton RH type vacuum degassing and refining device was used to decarburize molten steel having the chemical composition shown in Table 1 below.

【0016】真空槽1内を1torr以下にまで減圧し、上
昇管2に連結された吹込み管6を通して、アルゴンガス
を2000Nl/minの量で吹き込んで、取鍋4内の溶鋼5を、
上昇管2を通して真空槽1内に吸い上げ、そして、真空
槽1内に吸い上げた溶鋼5を、下降管3を通って取鍋4
内に戻して、溶鋼5を、取鍋4と真空槽1との間を循環
させ、取鍋4内の溶鋼5を脱炭した。
The pressure in the vacuum chamber 1 was reduced to 1 torr or less, and argon gas was blown at a rate of 2000 Nl / min through a blow pipe 6 connected to the rising pipe 2 to melt the molten steel 5 in the ladle 4.
The molten steel 5 sucked up into the vacuum tank 1 through the rising pipe 2 and the molten steel 5 sucked up into the vacuum tank 1 through the descending pipe 3 is ladle 4
After returning to the inside, the molten steel 5 was circulated between the ladle 4 and the vacuum chamber 1 to decarburize the molten steel 5 in the ladle 4.

【0017】溶鋼の炭素含有量が50ppm 以下になった脱
炭の後期に、ランス7より、真空槽1内に吸い上げられ
た溶鋼5から飛散するスプラッシュ5aに向け、アルゴン
ガスによって希釈され水素ガスを、100Nl/min の流量
で、溶鋼に直接当たらないように吹き付けた。
At the latter stage of decarburization when the carbon content of the molten steel becomes 50 ppm or less, hydrogen gas diluted with argon gas is directed from the lance 7 to the splash 5a scattered from the molten steel 5 sucked up in the vacuum chamber 1. , With a flow rate of 100 Nl / min so as not to directly hit the molten steel.

【0018】図2は、このようにして、アルゴンガスに
よって希釈された水素ガスを吹き付けたときの、溶鋼中
の炭素含有量を処理時間との関係において示すグラフで
ある。図2において、縦軸は溶鋼中の炭素含有量を示
し、横軸は処理時間を示す。そして、実線は、この発明
の方法によって処理したときの、時間の経過とともに変
化する炭素含有量を示し、点線は、水素を吹き付けない
従来の方法の場合の、時間の経過とともに変化する炭素
含有量を示す。
FIG. 2 is a graph showing the carbon content in the molten steel in relation to the treatment time when the hydrogen gas diluted with the argon gas is sprayed in this manner. In FIG. 2, the vertical axis represents the carbon content in the molten steel, and the horizontal axis represents the treatment time. Then, the solid line shows the carbon content that changes with time when treated by the method of the present invention, and the dotted line shows the carbon content that changes with time in the case of the conventional method in which hydrogen is not blown. Indicates.

【0019】図2から明らかなように、この発明の方法
によれば、溶鋼の脱炭反応は、溶鋼の炭素含有量が50pp
m 以下になった後も停滞することなく進行し、その脱炭
速度は速く、処理後20分で、溶鋼の炭素含有量を10ppm
以下にまで減少させることができた。
As is apparent from FIG. 2, according to the method of the present invention, the decarburization reaction of the molten steel has a carbon content of 50 pp.
Even after it became less than m, it proceeded without stagnation, its decarburization rate was fast, and the carbon content of molten steel was 10ppm in 20 minutes after the treatment.
It could be reduced to below.

【0020】[0020]

【発明の効果】以上述べたように、この発明の方法によ
れば、RH式真空脱ガス精錬法によって極低炭素鋼を製
造するに際し、脱炭速度を著しく早めることができ、こ
れによって、炭素含有量が20ppm 以下の極低炭素鋼を効
率的に製造し得る工業上有用な効果がもたらされる。
As described above, according to the method of the present invention, the decarburization rate can be remarkably increased when the ultra low carbon steel is produced by the RH type vacuum degassing refining method. Industrially useful effects capable of efficiently producing an ultra-low carbon steel having a content of 20 ppm or less are brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の方法を実施するための装置の一例を
示す概略垂直断面図である。
FIG. 1 is a schematic vertical sectional view showing an example of an apparatus for carrying out the method of the present invention.

【図2】この発明の方法によって溶鋼を脱炭したとき
の、溶鋼中の炭素含有量と処理時間との関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the carbon content in molten steel and the treatment time when decarburizing the molten steel by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 真空槽、 7 ランス、 2 上昇管、 8 導管。 3 下降管、 4 取鍋、 5 溶鋼、 5a スプラッシュ、 6 ガス吹込み管、 1 vacuum tank, 7 lances, 2 risers, 8 conduits. 3 downcomers, 4 ladle, 5 molten steel, 5a splash, 6 gas injection pipe,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼精錬用真空槽の底壁に、下方に向っ
て突出するように垂直に連結された上昇管および下降管
を、前記真空槽の下方に位置する取鍋内に収容された溶
鋼中に浸漬し、前記真空槽内を減圧しながら、前記上昇
管から不活性ガスを吹き込んで、前記取鍋内の溶鋼を前
記上昇管を通して前記真空槽内に吸い上げ、前記溶鋼を
前記真空槽内において脱ガスし、そして、前記真空槽内
に吸い上げた溶鋼を、前記下降管を通って前記取鍋内に
戻して、前記溶鋼を、前記取鍋と前記真空槽との間を循
環させ、かくして、前記取鍋内の溶鋼を脱炭し、極低炭
素鋼を製造する方法において、 前記溶鋼の炭素含有量が 50ppm以下になった脱炭の後期
に、前記真空槽内に吸い上げられた溶鋼から飛散するス
プラッシュに向けて、気体水素、不活性ガスによって希
釈された水素、および、固体金属水素化物のうちの少な
くとも1つを添加することを特徴とする、極低炭素鋼の
製造方法。
1. An ascending pipe and a descending pipe vertically connected to a bottom wall of a molten steel refining vacuum tank so as to project downward are housed in a ladle located below the vacuum tank. Immersed in molten steel, while depressurizing the inside of the vacuum tank, blowing an inert gas from the rising pipe, sucking the molten steel in the ladle into the vacuum tank through the rising pipe, the molten steel in the vacuum tank Degassed inside, and the molten steel sucked up in the vacuum tank is returned to the ladle through the downcomer pipe, the molten steel is circulated between the ladle and the vacuum tank, Thus, in the method of decarburizing the molten steel in the ladle to produce an ultra-low carbon steel, in the latter stage of decarburization when the carbon content of the molten steel becomes 50 ppm or less, the molten steel sucked into the vacuum tank Hydrogen and inert gas toward the splashes scattered from Therefore diluted hydrogen, and at least one is characterized by adding, method for producing ultra low carbon steel of the solid metal hydride.
JP19168092A 1992-06-25 1992-06-25 Production of ultralow carbon steel Pending JPH0610029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19168092A JPH0610029A (en) 1992-06-25 1992-06-25 Production of ultralow carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19168092A JPH0610029A (en) 1992-06-25 1992-06-25 Production of ultralow carbon steel

Publications (1)

Publication Number Publication Date
JPH0610029A true JPH0610029A (en) 1994-01-18

Family

ID=16278676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19168092A Pending JPH0610029A (en) 1992-06-25 1992-06-25 Production of ultralow carbon steel

Country Status (1)

Country Link
JP (1) JPH0610029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774635A (en) * 2022-04-13 2022-07-22 江苏省沙钢钢铁研究院有限公司 Decarbonizing smelting method for RH vacuum furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774635A (en) * 2022-04-13 2022-07-22 江苏省沙钢钢铁研究院有限公司 Decarbonizing smelting method for RH vacuum furnace
CN114774635B (en) * 2022-04-13 2023-08-04 江苏省沙钢钢铁研究院有限公司 Decarburization smelting method of RH vacuum furnace

Similar Documents

Publication Publication Date Title
CA1338397C (en) Method for refining molten steel in a vacuum
CA2052737C (en) Method of producing ultra-low-carbon steel
JPH0610029A (en) Production of ultralow carbon steel
JPH0420967B2 (en)
KR101796088B1 (en) Refining method of alloy steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
KR100270109B1 (en) The denitriding method of molten metal
JPH0610028A (en) Production of ultralow carbon steel
JP2000212641A (en) High speed vacuum refining of molten steel
EP1111073A1 (en) Refining method and refining apparatus of molten steel
KR100921500B1 (en) Method for Desulfurizing extra low carbon steel
JP3252726B2 (en) Vacuum refining method for molten steel
SU1756366A1 (en) Process for producing corrosion-resistant steel
JPH06299227A (en) Production of extra low carbon steel by rh type degassing apparatus
JP2897647B2 (en) Melting method of low hydrogen extremely low sulfur steel
JP2724030B2 (en) Melting method of ultra low carbon steel
JP2780342B2 (en) Vacuum degassing method for molten metal
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JPH1161237A (en) Production of extra-low carbon steel by vacuum refining
JP3070416B2 (en) Vacuum degassing method for molten steel
JP2003171716A (en) Method for removing metal adhering to vacuum degassing tank
JPH04131316A (en) Method and device for vacuum degassing of extra-low-carbon steel
JPH04183814A (en) Production of extra-low carbon steel
KR20120033104A (en) Method for refining ultra low carbon steel
KR101175463B1 (en) Method for manufacturing of molten steel containing low hydrogen