JP2780342B2 - Vacuum degassing method for molten metal - Google Patents
Vacuum degassing method for molten metalInfo
- Publication number
- JP2780342B2 JP2780342B2 JP1145408A JP14540889A JP2780342B2 JP 2780342 B2 JP2780342 B2 JP 2780342B2 JP 1145408 A JP1145408 A JP 1145408A JP 14540889 A JP14540889 A JP 14540889A JP 2780342 B2 JP2780342 B2 JP 2780342B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- degassing
- molten steel
- vacuum
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、VOD,RH,DH等の真空脱ガス装置を用いて
溶融金属の脱ガスを行なう真空脱ガス方法に関する。Description: TECHNICAL FIELD The present invention relates to a vacuum degassing method for degassing a molten metal using a vacuum degassing device such as VOD, RH, and DH.
転炉等で溶融精錬を行なう製鋼炉で溶製した溶鋼には
ガス成分が多量に含まれているため、真空下でその脱ガ
スを行なう真空脱ガス法が実施されている。そのうちVO
D法やVAD法は、取鍋内に溶鋼を保持したまま、その浴面
を真空にさらして脱ガスするものであり、必要に応じて
溶鋼の攪拌をなし、その効率を上げている。又DH法やRH
法は、真空槽内に溶鋼を吸い上げ、その中で浴面を真空
にさらして脱ガスするものであり、脱ガス効果は前2者
に比べ、更に高いものとなる。Since molten steel smelted in a steelmaking furnace that performs smelting and refining in a converter or the like contains a large amount of gas components, a vacuum degassing method for degassing the steel under vacuum has been implemented. VO
The D method and the VAD method degas by exposing the bath surface to vacuum while holding the molten steel in a ladle, and the molten steel is agitated as necessary to increase its efficiency. DH method and RH
According to the method, molten steel is sucked into a vacuum chamber and the bath surface is degassed by exposing the bath surface to vacuum. The degassing effect is higher than the former two.
これらの方法は、極めて効率の良い脱ガス法である
が、特殊用途の鋼では、不純物として存在するガス成分
につき、より厳しいものが要求されることがある。Although these methods are extremely efficient degassing methods, special-purpose steels may require more stringent gas components present as impurities.
そこで本発明者等は、これらの真空脱ガス装置で脱ガ
スを行なう場合に、溶鋼中に、これに可溶なガスを溶解
せしめると共に、減圧によって溶解ガス成分を微細ガス
気泡として発生・浮上せしめ、この時の浴面のばたつき
で真空脱ガスの促進を図るという方法を開発した。この
方法によって溶鋼中に出来るガス気泡は非常に微細でし
かも多量に発生するため、浴面のばたつきで真空にさら
される浴表面の面積が増大することになり、脱ガス効率
は非常に高くなる。Therefore, the present inventors have found that when degassing is performed with these vacuum degassing devices, a gas soluble in the molten steel is dissolved in the molten steel, and a dissolved gas component is generated and floated as fine gas bubbles by decompression. At this time, a method of promoting vacuum degassing by flapping the bath surface was developed. Since gas bubbles formed in the molten steel by this method are very fine and generated in a large amount, the area of the bath surface exposed to vacuum due to the fluttering of the bath surface increases, and the degassing efficiency becomes extremely high.
本発明は上記の処理に用いられる溶解ガスとして、ど
のようなガスを用いるべきかを明らかにし、製品品質特
性に合わせて要求される特定のガス成分濃度の制御をよ
り容易に行なえるようにしようとするものである。The present invention clarifies what kind of gas should be used as the dissolved gas used in the above-mentioned processing, and makes it easier to control the concentration of a specific gas component required in accordance with product quality characteristics. It is assumed that.
そのため本発明は上記改良型の真空脱ガス方法により
溶融金属中のあるガス成分を特に低減化させようとする
場合に、該ガス成分とは異種の可溶ガスを溶解ガスとし
て用いることを前提構成としている。Therefore, the present invention is based on the premise that when a gas component in a molten metal is to be particularly reduced by the above-mentioned improved vacuum degassing method, a soluble gas different from the gas component is used as a dissolved gas. And
即ち、溶解ガスを微細ガス気泡として発生せしめ、真
空にさらされる浴面をばたつかせて脱ガス効率を上げよ
うとしても、その溶解ガスが脱ガスしようとするガス成
分と同一であれば、該成分のみは脱ガスが進まず、他の
ガス成分の脱ガスが進行してしまう。従って、溶解ガス
として用いるものは、脱ガスしようとするガス成分とは
異種の可溶ガスを用いることとしたものである。但し、
そのガス成分としては気体状のものでも或いは固体中に
含有されるものでも良い。That is, even if the dissolved gas is generated as fine gas bubbles and the degassing efficiency is increased by flapping the bath surface exposed to vacuum, if the dissolved gas is the same as the gas component to be degassed, the gas is removed. Degassing of only the component does not proceed, and degassing of other gas components proceeds. Therefore, what is used as the dissolved gas is to use a soluble gas different from the gas component to be degassed. However,
The gas component may be a gaseous component or a component contained in a solid.
本発明者等は、上記の構成を溶鋼の脱炭に適用して、
本願発明を創案した。The present inventors applied the above configuration to decarburization of molten steel,
The present invention was invented.
即ち、溶鋼の脱炭工程として極低炭処理を行なう場
合、非常に時間が掛り生産性の面で問題があったため、
本発明者等は上記構成を適用し、脱炭時に溶鋼中にH2ガ
スを添加し、減圧で生成する微細なH2ガス気泡で真空に
さらされる浴面面積を拡大せしめて脱炭反応を促進せし
めた。ところが今度はH2ガス成分が溶鋼中に多量に残存
することになり、真空脱ガス装置によってもその脱取に
時間がかかるため、鋼材の品質上問題となった。そこで
前記脱炭終了時点で脱水素反応を進行させるため、溶鋼
中にN2ガスを溶解せしめ、同じく減圧によって微細なN2
ガス気泡を発生させ、脱水素反応を促進させた。この際
非金属介在物を核としてガス気泡が生成するため、該介
在物除去効率も向上することになり、結局、溶鋼中の
〔C〕,〔H〕,T・〔O〕はいずれも極めて低くするこ
とができた。従って本発明者等は本発明の構成として、
ガス溶解−減圧−脱ガスの工程を2度行なって、溶鋼の
脱炭、脱水素及び脱酸の進行が著しく且つ効率的な新た
な真空脱ガス方法の提案を行なうものである。That is, when the ultra-low carbon treatment is performed as a decarburization process of molten steel, it takes a very long time and there is a problem in productivity,
The present inventors have applied the above configuration, the H 2 gas is added to the molten steel during decarburization, the expansion allowed by decarburization reaction bath surface area exposed to vacuum in a fine H 2 gas bubbles generated in vacuo Promoted. However, this time, a large amount of H 2 gas components remained in the molten steel, and it took a long time to remove the H 2 gas component even with a vacuum degassing apparatus, which caused a problem in the quality of the steel material. Therefore, in order to advance the dehydrogenation reaction at the end of the decarburization, N 2 gas was dissolved in the molten steel, and fine N 2
Gas bubbles were generated to accelerate the dehydrogenation reaction. At this time, gas bubbles are generated with the non-metallic inclusions as nuclei, so that the efficiency of removing the inclusions is also improved. Could be lower. Therefore, the present inventors, as a configuration of the present invention,
The present invention proposes a new vacuum degassing method in which the steps of gas dissolution, decompression, and degassing are performed twice and decarburization, dehydrogenation, and deoxidation of molten steel proceed remarkably and efficiently.
〔実施例 1〕 まず、本発明の前提構成となる実施例につき説明す
る。Embodiment 1 First, an embodiment which is a premise of the present invention will be described.
本発明者等は、250tonRH真空脱ガス装置を用い、溶鋼
250tonを真空脱ガスした。The present inventors used a 250 ton RH vacuum degasser to
250 tons were vacuum degassed.
該脱ガス装置は第1図に示すように、取鍋(1)中の
溶鋼(2)にRH真空脱ガス槽(3)の環流浸漬管(3a)
(3b)を入れ、一方の浸漬管(3a)にArガスを2000Nl/m
inの速度で吹込んで溶鋼(2)を上記取鍋(1)と脱ガ
ス槽(3)内を循環せしめ、これにより、該脱ガス槽
(3)内で溶鋼(2)は真空にさらされて脱ガスされる
ものである。As shown in FIG. 1, the degassing apparatus immerses molten steel (2) in a ladle (1) in a reflux immersion pipe (3a) of an RH vacuum degassing tank (3).
(3b) and Ar gas at 2000Nl / m into one immersion tube (3a)
The molten steel (2) is circulated in the ladle (1) and the degassing tank (3) by blowing at a speed of in, whereby the molten steel (2) is exposed to a vacuum in the degassing tank (3). And is degassed.
一方、本発明者等は溶鋼(2)の脱水素の促進を特に
意図して、前記浸漬管(3a)の下方に浸漬ランス(4)
を突込み、そこからN2ガスを1000Nl/minの速度で吹込ん
で、溶解せしめた。On the other hand, the present inventors specifically aimed at accelerating the dehydrogenation of the molten steel (2), and set the immersion lance (4) below the immersion pipe (3a).
The plunging, from which by blowing N 2 gas at a rate of 1000 Nl / min, and is dissolved.
第2図は上記本発明の前提構成となる例(以下前提構
成例と言う)とArガスの吹込みのみ行なった従来例との
溶鋼(2)中の〔H〕の変化を示すグラフ図である。前
提構成例では10分の脱ガス処理で〔H〕が0.7ppm、20分
で0.5ppm以下に除去でき、従来例と比べその効果が高い
ことがわかる。FIG. 2 is a graph showing changes in [H] in molten steel (2) between an example which is a prerequisite configuration of the present invention (hereinafter referred to as a prerequisite configuration example) and a conventional example in which only Ar gas is injected. is there. In the prerequisite configuration example, [H] can be removed to 0.7 ppm by degassing treatment for 10 minutes and to 0.5 ppm or less in 20 minutes, indicating that the effect is higher than that of the conventional example.
〔実施例 2〕 次に本発明の実施例につき説明する。Embodiment 2 Next, an embodiment of the present invention will be described.
本発明者等は250tonRH真空脱ガス装置を用い、真空槽
内を1torr以下に減圧し、且つ環流ガスとしてArガスを1
600Nl/minの速度で吹込んで、溶鋼250tonの真空脱ガス
処理を10分間実施した。この時本発明例では、いっしょ
にH2ガスを400Nl/minの速度で吹込んだ。The present inventors used a 250 ton RH vacuum degassing apparatus, depressurized the inside of the vacuum chamber to 1 torr or less, and supplied Ar gas as reflux gas.
By blowing at a rate of 600 Nl / min, vacuum degassing of 250 tons of molten steel was performed for 10 minutes. In this case the present invention example, was blown H 2 gas at a rate of 400 Nl / min together.
次に、Arガスの吹込み速度を1500Nl/minに落し、更に
本発明例では、溶解ガスをH2ガスからN2ガスに切替えて
500Nl/minで吹込み、10分間同装置中で真空脱ガスを継
続した。Next, the blowing speed of Ar gas was reduced to 1500 Nl / min, and in the present invention example, the dissolved gas was switched from H 2 gas to N 2 gas.
Blowing was performed at 500 Nl / min, and vacuum degassing was continued in the same apparatus for 10 minutes.
第3図乃至第5図は以上の処理を行なった時の溶解中
の〔C〕、〔H〕及びT・〔O〕の挙動を示している。FIGS. 3 to 5 show the behavior of [C], [H] and T. [O] during melting when the above treatment is performed.
第3図から明らかなように、当初300ppm程度あった溶
鋼中の〔C〕が15ppm以下になるまでに、本発明例では
脱ガス開始後約10分で済み、又従来例では20分以上掛っ
た。As is apparent from FIG. 3, it takes about 10 minutes after the start of degassing in the present invention until the [C] in the molten steel, which was about 300 ppm at the beginning, becomes 15 ppm or less, and it takes more than 20 minutes in the conventional example. Was.
その後従来例ではArガスの吹込みが継続され、本発明
例では、更に溶解ガスN2ガスに切替えられて脱ガスが行
なわれ、溶鋼中の〔H〕は第4図に示されるように、変
化した。即ち、本発明例では直前の工程でH2ガスの吹込
みが行なわれたので、従来例に比べ〔H〕は高い値を示
しているが、N2ガス切り替え後約10分で1ppm以下に下げ
ることができた。しかし、従来例では溶解中の〔H〕を
1ppm以下にするのに10分程、本発明例より時間が余計に
掛っている。Thereafter, in the conventional example, the blowing of Ar gas is continued, and in the present invention example, the gas is further switched to the dissolved gas N 2 gas to perform degassing, and the [H] in the molten steel is as shown in FIG. changed. That is, in the example of the present invention, since H 2 gas was blown in the immediately preceding step, [H] shows a higher value than the conventional example, but it becomes 1 ppm or less in about 10 minutes after switching the N 2 gas. Could be lowered. However, in the conventional example, [H]
It takes about 10 minutes more time to reduce the concentration to 1 ppm or less than in the examples of the present invention.
更に溶鋼中のT・〔O〕は第5図に示されるように変
化しており、Al添加後10分間で従来例は30ppm、本発明
例は15ppmに低下せしめられた。Further, T. [O] in the molten steel changed as shown in FIG. 5, and it was reduced to 30 ppm in the conventional example and 15 ppm in the present invention example 10 minutes after the addition of Al.
以上詳述したように、本発明では、真空脱ガス法にお
いて、溶解ガスを減圧で微細ガス気泡として発生・浮上
せしめて真空にさらされる浴面の反応界面積を増大さ
せ、脱ガス効率を高めようとする場合に、使用する溶解
ガスの条件を明らかにし、これにより特定のガス成分を
略極限まで低減化せしめることができるようになった。
即ち、本発明法の実施により、溶鋼中の脱炭、脱水素及
び脱酸の3つがかなりの程度まで進行し、超清浄溶鋼の
生産効率が非常に向上することとなった。As described above in detail, in the present invention, in the vacuum degassing method, the dissolved gas is generated and floated as fine gas bubbles under reduced pressure to increase the reaction interface area of the bath surface exposed to vacuum, thereby improving the degassing efficiency. In such a case, the conditions of the dissolved gas to be used are clarified, and thereby, the specific gas component can be reduced to the utmost limit.
In other words, by performing the method of the present invention, decarburization, dehydrogenation, and deoxidation in molten steel proceeded to a considerable extent, and the production efficiency of ultraclean molten steel was greatly improved.
第1図は本発明の前提構成例の実験装置の概略構成を示
す説明図、第2図は上記前提構成例における溶鋼の
〔H〕の変化を示すグラフ図、第3図は本発明の実施例
における溶鋼の〔C〕の挙動を示すグラフ図、第4図は
同実施例における溶鋼の〔H〕の挙動を示すグラフ図、
第5図は同じくその実施例における溶鋼中のT・〔O〕
の変化を示すグラフ図である。 図中(1)は取鍋、(2)は溶鋼、(3)はRH真空脱ガ
ス槽、(3a)(3b)はその環流浸漬管、(4)は浸漬ラ
ンスを各示す。FIG. 1 is an explanatory diagram showing a schematic configuration of an experimental apparatus of a premise configuration example of the present invention, FIG. 2 is a graph showing a change in [H] of molten steel in the above premise configuration example, and FIG. FIG. 4 is a graph showing the behavior of [C] of molten steel in the example, FIG. 4 is a graph showing the behavior of [H] of molten steel in the example,
FIG. 5 shows T. [O] in molten steel in the same embodiment.
It is a graph which shows the change of. In the figure, (1) shows a ladle, (2) shows molten steel, (3) shows an RH vacuum degassing tank, (3a) and (3b) show its reflux immersion pipe, and (4) shows an immersion lance.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河井 良彦 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 渡辺 敦 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 天満 英昭 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭57−194206(JP,A) 特開 昭53−102819(JP,A) 特開 昭61−295314(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21C 7/10 C22B 9/04──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshihiko Kawai 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Atsushi Watanabe 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Hideaki Tenma 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-57-194206 (JP, A) JP-A-53-102819 (JP) , A) JP-A-61-295314 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21C 7/10 C22B 9/04
Claims (1)
を行う場合に、該溶融金属中にH2ガスを溶解させて上記
真空脱ガス装置内での脱ガスにより微細なH2ガス気泡を
生成させつつ脱炭を行い、次に溶融金属中にN2ガスを溶
解させて同じく真空脱ガス装置中での脱ガスにより微細
なN2ガス気泡を生成させつつ脱水素及び脱酸を行うこと
を特徴とする溶融金属の真空脱ガス方法。If 1. A performing degassing of the molten metal using a vacuum degasser, fine H 2 gas by degassing of dissolved H 2 gas into the molten metal in the vacuum degassing apparatus perform decarburization while generating bubbles, then the dehydrogenation and deoxidation while generating fine N 2 gas bubbles by degassing in same vacuum degassing apparatus by dissolving N 2 gas into the molten metal A vacuum degassing method for molten metal, which is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1145408A JP2780342B2 (en) | 1989-06-09 | 1989-06-09 | Vacuum degassing method for molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1145408A JP2780342B2 (en) | 1989-06-09 | 1989-06-09 | Vacuum degassing method for molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0313519A JPH0313519A (en) | 1991-01-22 |
JP2780342B2 true JP2780342B2 (en) | 1998-07-30 |
Family
ID=15384567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1145408A Expired - Fee Related JP2780342B2 (en) | 1989-06-09 | 1989-06-09 | Vacuum degassing method for molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2780342B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5356456A (en) * | 1992-10-07 | 1994-10-18 | Kawasaki Steel Corporation | Method of degassing and decarburizing stainless molten steel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53102819A (en) * | 1977-02-21 | 1978-09-07 | Kawasaki Steel Co | Decarburizing and smelting method of molten steel by means of vacuum degas treatment chamber |
JPS6021207B2 (en) * | 1981-05-26 | 1985-05-25 | 川崎製鉄株式会社 | Manufacturing method of ultra-low carbon molten steel |
JPS61295314A (en) * | 1985-06-21 | 1986-12-26 | Nippon Kokan Kk <Nkk> | Method for accelerating floating of inclusion by drastic degassing with rh degassing device |
-
1989
- 1989-06-09 JP JP1145408A patent/JP2780342B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0313519A (en) | 1991-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3176374B2 (en) | Method for producing low carbon molten steel by vacuum degassing decarburization | |
JP2780342B2 (en) | Vacuum degassing method for molten metal | |
JP2776118B2 (en) | Melting method for non-oriented electrical steel sheet | |
JP2006283080A (en) | Method for smelting high nitrogen steel | |
JP2019119932A (en) | Process for melting ultra-low sulfur and low nitrogen steel | |
JPH0734117A (en) | Production of extra-low carbon steel having excellent cleanliness | |
JPH10317049A (en) | Method for melting high clean steel | |
JP3308084B2 (en) | Ultra low oxygen steel smelting method | |
JP2767674B2 (en) | Refining method of high purity stainless steel | |
EP1757706B1 (en) | Method for refining molten steel | |
JP2000212641A (en) | High speed vacuum refining of molten steel | |
JP3891013B2 (en) | Method of refining molten steel with RH degassing equipment | |
JP3765266B2 (en) | How to remove metal from vacuum degassing tank | |
JP2880842B2 (en) | How to make clean steel | |
JP3297998B2 (en) | Melting method of high clean ultra low carbon steel | |
JPH0718322A (en) | Method for refining highly clean aluminum-killed steel | |
JP3168437B2 (en) | Vacuum refining method | |
JP3071445B2 (en) | Methods for reducing nitrogen in vacuum refining of molten steel. | |
JPS60141818A (en) | Production of dead soft steel by vacuum degassing treatment | |
JPH02285037A (en) | Slag refining method for molten metal | |
JP2962163B2 (en) | Melting method of high clean ultra low carbon steel | |
JPH03153816A (en) | Smelting method for high purity steel | |
JPH036317A (en) | Method and device for ladle refining | |
JPH06271923A (en) | Production of extra low carbon high manganese steel | |
JPH05209214A (en) | Production of extremely low carbon and extremely low nitrogen steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090515 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |