JPH059366B2 - - Google Patents
Info
- Publication number
- JPH059366B2 JPH059366B2 JP59018505A JP1850584A JPH059366B2 JP H059366 B2 JPH059366 B2 JP H059366B2 JP 59018505 A JP59018505 A JP 59018505A JP 1850584 A JP1850584 A JP 1850584A JP H059366 B2 JPH059366 B2 JP H059366B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfuric acid
- oxygen
- furnace
- air
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052760 oxygen Inorganic materials 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 37
- 239000001301 oxygen Substances 0.000 claims description 37
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 32
- 239000002253 acid Substances 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 22
- 239000002699 waste material Substances 0.000 claims description 19
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 16
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 8
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims 2
- 239000003570 air Substances 0.000 description 28
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 14
- 239000003546 flue gas Substances 0.000 description 14
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 8
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000008929 regeneration Effects 0.000 description 7
- 238000011069 regeneration method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910001868 water Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000029936 alkylation Effects 0.000 description 3
- 238000005804 alkylation reaction Methods 0.000 description 3
- 238000006396 nitration reaction Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- MWFMGBPGAXYFAR-UHFFFAOYSA-N 2-hydroxy-2-methylpropanenitrile Chemical compound CC(C)(O)C#N MWFMGBPGAXYFAR-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- -1 oleum Chemical compound 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/69—Sulfur trioxide; Sulfuric acid
- C01B17/90—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/48—Sulfur dioxide; Sulfurous acid
- C01B17/50—Preparation of sulfur dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
本発明は発煙硫酸を反応プロセスに用いた後に
廃(スペント)硫酸を再生する方法の改良に関す
る。 三酸化硫黄含有硫酸は多くの商業的反応に有用
である。例えばそれは炭化水素のアルキル化に、
ニトロ化プロセスに(脱水目的)、およびメタク
リル酸メチルの製造に用いられている。これらプ
ロセスはすべて三酸化硫黄含有硫酸(以下「発煙
硫酸」と呼ぶ)を用い、そしてこれらすべてのプ
ロセスにおいて発煙硫酸は消耗してくるかまたは
「スペント」となり、再生する必要がある。すな
わちメタクリル酸メチルの製造においては、発煙
硫酸、アセトンシアノヒドリン(ACN)および
メタノールを二段階法で反応させてメタクリル酸
メチル、重硫酸アンモニウムおよび過剰の希硫酸
の混合物を形成する。そのメタクリル酸メチルは
除去され、そして重硫酸アンモニウムと過剰の希
硫酸との混合物(この混合物は廃酸と呼ばれる)
は再生されて更なる発煙硫酸を生成する。廃酸は
熱分解されて二酸化硫黄を含むガス状酸化物の混
合物を生じ、次にその二酸化硫黄を酸化した三酸
化硫黄とし、これを濃硫酸に吸収させて発煙硫酸
を生成させる。このように再生された発煙硫酸は
前述のアルキル化、ニトロ化またはメタクリル酸
エステル製造に用いるために再循環される。 本発明は、前述の主なアルキル化、ニトロ化ま
たはメタクリル酸エステル製造に発煙硫酸を使用
するための前記プロセスにおける発煙硫酸再生の
改良に関する。この発煙硫酸の再生においては空
気の形態で添加される酸素および燃料のかなりの
量が重硫酸アンモニウムおよび希硫酸の熱分解さ
れる炉に供給される。炉に入る空気中の不活性ガ
ス(主として窒素)は次と点で有害である。すな
わち(1)それらは共存する酸素と共に熱分解温度に
まで必ず加熱されるので熱負荷を増大する。(2)炉
の高熱酸化環境中で窒素が酸化窒素類を形成する
ために最終的には排煙筒ガスの一部として排出す
る酸化窒素汚染物を生成し、また得られる発煙硫
酸製品の収率を低下させる生成物中の不純物であ
る硝酸カリウム(KNO3)を生じる。(3)それらは
転化器(ここでSO2はSO3に転化される)中の
SO2の濃度を希釈するので目的とするSO3への
SO2転化が制限されまた排煙筒ガス中の汚染物質
としての大気へのSO2排出率が高まる。(4)それら
は直接製造し得る発煙硫酸の強度を制限する。(5)
それらは所定のスループツト(throughput)速
度に対して転化器中の反応成分停留時間を短縮す
るので所望の反応に対しより大容量の触媒を用い
ることが必要となる。そして(6)それらは再生工程
に用いられる装置における圧力降下の原因とな
る。 本発明の方法改良の一つの目的は、システムに
おける質量および容量流を低めそして全体の中の
SO2濃度を高めることにより廃酸再生設備の能力
を高めることにあり、またそのことは発煙硫酸の
収率および濃度を高めることにもなる。 他の目的は炉内の不活性ガスの量を減少させ、
それによつて全体を熱分解温度に加熱するのに必
要な燃料量を低めることにより、また全システム
を通しての質量移動に必要な動力を少くすること
によりエネルギーを節約することにある。 他の目的は、排煙筒(スタツク)ガス、すなわ
ちプロセス完了後に大気に排出されるガスの量お
よび生成する100%酸1単位あたりの汚染物、
SO2およびNOXの発出率を小さくすることによつ
て汚染負荷を低下させることにある。 他の目的は、従来から行われている脱水にたよ
る必要なしに生成発煙硫酸の濃度を高め、そして
硝酸カリウムの生成量を最小限に抑えることによ
つて生成物の品質を向上させることにある。 前記目的を達成するための第一の観点は、酸素
富化空気、すなわち酸素を豊富に含む空気を炉に
供給することである。酸素富化空気中の酸素/不
活性体比は比較的大きいので、消費酸素1モルあ
たりプロセスに導入される不活性体は比較的少く
なる。従つて炉内のガスを加熱するのに必要な燃
料は少くてすむ。空気を酸素で富化する程度には
実際上の制限がある。酸素濃度の増加に伴つて、
バーナ温度は上がり、火炎プロフイルは変化し、
また効率よい燃焼、長い装置寿命を得、そして潜
在的爆発の可能性を最小限に抑えるにはより精巧
なバーナおよび制御器が必要となる。相当規模の
制御装置を備えた通常の硫酸再生(SAR)炉に
対して22〜40容量%の酸素を含有する酸素富化空
気を用いることができる。 改良のための第二の観点は、排煙筒ガスの一部
例えば30〜90%をO2をその空気中での通常の濃
度よりも高い濃度で含有している空気と混合しそ
してその混合物を炉に入れることである。好まし
くはその混合物は22〜40容量%の酸素富化空気お
よび60〜78容量%の排煙筒ガスを含有することに
なろう。この結果、システムに導入される窒素量
は実質的に減少する。この場合、大気に放出され
る汚染物質の減少は特に著しい。何故ならそのシ
ステムは本質的に閉鎖ループ操作に近いからであ
る。その外にも利点が存在する。この改良によ
り、通常であれば空気と共に入る水分が排除され
るのでシステムに入る水分量が減少し、またそれ
に伴つて希H2SO4の形でシステムからページさ
れなければならない水の量が減少する。またそれ
によつて、さもなければ、主として不活性ガスよ
り成る排煙筒ガス中に失われる相当な熱量および
硫黄値の大部分を回収することも可能となる。 また、炉に供給される廃酸および酸素富化空気
の間接的な予熱を最大限に行うことによつて更な
る改良が得られる。これによつて、燃料の直接燃
焼によりプロセス中に導入される燃焼生成物およ
び不活性ガスの量が減少する。 第1図に示されるように、既知の硫酸再生プロ
セスの主要素は炉10、廃熱ボイラ12、スクラ
バ兼ドライヤ14、タービン18により駆動され
る主送風機16、転化器20、それに続く発煙硫
酸塔兼アブソーバ22および発煙筒24より成
る。 廃酸は配管26を通して炉10に供給され、一
方天然ガスなどの補助燃料は配管28を通して注
入されそして空気(以下時として「第一酸化ガ
ス」と呼ぶこともある)は配管30を通して供給
される。廃酸は通常、燃焼燃料により生じた火炎
を囲繞する多くのノズルを通して噴霧導入され
る。燃焼が炉10において生起し、そして主とし
てCO2、H2O、SO2、SO3、窒素酸化物(NOX)、
O2およびN2より成る高められた温度の炉ガスは
配管32を通して出て廃熱ボイラ12に送られ、
そこで炉ガスは冷却される。次に炉ガスは配管3
4を通つて、第二の空気(以下時として「第二酸
化ガス」と呼ぶこともある)が配管35を通して
供給されているスクラバ−ドライヤ14に送られ
る。このスクラバ−ドライヤにおいて、微粒状物
および水が除去される。冷却水(C.W.)は配管
36を通して循環する。乾燥ガス生成物は配管3
7を通してスクラバ−ドライヤを出る。そのガス
は主送風機16により前進され、そして配管38
を経由し熱交換器を通つて転化器20に強制的に
導入される。転化器20において、ガス中のSO2
は触媒の存在下にSO3に酸化される。転化器20
からのSO3は配管40およびより多くの熱交換器
(図示せず)を通して発煙硫酸塔兼アブソーバ2
2まで運ばれる。冷却水(C.W.)は配管41を
通して供給される。その発煙硫酸塔兼アブソーバ
において、SO3はまず濃硫酸に吸収されて発煙硫
酸を形成し次いでポリツシング(すなわち残留
SO3の除去)のために貧酸、すなわち98%以下の
濃度の硫酸に吸収されることによつて除去され
る。濃酸は配管94を通してスクラバ−ドライヤ
に一部再循環され、そして配管92を介して発煙
硫酸塔兼アブソーバ22に(僅かに希釈された状
態で)戻される。スクラバ14で生じた高度に希
釈された酸は、炉ガスおよび第二酸化空気から除
去された水、炉10で生成したSO3および腐食生
成物からの灰分を同伴しながら配管96を通して
排出される。転化器生成物SO3を吸収するための
鮮水は酸/発煙硫酸比の調節のために必要な場合
に、系統98を通して発煙硫酸塔兼アブソーバに
添加される。廃熱ボイラ12はスチームを発生
し、そのスチームは一部はタービン18に供給さ
れつつ配管46を通つて出ていき、またプロセス
の他の部分に使用されるかあるいは系外に搬出で
きる過剰のスチームは配管48を通して出てい
く。 第2図に示されるこの改良された具体例におい
ては、酸素富化空気または純酸素が配管82に通
して供給され、そして配管30を通して供給され
る周囲空気と混合されるので、得られた酸素富化
空気は炉に供給される第一酸化ガスとして用いら
れる。廃酸回収プロセスにおけることの改良によ
つて、炉中の不活性ガス量も減少する。 富化の程度には実際上の制限がある。炉に入る
酸素濃度の増加に伴い、火炎温度は上がり、火炎
長は短くなり、また効率的な燃焼、長い装置寿命
を得そして潜在的な爆発可能性を最小限に抑える
にはより精巧なバーナおよびより高性能な耐火物
が必要となる。通常の材料を用いそして相当規模
の制御装置を設けた通常のSAR炉に対しては22
〜40%の酸素を含む富化空気を用いることができ
る。 第3図に示された別の改良においては系統44
からの排煙筒ガスは配管90を通して再循環さ
れ、そして配管82を通して供給される酸素富化
空気または純酸素と混合されて、酸素富化再循環
排煙筒ガスを第一酸化ガス配管30および第二酸
化ガス配管35に与える。排煙筒ガス90の再循
環量は酸素富化空気中のO2濃度に、そして得ら
れた炉に入る酸化剤ガス中の酸素の所望濃度に依
存する、 この改良においては、排煙筒ガスの30〜90%が
酸素または酸素富化空気と混合され、そしてその
混合物は炉および転化器に供給される。好ましく
はその混合物は22〜40容量%の酸素富化空気およ
び60〜78容量%の排煙筒ガスを含有することにな
ろう。第3図に示されるように、再循環された排
煙筒ガスは、配管90を通して供給されそして配
管82を通して供給される酸素富化空気と混合さ
れて酸素富化再循環排煙筒ガスを形成し、またそ
のガスは配管30を通して炉にそして配管35を
通してスクラバ兼ドライヤ14に供給される。 この改良によつてシステムに導入される窒素量
が実質的に減少する。すなわち、排気SO2および
NOXによる汚染の低下は特に著しい。何故なら
システムはCO2およびN2をパージする必要性に
より許される限界まで本質的に閉鎖されているか
らである。その外にも利点が存在する。すなわ
ち、通常であれば空気と共に入る水分が排除され
るのでシステムに入る水分量が減少する。またさ
もなければ排煙筒ガス中に失われる相当な熱量お
よび硫黄値の大部分を回収することも可能にな
る。 第4図に示された別の改良においては、配管3
0を通して供給された酸素富化燃焼空気は予熱器
86において600〜1000℃の温度に間接的に予熱
され、一方配管26を通して供給される廃酸は予
熱器88において間接的に100〜200℃の温度に間
接的に予熱される。これによつて炉内での燃焼に
よる直接予熱に必要なエネルギー量が減少する。 次の例は炉効率の向上およびシステムを通過す
る不活性体の減少を示している。 実施例1〜3において、得られた数値はコンピ
ユータでプロセスをシミユレートし、そしてその
シミユレーシヨン結果からパラメータ計算を行う
ことにより得られた。 比較例Aは第1表に詳記されているような操作
条件およびアウトプツトをもつて従来のSAR炉
(第1図参照)を用いた例である。 実施例1は第一酸化ガスが酸素富化空気(全酸
素含有量は36容量%である)である場合の改良を
示している。 実施例2は排煙筒ガスの90%を再循環した場合
の改良を示している。 実施例3は廃酸を140℃に予熱した場合の改良
を示している。
廃(スペント)硫酸を再生する方法の改良に関す
る。 三酸化硫黄含有硫酸は多くの商業的反応に有用
である。例えばそれは炭化水素のアルキル化に、
ニトロ化プロセスに(脱水目的)、およびメタク
リル酸メチルの製造に用いられている。これらプ
ロセスはすべて三酸化硫黄含有硫酸(以下「発煙
硫酸」と呼ぶ)を用い、そしてこれらすべてのプ
ロセスにおいて発煙硫酸は消耗してくるかまたは
「スペント」となり、再生する必要がある。すな
わちメタクリル酸メチルの製造においては、発煙
硫酸、アセトンシアノヒドリン(ACN)および
メタノールを二段階法で反応させてメタクリル酸
メチル、重硫酸アンモニウムおよび過剰の希硫酸
の混合物を形成する。そのメタクリル酸メチルは
除去され、そして重硫酸アンモニウムと過剰の希
硫酸との混合物(この混合物は廃酸と呼ばれる)
は再生されて更なる発煙硫酸を生成する。廃酸は
熱分解されて二酸化硫黄を含むガス状酸化物の混
合物を生じ、次にその二酸化硫黄を酸化した三酸
化硫黄とし、これを濃硫酸に吸収させて発煙硫酸
を生成させる。このように再生された発煙硫酸は
前述のアルキル化、ニトロ化またはメタクリル酸
エステル製造に用いるために再循環される。 本発明は、前述の主なアルキル化、ニトロ化ま
たはメタクリル酸エステル製造に発煙硫酸を使用
するための前記プロセスにおける発煙硫酸再生の
改良に関する。この発煙硫酸の再生においては空
気の形態で添加される酸素および燃料のかなりの
量が重硫酸アンモニウムおよび希硫酸の熱分解さ
れる炉に供給される。炉に入る空気中の不活性ガ
ス(主として窒素)は次と点で有害である。すな
わち(1)それらは共存する酸素と共に熱分解温度に
まで必ず加熱されるので熱負荷を増大する。(2)炉
の高熱酸化環境中で窒素が酸化窒素類を形成する
ために最終的には排煙筒ガスの一部として排出す
る酸化窒素汚染物を生成し、また得られる発煙硫
酸製品の収率を低下させる生成物中の不純物であ
る硝酸カリウム(KNO3)を生じる。(3)それらは
転化器(ここでSO2はSO3に転化される)中の
SO2の濃度を希釈するので目的とするSO3への
SO2転化が制限されまた排煙筒ガス中の汚染物質
としての大気へのSO2排出率が高まる。(4)それら
は直接製造し得る発煙硫酸の強度を制限する。(5)
それらは所定のスループツト(throughput)速
度に対して転化器中の反応成分停留時間を短縮す
るので所望の反応に対しより大容量の触媒を用い
ることが必要となる。そして(6)それらは再生工程
に用いられる装置における圧力降下の原因とな
る。 本発明の方法改良の一つの目的は、システムに
おける質量および容量流を低めそして全体の中の
SO2濃度を高めることにより廃酸再生設備の能力
を高めることにあり、またそのことは発煙硫酸の
収率および濃度を高めることにもなる。 他の目的は炉内の不活性ガスの量を減少させ、
それによつて全体を熱分解温度に加熱するのに必
要な燃料量を低めることにより、また全システム
を通しての質量移動に必要な動力を少くすること
によりエネルギーを節約することにある。 他の目的は、排煙筒(スタツク)ガス、すなわ
ちプロセス完了後に大気に排出されるガスの量お
よび生成する100%酸1単位あたりの汚染物、
SO2およびNOXの発出率を小さくすることによつ
て汚染負荷を低下させることにある。 他の目的は、従来から行われている脱水にたよ
る必要なしに生成発煙硫酸の濃度を高め、そして
硝酸カリウムの生成量を最小限に抑えることによ
つて生成物の品質を向上させることにある。 前記目的を達成するための第一の観点は、酸素
富化空気、すなわち酸素を豊富に含む空気を炉に
供給することである。酸素富化空気中の酸素/不
活性体比は比較的大きいので、消費酸素1モルあ
たりプロセスに導入される不活性体は比較的少く
なる。従つて炉内のガスを加熱するのに必要な燃
料は少くてすむ。空気を酸素で富化する程度には
実際上の制限がある。酸素濃度の増加に伴つて、
バーナ温度は上がり、火炎プロフイルは変化し、
また効率よい燃焼、長い装置寿命を得、そして潜
在的爆発の可能性を最小限に抑えるにはより精巧
なバーナおよび制御器が必要となる。相当規模の
制御装置を備えた通常の硫酸再生(SAR)炉に
対して22〜40容量%の酸素を含有する酸素富化空
気を用いることができる。 改良のための第二の観点は、排煙筒ガスの一部
例えば30〜90%をO2をその空気中での通常の濃
度よりも高い濃度で含有している空気と混合しそ
してその混合物を炉に入れることである。好まし
くはその混合物は22〜40容量%の酸素富化空気お
よび60〜78容量%の排煙筒ガスを含有することに
なろう。この結果、システムに導入される窒素量
は実質的に減少する。この場合、大気に放出され
る汚染物質の減少は特に著しい。何故ならそのシ
ステムは本質的に閉鎖ループ操作に近いからであ
る。その外にも利点が存在する。この改良によ
り、通常であれば空気と共に入る水分が排除され
るのでシステムに入る水分量が減少し、またそれ
に伴つて希H2SO4の形でシステムからページさ
れなければならない水の量が減少する。またそれ
によつて、さもなければ、主として不活性ガスよ
り成る排煙筒ガス中に失われる相当な熱量および
硫黄値の大部分を回収することも可能となる。 また、炉に供給される廃酸および酸素富化空気
の間接的な予熱を最大限に行うことによつて更な
る改良が得られる。これによつて、燃料の直接燃
焼によりプロセス中に導入される燃焼生成物およ
び不活性ガスの量が減少する。 第1図に示されるように、既知の硫酸再生プロ
セスの主要素は炉10、廃熱ボイラ12、スクラ
バ兼ドライヤ14、タービン18により駆動され
る主送風機16、転化器20、それに続く発煙硫
酸塔兼アブソーバ22および発煙筒24より成
る。 廃酸は配管26を通して炉10に供給され、一
方天然ガスなどの補助燃料は配管28を通して注
入されそして空気(以下時として「第一酸化ガ
ス」と呼ぶこともある)は配管30を通して供給
される。廃酸は通常、燃焼燃料により生じた火炎
を囲繞する多くのノズルを通して噴霧導入され
る。燃焼が炉10において生起し、そして主とし
てCO2、H2O、SO2、SO3、窒素酸化物(NOX)、
O2およびN2より成る高められた温度の炉ガスは
配管32を通して出て廃熱ボイラ12に送られ、
そこで炉ガスは冷却される。次に炉ガスは配管3
4を通つて、第二の空気(以下時として「第二酸
化ガス」と呼ぶこともある)が配管35を通して
供給されているスクラバ−ドライヤ14に送られ
る。このスクラバ−ドライヤにおいて、微粒状物
および水が除去される。冷却水(C.W.)は配管
36を通して循環する。乾燥ガス生成物は配管3
7を通してスクラバ−ドライヤを出る。そのガス
は主送風機16により前進され、そして配管38
を経由し熱交換器を通つて転化器20に強制的に
導入される。転化器20において、ガス中のSO2
は触媒の存在下にSO3に酸化される。転化器20
からのSO3は配管40およびより多くの熱交換器
(図示せず)を通して発煙硫酸塔兼アブソーバ2
2まで運ばれる。冷却水(C.W.)は配管41を
通して供給される。その発煙硫酸塔兼アブソーバ
において、SO3はまず濃硫酸に吸収されて発煙硫
酸を形成し次いでポリツシング(すなわち残留
SO3の除去)のために貧酸、すなわち98%以下の
濃度の硫酸に吸収されることによつて除去され
る。濃酸は配管94を通してスクラバ−ドライヤ
に一部再循環され、そして配管92を介して発煙
硫酸塔兼アブソーバ22に(僅かに希釈された状
態で)戻される。スクラバ14で生じた高度に希
釈された酸は、炉ガスおよび第二酸化空気から除
去された水、炉10で生成したSO3および腐食生
成物からの灰分を同伴しながら配管96を通して
排出される。転化器生成物SO3を吸収するための
鮮水は酸/発煙硫酸比の調節のために必要な場合
に、系統98を通して発煙硫酸塔兼アブソーバに
添加される。廃熱ボイラ12はスチームを発生
し、そのスチームは一部はタービン18に供給さ
れつつ配管46を通つて出ていき、またプロセス
の他の部分に使用されるかあるいは系外に搬出で
きる過剰のスチームは配管48を通して出てい
く。 第2図に示されるこの改良された具体例におい
ては、酸素富化空気または純酸素が配管82に通
して供給され、そして配管30を通して供給され
る周囲空気と混合されるので、得られた酸素富化
空気は炉に供給される第一酸化ガスとして用いら
れる。廃酸回収プロセスにおけることの改良によ
つて、炉中の不活性ガス量も減少する。 富化の程度には実際上の制限がある。炉に入る
酸素濃度の増加に伴い、火炎温度は上がり、火炎
長は短くなり、また効率的な燃焼、長い装置寿命
を得そして潜在的な爆発可能性を最小限に抑える
にはより精巧なバーナおよびより高性能な耐火物
が必要となる。通常の材料を用いそして相当規模
の制御装置を設けた通常のSAR炉に対しては22
〜40%の酸素を含む富化空気を用いることができ
る。 第3図に示された別の改良においては系統44
からの排煙筒ガスは配管90を通して再循環さ
れ、そして配管82を通して供給される酸素富化
空気または純酸素と混合されて、酸素富化再循環
排煙筒ガスを第一酸化ガス配管30および第二酸
化ガス配管35に与える。排煙筒ガス90の再循
環量は酸素富化空気中のO2濃度に、そして得ら
れた炉に入る酸化剤ガス中の酸素の所望濃度に依
存する、 この改良においては、排煙筒ガスの30〜90%が
酸素または酸素富化空気と混合され、そしてその
混合物は炉および転化器に供給される。好ましく
はその混合物は22〜40容量%の酸素富化空気およ
び60〜78容量%の排煙筒ガスを含有することにな
ろう。第3図に示されるように、再循環された排
煙筒ガスは、配管90を通して供給されそして配
管82を通して供給される酸素富化空気と混合さ
れて酸素富化再循環排煙筒ガスを形成し、またそ
のガスは配管30を通して炉にそして配管35を
通してスクラバ兼ドライヤ14に供給される。 この改良によつてシステムに導入される窒素量
が実質的に減少する。すなわち、排気SO2および
NOXによる汚染の低下は特に著しい。何故なら
システムはCO2およびN2をパージする必要性に
より許される限界まで本質的に閉鎖されているか
らである。その外にも利点が存在する。すなわ
ち、通常であれば空気と共に入る水分が排除され
るのでシステムに入る水分量が減少する。またさ
もなければ排煙筒ガス中に失われる相当な熱量お
よび硫黄値の大部分を回収することも可能にな
る。 第4図に示された別の改良においては、配管3
0を通して供給された酸素富化燃焼空気は予熱器
86において600〜1000℃の温度に間接的に予熱
され、一方配管26を通して供給される廃酸は予
熱器88において間接的に100〜200℃の温度に間
接的に予熱される。これによつて炉内での燃焼に
よる直接予熱に必要なエネルギー量が減少する。 次の例は炉効率の向上およびシステムを通過す
る不活性体の減少を示している。 実施例1〜3において、得られた数値はコンピ
ユータでプロセスをシミユレートし、そしてその
シミユレーシヨン結果からパラメータ計算を行う
ことにより得られた。 比較例Aは第1表に詳記されているような操作
条件およびアウトプツトをもつて従来のSAR炉
(第1図参照)を用いた例である。 実施例1は第一酸化ガスが酸素富化空気(全酸
素含有量は36容量%である)である場合の改良を
示している。 実施例2は排煙筒ガスの90%を再循環した場合
の改良を示している。 実施例3は廃酸を140℃に予熱した場合の改良
を示している。
【表】
【表】
負荷
第1図は従来の廃酸再生(SAR)システムの
概略フローシートであり、第2図は炉に供給され
る空気を酸素富化したSARシステムの概略フロ
ーシートであり、第3図は排煙筒ガスの再循環を
取り入れたSARシステムの概略フローシートで
あり、そして第4図は炉に供給される廃酸および
富化空気の予熱を取り入れたSARシステムの概
略フローシートである。 10……炉、20……転化器、22……発煙硫
酸塔兼アブソーバ、86……予熱器。
概略フローシートであり、第2図は炉に供給され
る空気を酸素富化したSARシステムの概略フロ
ーシートであり、第3図は排煙筒ガスの再循環を
取り入れたSARシステムの概略フローシートで
あり、そして第4図は炉に供給される廃酸および
富化空気の予熱を取り入れたSARシステムの概
略フローシートである。 10……炉、20……転化器、22……発煙硫
酸塔兼アブソーバ、86……予熱器。
Claims (1)
- 【特許請求の範囲】 1 重硫酸アンモニウムと希硫酸との廃酸混合物
である廃酸を燃料および空気と共に炉に供給する
ことによつて熱分解してSO2を含むガス状酸化物
生成物を得、そのSO2を酸素でSO3に酸化し、そ
してそのSO3を濃硫酸に吸収させて発煙硫酸を形
成することからなる重硫酸アンモニウムと希硫酸
との廃酸混合物から発煙硫酸を製造する方法であ
つて、前記炉に供給する前に廃酸混合物を100〜
200℃の温度に且つ空気を600〜1000℃に各々加熱
すると共に、空気を22〜40容量%の酸素を含有す
るように酸素で富化して該炉に供給することを特
徴とする方法。 2 重硫酸アンモニウムと希硫酸との廃酸混合物
である廃酸を燃料および空気と共に炉に供給する
ことによつて熱分解してSO2を含むガス状酸化物
生成物を得、そのSO2を酸素でSO3に酸化し、そ
してそのSO3を濃硫酸に吸収させて発煙硫酸を形
成することからなる重硫酸アンモニウムと希硫酸
との廃酸混合物から発煙硫酸を製造する方法であ
つて、前記炉に供給する前に廃酸混合物を100〜
200℃の温度に且つ空気を600〜1000℃に各々加熱
すると共に、前記SO3を濃硫酸に吸収させた後に
残留するガスを集めて、そのガスに酸素または酸
素富化空気を酸素存在量が混合物の20〜40容量%
となるまで添加し、それにより得られた混合物の
一部を前記炉に供給することを特徴とする方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/464,429 US4490347A (en) | 1983-02-07 | 1983-02-07 | Process for sulfuric acid regeneration |
US464429 | 1983-02-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59182206A JPS59182206A (ja) | 1984-10-17 |
JPH059366B2 true JPH059366B2 (ja) | 1993-02-04 |
Family
ID=23843920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59018505A Granted JPS59182206A (ja) | 1983-02-07 | 1984-02-06 | 硫酸再生のための改良された方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US4490347A (ja) |
JP (1) | JPS59182206A (ja) |
CA (1) | CA1206324A (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1198261A (en) * | 1983-04-29 | 1985-12-24 | Gordon M. Cameron | Liquid sulphur dioxide manufacture |
DE69105961T2 (de) * | 1990-03-23 | 1995-07-06 | Monsanto Co., St. Louis, Mo. | Rückgewinnung von energie aus einem schwefelsäureprozess. |
US5022332A (en) * | 1990-08-15 | 1991-06-11 | Union Carbide Industrial Gases Technology Corporation | Combustion method for improved endothermic dissociation |
GB9127096D0 (en) * | 1991-12-20 | 1992-02-19 | Ici Plc | Treatment of liquid waste material |
US5498790A (en) * | 1993-06-09 | 1996-03-12 | Novus International, Inc. | Regeneration of sulfuric acid from sulfate by-products of 2-hydroxy-4-(methylthio)butyric acid manufacture |
CA2147195C (en) * | 1994-04-15 | 2005-04-05 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Proced Es Georges Claude | Processing sulfur-containing streams |
US5628976A (en) * | 1995-10-17 | 1997-05-13 | Air Products And Chemicals | Cofiring biosolids in a spent sulfuric acid regeneration facility |
EP1057781B1 (en) * | 1999-06-03 | 2007-07-25 | Rohm And Haas Company | Process for generating recoverable sulfur containing compounds from a spent acid stream |
US6342651B1 (en) | 1999-08-05 | 2002-01-29 | Novus International, Inc. | Reductive combustion of ammonium salts of sulfuric acid |
US20080033227A1 (en) * | 2006-08-03 | 2008-02-07 | David Campbell Graves | Recovery of sulfur value in an alkylation process |
US7632479B2 (en) | 2006-08-31 | 2009-12-15 | Iogen Energy Corporation | Process for producing ammonia and sulfuric acid from a stream comprising ammonium sulfate |
US20090317321A1 (en) * | 2008-06-18 | 2009-12-24 | James Patrick Meagher | Decomposition of spent sulfuric acid using oxygen |
US8227366B2 (en) | 2009-06-01 | 2012-07-24 | Uop Llc | Alkylation system including a catalyst regeneration zone, and a process relating thereto |
WO2013044937A1 (en) * | 2011-09-29 | 2013-04-04 | Haldor Topsøe A/S | Sulphuric acid production with recycle of desulphurized gas |
WO2013150081A2 (en) * | 2012-04-04 | 2013-10-10 | Shell Internationale Research Maatschappij B.V. | Process for producing power from a sour gas |
RU2641121C1 (ru) * | 2016-12-28 | 2018-01-16 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Способ регенерации отработанного раствора серной кислоты |
KR102326500B1 (ko) * | 2017-03-10 | 2021-11-16 | 에스케이케미칼 주식회사 | 바이사이클로글리옥살 설페이트의 제조방법 |
CN109052332B (zh) * | 2018-10-24 | 2022-02-22 | 泰兴锦汇化工有限公司 | 一种高cod含盐稀酸再生制备氯磺酸的方法 |
CN115259104B (zh) * | 2022-07-07 | 2024-04-26 | 江苏索普新材料科技有限公司 | 硫酸生产系统以及控制吹扫装置出酸浓度的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1467005A1 (de) * | 1964-06-16 | 1969-03-13 | Chemiebau Dr Alfons Zieren Gmb | Verfahren zur Aufarbeitung von ammoniumsulfithaltiger Loesung aus der Endgaswaesche von Schwefelsaeurekontaktanlagen |
JPS4879791A (ja) * | 1972-01-14 | 1973-10-25 | ||
JPS4962394A (ja) * | 1972-06-08 | 1974-06-17 | ||
JPS51149195A (en) * | 1975-02-15 | 1976-12-21 | Davy Powergas Gmbh | Process for thermal decomposion of sulfuric acid and apparatus for producing mist of waste sulfuric acid |
JPS5618526A (en) * | 1979-07-25 | 1981-02-21 | Kunihiro Houjiyou | Atracting bait cage |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1447645A (en) * | 1919-05-01 | 1923-03-06 | Cos Process Company Inc | Roasting sulphur-bearing materials, etc. |
US1344905A (en) * | 1919-06-09 | 1920-06-29 | Laist Frederick | Method of producing sulfur dioxid |
US1520093A (en) * | 1923-10-13 | 1924-12-23 | Hercules Powder Co Ltd | Process of making sulphuric acid |
US1995360A (en) * | 1930-04-29 | 1935-03-26 | Gen Chemical Corp | Manufacture of sulphuric acid |
BE406758A (ja) * | 1933-12-13 | 1900-01-01 | ||
US2394426A (en) * | 1942-01-26 | 1946-02-05 | Gen Chemical Corp | Manufacture of oleum |
US2406930A (en) * | 1942-06-12 | 1946-09-03 | Chemical Construction Corp | Sulphuric acid regeneration |
DE1199243B (de) * | 1963-07-10 | 1965-08-26 | Huels Chemische Werke Ag | Verfahren zur Herstellung schwefeldioxydhaltiger Gase aus ammoniumsalzhaltigen Abfallschwefelsaeuren |
US3419601A (en) * | 1964-03-03 | 1968-12-31 | Du Pont | Cyclic process for the production of methyl methacrylate |
US3645683A (en) * | 1970-03-10 | 1972-02-29 | Du Pont | Regeneration of acid |
DE2037619B2 (de) * | 1970-07-29 | 1972-07-13 | Chemiebau Dr. A. Zieren GmbH & Co KG, 5000 Köln | Verfahren zur spaltung von schwefelsaeure |
DE2223131C3 (de) * | 1972-05-12 | 1979-10-11 | Davy Powergas Gmbh, 5000 Koeln | Verfahren zur Herstellung von Schwefelsäure aus Schwefel und Sauerstoff |
GB1603093A (en) * | 1977-05-09 | 1981-11-18 | Boc Ltd | Catalytic process for the prodcution of sulphuric acid |
DE2725432C3 (de) * | 1977-06-04 | 1980-02-21 | Davy International Ag, 6000 Frankfurt | Verfahren zur Herstellung von konzentrierter Schwefelsäure |
GB1602621A (en) * | 1978-05-31 | 1981-11-11 | Boc Ltd | Thermal cracking of sulphuric acid |
US4256721A (en) * | 1979-02-23 | 1981-03-17 | Boc Limited | Combustion method and apparatus |
-
1983
- 1983-02-07 US US06/464,429 patent/US4490347A/en not_active Expired - Lifetime
-
1984
- 1984-02-02 CA CA000446652A patent/CA1206324A/en not_active Expired
- 1984-02-06 JP JP59018505A patent/JPS59182206A/ja active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1467005A1 (de) * | 1964-06-16 | 1969-03-13 | Chemiebau Dr Alfons Zieren Gmb | Verfahren zur Aufarbeitung von ammoniumsulfithaltiger Loesung aus der Endgaswaesche von Schwefelsaeurekontaktanlagen |
JPS4879791A (ja) * | 1972-01-14 | 1973-10-25 | ||
JPS4962394A (ja) * | 1972-06-08 | 1974-06-17 | ||
JPS51149195A (en) * | 1975-02-15 | 1976-12-21 | Davy Powergas Gmbh | Process for thermal decomposion of sulfuric acid and apparatus for producing mist of waste sulfuric acid |
JPS5618526A (en) * | 1979-07-25 | 1981-02-21 | Kunihiro Houjiyou | Atracting bait cage |
Also Published As
Publication number | Publication date |
---|---|
CA1206324A (en) | 1986-06-24 |
US4490347A (en) | 1984-12-25 |
JPS59182206A (ja) | 1984-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH059366B2 (ja) | ||
EP0648313B1 (en) | Low nox cogeneration process and system | |
CN101698470B (zh) | 制备硫酸的方法和装置 | |
CN102371108A (zh) | 含硫化氢酸性气富氧空气焚烧生产硫酸的方法 | |
US5500194A (en) | Hybrid low NOx process for destruction of bound nitrogen compounds | |
US5178101A (en) | Low NOx combustion process and system | |
CN109052335A (zh) | 一种硫磺气体还原废硫酸制液体二氧化硫和硫酸的方法 | |
EP0521949B1 (en) | IMPROVED LOW NOx COGENERATION PROCESS AND SYSTEM | |
EP3472096A1 (en) | Integrated process for the production of sulphuric acid and sulphur | |
CN110240123A (zh) | 一种利用回转窑焚烧废硫磺及含硫废液制硫酸的方法 | |
CN102107116A (zh) | 干法水泥窑炉燃煤产生氮氧化物的处理方法 | |
CN104481576A (zh) | 一种煤矿瓦斯低排放催化氧化供热系统 | |
CS712789A2 (en) | Method of fuel combustion and equipment for this method realization | |
CN114738769A (zh) | 一种降低硫酸尾气排放量的制酸工艺及系统 | |
KR20040034526A (ko) | 폐 산화 가스 방출의 저감 방법 | |
CN102260051A (zh) | 一种处理新型干法水泥窑炉燃煤产生的NOx的方法 | |
EP0317110B1 (en) | Low nox cogeneration process | |
CN213725710U (zh) | 一种烧结烟气协同处理系统 | |
CN209917607U (zh) | 余热锅炉脱硫脱硝系统 | |
CN218033168U (zh) | 一种降低硫酸尾气排放量的制酸系统 | |
CN218115023U (zh) | 一种带制氧结构的硫酸加工尾气处理装置 | |
CN218107259U (zh) | 一种硫磺制酸中尾气循环处理机构 | |
CN220951181U (zh) | 通过氨热重整制氢的设备 | |
CN215411910U (zh) | 一种直接燃烧法氨废气处理系统 | |
JPS6012521B2 (ja) | 電力発生装置における燃焼廃ガス中の有害ガス除去方法 |