JPH059146A - 不飽和ケトンの製造方法 - Google Patents

不飽和ケトンの製造方法

Info

Publication number
JPH059146A
JPH059146A JP3160244A JP16024491A JPH059146A JP H059146 A JPH059146 A JP H059146A JP 3160244 A JP3160244 A JP 3160244A JP 16024491 A JP16024491 A JP 16024491A JP H059146 A JPH059146 A JP H059146A
Authority
JP
Japan
Prior art keywords
catalyst
ketone
formaldehyde
hours
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3160244A
Other languages
English (en)
Inventor
Yoshiharu Shimazaki
由治 嶋崎
Hideyuki Kanbe
英行 神戸
Rikuo Uejima
陸男 植嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP3160244A priority Critical patent/JPH059146A/ja
Publication of JPH059146A publication Critical patent/JPH059146A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【目的】 ホルムアルデヒドとケトンから高選択的でか
つ効率良く不飽和ケトンを製造する新規な方法を提供す
る。 【構成】 ホルムアルデヒドと一般式(I)で表される
ケトンとを一般式 P1ab(式中Pはリン、Xはアル
カリ金属、アルカリ土類金属、Y、La、Ce、Pr、
Nd、Zr、Nb、BおよびSiから成る群から選ばれ
る少なくとも一種の元素、Oは酸素である。添字a、b
はPに対する原子比を表し、a=0.5〜30でありb
はaの値により定まる数値である。)で表される固体触
媒の存在下に気相で脱水縮合させることを特徴とする一
般式(IIa)、一般式(IIb)および/または一般
式(IIc)で表される不飽和ケトンの製造方法。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】 本発明はホルムアルデヒドと下
記一般式(I)で表されるケトンとを固体触媒の存在下
に気相で脱水縮合させて下記一般式(IIa)、一般式
(IIb)あるいは一般式(IIc)で表される不飽和
ケトンを製造する方法に関する。
【0002】不飽和ケトンは香料、医薬品、それらの製
造原料および光感応性共重合体等の高分子原料として非
常に利用度の高い有用な化合物である。
【0003】
【従来の技術】 一般に不飽和ケトンはホルムアルデヒ
ドとケトンとの液相縮合反応により製造されている。該
反応用触媒としてはアルカリ金属およびアルカリ土類金
属の水酸化物あるいは塩酸、硫酸等の鉱酸を用いること
が公知である(特開昭50−36411号、特開昭49
−70915号、Chem.Prum.39(5),2
36,1989)。しかしながら、これらの触媒は比較
的高い活性を示すが原料ケトンの自己縮合物、ヒドロキ
シ化物およびポリマー等の副生成物の生成割合が高く選
択的に不飽和ケトンを製造することは困難である。ま
た、いずれも均一反応なので反応後の触媒の分離、回収
に多大なエネルギーを要する。更に鉱酸を用いる場合に
は装置の腐食が避けられない。
【0004】一方、上記の問題を解決する方法としてホ
ルムアルデヒドとケトンとの気相接触反応により不飽和
ケトンを製造することが公知である。該反応の触媒とし
てシリカやアルミナ等にアルカリ金属、鉛、亜鉛、クロ
ム、マンガン、希土類の塩や酸化物などの塩基性物質を
担持させて成る触媒が使用されてる。しかしながら、こ
れらの触媒は低活性な上にホルムアルデヒドの分解、そ
の他の副反応が多く触媒の寿命も短く工業的利用には全
く不満足なものである。これらの問題を改善する方法と
して特公昭57−13531号および神奈川大学報告
(第19号、第64頁、1981年)に酸化ジルコニウ
ムを成分とする触媒を用いる方法が、特公昭48−19
612号にシリカゲルを触媒として用いる方法が、また
V,Fe,W,Ni等とPから成る触媒[J.Cata
l.,106,273(1987)]、ハイドロタルサ
イト触媒[Chem.Lett.,1984(198
7)]あるいはクリソタイル触媒[Bull.Che
m.Soc. Jpn.,61,1008(198
8)]を用いる方法も開示されている。しかしながら、
これらの方法は転化率や選択率が低かったり、ケトン同
士の縮合物やメタノールなどの副生物が多く、工業的生
産には満足しうるものでない。
【0005】
【発明が解決しようとする課題】 本発明の目的は、前
述した問題点を解決し、鉱酸を使用することなく、ホル
ムアルデヒドとケトンから高選択的でかつ効率良く不飽
和ケトンを製造する新規な方法を提供することにある。
【0006】
【課題を解決するための手段】 本発明者等は前記目的
を達成するために鋭意検討した結果、本発明を完成し
た。すなわち本発明は、ホルムアルデヒドと前記一般式
(I)で表されるケトンとを一般式 P1ab(式中P
はリン、Xはアルカリ金属、アルカリ土類金属、Y、L
a、Ce、Pr、Nd、Zr、Nb、BおよびSiから
成る群から選ばれる少なくとも一種の元素、Oは酸素で
ある。添字a、bはPに対する原子比を表し、a=0.
5〜30でありbはaの値により定まる数値である。)
で表される固体触媒の存在下に気相で脱水縮合させるこ
とを特徴とする前記一般式(IIa)、一般式(II
b)および/または一般式(IIc)で表される不飽和
ケトンの製造方法である。
【0007】本発明で用いられるホルムアルデヒドはホ
ルムアルデヒドのメタノール、水等の溶液、トリオキサ
ンまたは低分子量のホルムアルデヒドポリマー等の形態
でも使用しうる。
【0008】本発明で用いる前記一般式(I)で表され
るケトンは具体的に例示すると、アセトン、メチルエチ
ルケトン、メチルプロピルケトン、ジエチルケトン、ア
セトフェノン、p-メチルアセトフェノン、p-クロロア
セトフェノン、プロピオフェノンなどが挙げられるが本
発明はこれらに限られるものではない。
【0009】本発明の方法により目的とする不飽和ケト
ンが得られる。原料ケトンがアセトフェノンのようにカ
ルボニル基の片側のみメチレン基を有するケトンである
場合には前記一般式(IIa)で表される不飽和ケトン
が得られ、メチル−n−プロピルケトンのようにカルボ
ニル基の両側にメチレン基を有するケトンである場合に
は前記一般式(IIa)で表される不飽和ケトンの他に
一般式(IIb)あるいは一般式(IIc)で表される
不飽和ケトンも得られる。
【0010】本発明で用いられる一般式 P1ab
表される触媒を調製するに際し、P成分の原料としてオ
ルトリン酸、ピロリン酸、メタリン酸、亜リン酸等の各
種リン酸ならびにこれらのリン酸の塩類(リン酸アンモ
ニウム、リン酸カリウム、リン酸マグネシウム等)およ
び五酸化リンなどが、X成分の原料としてXの金属単
体、水酸化物、酸化物、ハロゲン化物、硫酸塩、硝酸
塩、炭酸塩およびリン酸塩等のあらゆる原料が使用可能
である。
【0011】本発明の触媒の調製方法としては例えばリ
ンおよびX成分の各種触媒原料を水中に溶解もしくは懸
濁せしめ攪拌下、加熱、濃縮し乾燥後成型しさらに焼成
を経て触媒とする方法、あるいは各種の酸化物、水酸化
物に各種リン酸あるいは各種リン酸塩を加えて適当な成
型助剤(例えば水、アルコール等)を添加後成型し乾燥
後焼成する方法などが挙げられる。なお、触媒の焼成温
度については用いる原料の種類にもよるが200〜80
0℃の広い範囲をとれ、好ましくは300〜700℃の
範囲である。
【0012】これらの触媒をホルムアルデヒドと前記一
般式(I)で表されるケトンとの間の気相接触反応に用
いた場合、触媒は非常に高い活性を示し、また不飽和ケ
トンの選択率も著しく高いものとなる。
【0013】本発明における触媒がホルムアルデヒドと
ケトンとの間の縮合による不飽和ケトンの製造に優れた
性能を示すことの原因について詳細は明かではないが触
媒表面上には酸性点および塩基性点が存在しその協奏的
な働きによるものと考えられる。触媒原料のP成分およ
びX成分は触媒表面上の酸性点および塩基性点の性質を
微妙に制御し、本反応に適した触媒の表面状態の形成に
密接に関係していると考えられる。例えば、ホルムアル
デヒドとアセトンとを塩基性触媒(アルカリ金属、アル
カリ土類金属の酸化物、水酸化物およびそれらをシリカ
等に担持させたもの)を用いて反応させる従来の方法で
はホルムアルデヒドあるいはアセトンの自己縮合物およ
び重合物を多く生成する問題点があった。本発明者等
は、これらの種々の副生成物は触媒表面上の強い塩基性
点で生成するが、前記一般式(III)で表される組成
の触媒は触媒表面上の酸性点および塩基性点の性質を適
切に制御し、強すぎる酸、塩基性点による副反応を抑え
ているため、目的の不飽和ケトンを高い選択率で生成す
ると考えている。
【0014】本発明の方法を実施するにあたり反応器は
固定床流通型および流動床型のいずれも使用できる。原
料ガスは原料ホルムアルデヒドとケトンとのモル比が
1:0.5〜1:99の範囲、好ましくは1:1〜1:
25の範囲の組成のものを用いる。また、原料ガスは希
釈しても希釈しなくてもよい。希釈して用いる場合は窒
素、ヘリウム、アルゴンなどの不活性ガスおよびアルコ
ール、水等のガスで原料ガス濃度が1〜30容量%、好
ましくは1〜20容量%となるように希釈して用いる。
反応は通常、常圧で行うが必要に応じて加圧または減圧
下で行うこともできる。反応温度は150〜500℃、
好ましくは250〜400℃の範囲である。原料ガスの
空間速度は原料ガス濃度により異なるが100〜100
00(/hr)、好ましくは1000〜5000(/h
r)の範囲が適当である。
【0015】
【発明の効果】 本発明の方法によれば、従来の触媒を
用いる方法に比べて極めて高い転化率および選択率でし
かも長時間安定的に不飽和ケトンを製造することができ
る。
【0016】
【実施例】 次に実施例により本発明をさらに詳細に説
明するが、本発明はこれらの実施例に限定されるもので
はない。なお、ホルムアルデヒドおよびケトンの転化
率、不飽和ケトンの選択率、単流収率は次の定義に従っ
た。(但し、nは生成した不飽和ケトン1分子中のビニ
ル基の数である) ホルムアルデヒドの転化率=消費ホルムアルデヒド(モ
ル)/供給ホルムアルデヒド(モル)×100(%) ケトンの転化率=消費ケトン(モル)/供給ケトン(モ
ル)×100(%) ホルムアルデヒド基準の不飽和ケトンの選択率=生成不
飽和ケトン(モル)×n/消費ホルムアルデヒド(モ
ル)×100(%) ケトン基準の不飽和ケトンの選択率=生成不飽和ケトン
(モル)×n/消費ケトン(モル)×100(%) ホルムアルデヒド基準の不飽和ケトンの単流収率=生成
不飽和ケトン(モル)×n/供給ホルムアルデヒド(モ
ル)×100(%) ケトン基準の不飽和ケトンの単流収率=生成不飽和ケト
ン(モル)×n/供給ケトン(モル)×100(%) 実施例1 水酸化マグネシウム14.6gを水100mlに懸濁さ
せ加熱攪拌下、85重量%リン酸水溶液19.2gを滴
下して生じた白色沈澱を10分間熟成させた。次いでシ
リカゲル50gを加え攪拌下、加熱濃縮し湯浴上で蒸発
乾固させた。これを空気中120℃で12時間乾燥後5
〜9メッシュに破砕し500℃で2時間焼成して酸素を
除く原子比で P1Mg1.5Si5なる組成の触媒を得た。
【0017】この触媒5mlを内径10mmのステンレ
ス製反応管に充填した後350℃の溶融塩浴に浸漬し該
反応管にアセトン、37%ホルムアルデヒド水溶液およ
び窒素から調製したアセトン4.5容量%、ホルムアル
デヒド1.5容量%を含有する原料ガスを、空間速度2
000(/hr)で通じ反応させた。反応開始1時間後
の反応生成物をガスクロマトグラフィーにより分析して
アセトンおよびホルムアルデヒド基準の転化率、選択率
および収率を求めた。結果を表−1に示す。 比較例1 特公昭57−13531の実施例2に従い触媒を調製し
た。硝酸ジルコニウム水溶液にシリカを一晩浸漬した
後、湯浴上で蒸発乾固させた。110℃で一晩乾燥後、
300℃で1時間、500℃で3時間焼成してシリカに
酸化ジルコニムを10%担持させた触媒を得た。
【0018】以下、反応温度を300℃とした以外は実
施例1と同様に反応、分析を行い、表−2に示す結果を
得た。
【0019】比較例2 水酸化マグネシウム25.0gを水100mlに懸濁さ
せ攪拌下加熱濃縮し湯浴上で蒸発乾固させた。これを空
気中120℃で12時間乾燥後5〜9メッシュに破砕し
500℃で2時間焼成し触媒とした。
【0020】以下、空間速度を5000(/hr)とし
た以外は実施例1と同様に反応、分析を行い、表−2に
示す結果を得た。
【0021】実施例2 硝酸マグネシウム・六水和物32.1gおよびリン酸一
水素アンモニウム33.0gを水200mlに加熱溶解
させ攪拌下加熱濃縮し湯浴上で蒸発乾固させた。これを
空気中120℃で12時間乾燥後5〜9メッシュに破砕
し500℃で2時間焼成して酸素を除く原子比で P1
0.5 なる組成の触媒を得た。
【0022】以下、実施例1と同様に反応、分析を行
い、表−1に示す結果を得た。
【0023】実施例3 水酸化カルシウム18.5gを水100mlに懸濁させ
攪拌下85重量%リン酸水溶液19.2gを滴下して生
じた白色沈澱を10分間熟成させた。次いでシリカゲル
50gを加え攪拌下加熱濃縮し湯浴上で蒸発乾固させ
た。これを空気中120℃で12時間乾燥後5〜9メッ
シュに破砕し500℃で2時間焼成して酸素を除く原子
比で P1Ca1.5Si5 なる組成の触媒を得た。
【0024】以下、実施例1と同様に反応、分析を行
い、表−1に示す結果を得た。
【0025】実施例4 水酸化カルシウム2.46gを水100mlに懸濁させ
十分攪拌しながら85重量%リン酸水溶液1.92gを
滴下して生じた白色沈澱を10分間熟成させた。次いで
酸化ジルコニウム57.3gを加え攪拌下加熱濃縮し湯
浴上で蒸発乾固させた。これを空気中120℃で12時
間乾燥後5〜9メッシュに破砕し500℃で2時間焼成
して酸素を除く原子比で P1Ca2Zr28 なる組成の触
媒を得た。
【0026】以下、原料ガス中のアセトン濃度を3容量
%、ホルムアルデヒド濃度を3容量%とした以外は実施
例1と同様に反応、分析を行い、表−1に示す結果を得
た。 実施例5 水酸化ストロンチウム・八水和物8.84gを水100
mlに懸濁させ加熱攪拌下85重量%リン酸水溶液3.
84gを滴下して生じた白色沈澱を10分間熟成させ
た。次いで酸化ニオブ44.4gを加え攪拌下加熱濃縮
し湯浴上で蒸発乾固させた。これを空気中120℃で1
2時間乾燥後5〜9メッシュに破砕し500℃で2時間
焼成して酸素を除く原子比で P1Sr1Nb10 なる組成
の触媒を得た。
【0027】以下原料ガス中のアセトン濃度を5容量
%、ホルムアルデヒド濃度を1容量%とした以外は実施
例1と同様に反応、分析を行い、表−1に示す結果を得
た。
【0028】実施例6 水酸化バリウム・六水和物78.7gを水200mlに
加熱溶解させ攪拌下85重量%リン酸水溶液19.2g
を滴下して生じた白色沈澱を10分間熟成させた。次い
でシリカゲル50gを加え攪拌下加熱濃縮し湯浴上で蒸
発乾固させた。これを空気中120℃で12時間乾燥後
5〜9メッシュに破砕し500℃で2時間焼成して酸素
を除く原子比で P1Ba1.5Si5 なる組成の触媒を得
た。
【0029】以下、アセトンの代わりにメチルエチルケ
トンを用いた以外は実施例1と同様に反応、分析を行
い、表−1に示す結果を得た。
【0030】実施例7 水酸化バリウム・六水和物17.4gを水200mlに
加熱溶解させ攪拌下85重量%リン酸水溶液3.18g
を滴下して生じた白色沈澱を10分間熟成させた。次い
で酸化ジルコニム50.9gを加え攪拌下加熱濃縮し湯
浴上で蒸発乾固させた。これを空気中120℃で12時
間乾燥後5〜9メッシュに破砕し500℃で2時間焼成
して酸素を除く原子比で P1Ba2Zr15 なる組成の触
媒を得た。
【0031】以下、アセトンの代わりにメチル−n−プ
ロピルケトンを用いた以外は実施例1と同様に反応、分
析を行い、表−1に示す結果を得た。
【0032】実施例8 硝酸リチウム11.4gを水50mlに加熱溶解させ攪
拌下水50mlに加熱溶解させたリン酸一水素アンモニ
ウム22.0gを滴下して生じた白色沈澱を10分間熟
成させた。次いでシリカゲル50gを加え攪拌下加熱濃
縮し湯浴上で蒸発乾固させた。これを空気中120℃で
12時間乾燥後5〜9メッシュに破砕し500℃で2時
間焼成して酸素を除く原子比で P1Li1Si5 なる組
成の触媒を得た。
【0033】以下、空間速度を1500(/hr)とし
た以外は実施例1と同様に反応、分析を行い、表−1に
示す結果を得た。
【0034】実施例9 水酸化ナトリウム(95%含有)7.02gを水100
mlに溶解させ攪拌下85重量%リン酸水溶液19.2
gを滴下した。次いでシリカゲル50gを加え、攪拌下
加熱濃縮し湯浴上で蒸発乾固させた。これを空気中12
0℃で12時間乾燥後5〜9メッシュに破砕し500℃
で2時間焼成して酸素を除く原子比でP1Na1Si5
なる組成の触媒を得た。
【0035】以下、反応温度を300℃とし、空間速度
を1000(/hr)とした以外は実施例1と同様に反
応、分析を行い、表−1に示す結果を得た。
【0036】実施例10 水酸化カリウム(85%含有)11.0gを水100m
lに溶解させ攪拌下85重量%リン酸水溶液19.2g
を滴下した。次いでシリカゲル50gを加え、十分攪拌
しながら加熱濃縮し湯浴上で蒸発乾固させた。これを空
気中120℃で12時間乾燥後5〜9メッシュに破砕し
500℃で2時間焼成して酸素を除く原子比で P11
Si5 なる組成の触媒を得た。
【0037】以下、反応温度を400℃とした以外は実
施例1と同様に反応、分析を行い、表−1に示す結果を
得た。
【0038】実施例11 市販のリン酸カリウム50gに水100mlを加え攪拌
下加熱濃縮し湯浴上で蒸発乾固させた。これを空気中1
20℃で12時間乾燥後5〜9メッシュに破砕し500
℃で2時間焼成して酸素を除く原子比で P13 なる組
成の触媒を得た。 以下、原料ガス中のアセトン濃度を
2.25容量%、ホルムアルデヒドの濃度を0.75容
量%とした以外は 実施例1と同様に反応、分析を行
い、表−1に示す結果を得た。
【0039】実施例12 硝酸ルビジウム24.5gおよびリン酸一水素アンモニ
ウム21.9gを水100mlに加熱溶解させた後シリ
カゲル50gを加え攪拌下加熱濃縮し湯浴上で蒸発乾固
させた。これを空気中120℃で12時間乾燥後5〜9
メッシュに破砕し600℃で2時間焼成して酸素を除く
組成比で P1Rb1Si5 なる組成の触媒を得た。
【0040】以下、原料ガス中のアセトン濃度を6.7
5容量%、ホルムアルデヒド濃度を2.25容量%とし
た以外は実施例1と同様に反応、分析を行い、表−1に
示す結果を得た。
【0041】実施例13 炭酸セシウム81.3gを水100mlに溶解させ攪拌
下85重量%リン酸水溶液19.2gを滴下後シリカゲ
ル50gを加え、攪拌下加熱濃縮し湯浴上で蒸発乾固さ
せた。これを空気中120℃で12時間乾燥後5〜9メ
ッシュに破砕し500℃で2時間焼成して酸素を除く原
子比で P1Cs3Si5 なる組成の触媒を得た。
【0042】以下、アセトンの代わりにジエチルケトン
を用い、原料ガス中のジエチルケトンの濃度を2.25
容量%とホルムアルデヒドの濃度を0.75容量%とし
た以外は実施例1と同様に反応、分析を行い、表−1に
示す結果を得た。
【0043】実施例14 硝酸セシウム31.7gおよびホウ酸5.02gを水1
00mlに加熱溶解させた後攪拌下85重量%リン酸水
溶液9.36gを滴下した。次いで酸化ジルコニウム5
0gを加え攪拌下加熱濃縮し湯浴上で蒸発乾固させた。
これを空気中120℃で12時間乾燥後5〜9メッシュ
に破砕し600℃で2時間焼成して酸素を除く原子比で
1Cs21Zr5 なる組成の触媒を得た。
【0044】以下、空間速度を5000(/hr)とし
た以外は実施例1と同様に反応、分析を行い、表−1に
示す結果を得た。
【0045】実施例15 硝酸ランタン・六水和物86.6gおよび硝酸セシウム
3.90gを水200mlに加熱溶解させ攪拌下水50
mlに加熱溶解させたリン酸二水素アンモニウム2.3
0gを滴下して生じた白色沈澱を1時間熟成させた後攪
拌下加熱濃縮し湯浴上で蒸発乾固させた。これを空気中
120℃で12時間乾燥後5〜9メッシュに破砕し50
0℃で2時間焼成して酸素を除く原子比で P1Cs1
10 なる組成の触媒を得た。
【0046】以下、アセトンの代わりにアセトフェノン
を用いた以外は実施例1と同様に反応、分析を行い、表
−1に示す結果を得た。
【0047】実施例16 リン酸ニ水素アンモニウム23.0gを水120mlに
加熱溶解させ攪拌下水120mlに加熱溶解させた硝酸
ランタン・六水和物86.6gを滴下して生じた白色沈
澱を1時間熟成させた後攪拌下加熱濃縮し湯浴上で蒸発
乾固させた。これを空気中120℃で12時間乾燥後5
〜9メッシュに破砕し500℃で2時間焼成して酸素を
除く原子比で P1La1 なる組成の触媒を得た。
【0048】以下、空間速度を5000(/hr)と
し、アセトンの代わりにアセトフェノンを用いた以外は
実施例1と同様に反応、分析を行い、表−1に示す結果
を得た。
【0049】実施例17 硝酸ランタン・六水和物10.8gおよび硝酸セリウム
・六水和物10.9gを水100mlに加熱溶解させ攪
拌下水50mlに溶解させたリン酸ニ水素アンモニウム
2.88gを滴下して生じた白色沈澱を10分間熟成さ
せた。次いで酸化ジルコニウム61.6gを加え攪拌下
加熱濃縮し湯浴上で蒸発乾固させた。これを空気中12
0℃で12時間乾燥後5〜9メッシュに破砕し500℃
で2時間焼成して酸素を除く原子比で P1La1Ce1
20 なる組成の触媒を得た。
【0050】以下、空間速度を5000(/hr)と
し、アセトンの代わりにp−クロロアセトフェノンを用
いた以外は実施例1と同様に反応、分析を行い、表−1
に示す結果を得た。
【0051】実施例18 リン酸ニ水素アンモニウム19.1gを水50mlに加
熱溶解させ攪拌下水50mlに加熱溶解させた硝酸イッ
トリウム・六水和物63.7gを滴下して生じた白色沈
澱を1時間沈澱を熟成させた。次いでシリカゲル50g
を加え攪拌下加熱濃縮し湯浴上で蒸発乾固させた。これ
を空気中120℃で12時間乾燥後5〜9メッシュに破
砕し500℃で2時間焼成して酸素を除く原子比で P1
1Si5なる組成の触媒を得た。
【0052】以下、アセトンの代わりにp−メチルアセ
トフェノンを用いた以外は実施例1と同様に反応、分析
を行い、表−1に示す結果を得た。
【0053】実施例19 リン酸ニ水素アンモニウム2.3gを水50mlに加熱
溶解させ攪拌下水50mlに加熱溶解させた硝酸プラセ
オジウム17.4gを滴下して生じた沈澱を1時間を熟
成させた。次いで酸化ニオブ26.6gを加え攪拌下加
熱濃縮し湯浴上で蒸発乾固させた。これを空気中120
℃で12時間乾燥後5〜9メッシュに破砕し500℃で
2時間焼成して酸素を除く原子比で P1Pr2Nb10
る組成の触媒を得た。
【0054】以下、実施例1と同様に反応、分析を行
い、表−1に示す結果を得た。
【0055】実施例20 リン酸ニ水素アンモニウム2.34gを水50mlに加
熱溶解させ攪拌下水50mlに加熱溶解させた硝酸ネオ
ジム・六水和物26.7gを滴下して生じた白紫色沈澱
を1時間熟成させた。次いで酸化ジルコニウム50gを
加え攪拌下加熱濃縮し湯浴上で蒸発乾固させた。これを
空気中120℃で12時間乾燥後5〜9メッシュに破砕
し500℃で2時間焼成して酸素を除く原子比で P1
3Zr2 0 なる組成の触媒を得た。
【0056】以下、アセトンの代わりにプロピオフェノ
ンを用いた以外は実施例1と同様に反応、分析を行い、
表−1に示す結果を得た。
【0057】実施例21 85重量%リン酸水溶液115.3gにホウ酸61.8
gを加え攪拌下加熱濃縮し湯浴上で蒸発乾固させた。こ
れを空気中120℃で12時間乾燥後5〜9メッシュに
破砕し400℃で2時間焼成して酸素を除く原子比で
11 なる触媒を得た。
【0058】以下、実施例1と同様に反応、分析を行
い、表−1に示す結果を得た。
【0059】実施例22 硝酸マグネシウム・六水和物32.1gを水100ml
に加熱溶解させ攪拌下水100mlに加熱溶解させたリ
ン酸一水素アンモニウム11.0gを滴下して生じた白
色沈澱を10分間熟成した。次いでシリカゲル25gを
加え攪拌下加熱濃縮し湯浴上で蒸発乾固させた。これを
空気中120℃で12時間乾燥後5〜9メッシュに破砕
し600℃で2時間焼成して酸素を除く原子比で P1
1.5Si5 なる組成の触媒を得た。
【0060】この触媒5mlを内径10mmのステンレ
ス製反応管に充填した後250℃の溶融塩浴に浸漬し該
反応管に市販の特級アセトンと37%ホルムアルデヒド
水溶液から調製したアセトン96容量%、ホルムアルデ
ヒド1容量%を含有する原料ガスを空間速度2000
(/hr)で通し反応させた。以下、実施例1と同様に
分析を行い、表−1に示す結果を得た。
【0061】実施例23 アセトンと37%ホルムアルデヒド水溶液から調製した
アセトン49.5容量%、ホルムアルデヒド16.5容
量%を含有する原料ガスを触媒層出口圧80mmHg、
空間速度180(/hr)で通した以外は 実施例1と
同様に触媒調製、反応、分析を行い、表−1に示す結果
を得た。
【0062】
【表1】
【0063】
【表2】
【0064】
【表3】
【図面の簡単な説明】
【図1】本発明に関する化学反応式である。
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成4年1月27日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0060
【補正方法】変更
【補正内容】
【0060】 この触媒5mlを内径10mmのステン
レス製反応管に充填した後250℃の溶融塩浴に浸漬し
該反応管に市販の特級アセトンと37%ホルムアルデヒ
ド水溶液から調製したアセトン89.7容量%、ホルム
アルデヒド4.0容量%を含有する原料ガスを空間速度
2000(/hr)で通し反応させた。以下、実施例1
と同様に分析を行い、表−1に示す結果を得た。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 49/213 9049−4H 49/227 9049−4H // C07B 61/00 300

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 ホルムアルデヒドと一般式(I) (式中、R1,R2 は各々独立して水素原子、炭素数1
    〜4のアルキル基、フェニル基、またはベンゼン核の少
    なくとも1箇所が炭素数1〜4のアルキル基および/ま
    たはハロゲンで置換されたフェニル基であり、nは0ま
    たは1である。)で表されるケトンとを一般式 P1ab (式中Pはリン、Xはアルカリ金属、アルカリ土類金
    属、Y、La、Ce、Pr、Nd、Zr、Nb、Bおよ
    びSiから成る群から選ばれる少なくとも一種の元素、
    Oは酸素である。添字a、bはPに対する原子比を表
    し、a=0.5〜30でありbはaの値により定まる数
    値である。)で表される固体触媒の存在下に気相で脱水
    縮合させることを特徴とする一般式(IIa)、一般式
    (IIb)および/または一般式(IIc) (式中R、R2、nは前記一般式(I)と同じであ
    る。)で表される不飽和ケトンの製造方法。
JP3160244A 1991-07-01 1991-07-01 不飽和ケトンの製造方法 Pending JPH059146A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3160244A JPH059146A (ja) 1991-07-01 1991-07-01 不飽和ケトンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3160244A JPH059146A (ja) 1991-07-01 1991-07-01 不飽和ケトンの製造方法

Publications (1)

Publication Number Publication Date
JPH059146A true JPH059146A (ja) 1993-01-19

Family

ID=15710820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3160244A Pending JPH059146A (ja) 1991-07-01 1991-07-01 不飽和ケトンの製造方法

Country Status (1)

Country Link
JP (1) JPH059146A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010084A (en) * 1996-07-18 2000-01-04 Abb Industry K.K. Paint spraying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010084A (en) * 1996-07-18 2000-01-04 Abb Industry K.K. Paint spraying device
EP0850693A4 (en) * 1996-07-18 2002-08-14 Abb Kk PAINT SPRAYING DEVICE

Similar Documents

Publication Publication Date Title
EP0043100B2 (en) Oxidation catalyst and process for preparation thereof
US4464539A (en) Process for producing α,β-unsaturated carboxylic acids or esters thereof
US4224236A (en) Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
JPH0559787B2 (ja)
JPS61283352A (ja) 酸化触媒の製造法
US4528400A (en) Preparation of ketones
US4570021A (en) Preparation of ketones
US3845137A (en) Process for the production of polyfunctional aromatic aldehydes
JPH11152245A (ja) 不飽和ケトンの製造方法
JPH059146A (ja) 不飽和ケトンの製造方法
SU646904A3 (ru) Способ получени анисового альдегида
JP6815594B2 (ja) ジエン化合物の製造方法
US2807629A (en) Catalytic dehydrogenation of dialkylene glycols
GB1591538A (en) Preparation of ketones
US4014952A (en) Process for the preparation of isoprene
JP3557237B2 (ja) ヒドロキシピバルアルデヒドの製造方法
JPH05168922A (ja) アルドール縮合脱水用触媒、マグネシウム・アルミニウム複合化合物の製造方法及びそれを用いるアルドール縮合脱水物の製造方法
JPH021819B2 (ja)
US3838182A (en) Hydrolysis of aryl halides with metal phosphates
US3188350A (en) Vapor phase preparation of allylsubstituted ketones
JP2503512B2 (ja) α,β−不飽和脂肪族モノカルボン酸またはそのエステルの製造法
US6504055B1 (en) Catalysts and processes for the conversion of succinates to citraconates or itaconates
JP3221448B2 (ja) フェノール類製造用触媒およびフェノール類の製造方法
JPH08143497A (ja) 不飽和エーテル類の製造法および不飽和エーテル類製造用触媒
CA1122613A (en) Preparation of aldehydes