JPH059141A - Production of hydroxy aromatic compound - Google Patents

Production of hydroxy aromatic compound

Info

Publication number
JPH059141A
JPH059141A JP3184073A JP18407391A JPH059141A JP H059141 A JPH059141 A JP H059141A JP 3184073 A JP3184073 A JP 3184073A JP 18407391 A JP18407391 A JP 18407391A JP H059141 A JPH059141 A JP H059141A
Authority
JP
Japan
Prior art keywords
catalyst
chlorobenzene
reaction
copper
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3184073A
Other languages
Japanese (ja)
Inventor
Masahiko Furuya
方彦 古谷
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Utilization of Light Oil
Original Assignee
Research Association for Utilization of Light Oil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Utilization of Light Oil filed Critical Research Association for Utilization of Light Oil
Priority to JP3184073A priority Critical patent/JPH059141A/en
Publication of JPH059141A publication Critical patent/JPH059141A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To stably produce a hydroxyaromatic compound such as phenol in a high selectively by hydrolyzing an aromatic halide in a gaseous phase. CONSTITUTION:An aromatic halide is hydrolyzed in the presence of a crystalline aluminosilicate (e.g. ZSM-5) containing a combination of cobalt with one kind or more of silver, copper and lead as a catalyst in a gaseous phase to produce a hydroxy aromatic compound. The catalyst can repeatedly be regenerated and used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヒドロキシ芳香族化合
物の製造法に関する。さらに詳しくは、芳香族ハロゲン
化物をコバルト成分と銀,銅および鉛から選ばれたいず
れか1成分を合わせ含有する結晶性アルミノシリケート
を触媒に用いて加水分解し、ヒドロキシ芳香族化合物を
製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a hydroxy aromatic compound. More specifically, a method for producing a hydroxyaromatic compound by hydrolyzing an aromatic halide using a crystalline aluminosilicate containing a cobalt component and any one component selected from silver, copper and lead as a catalyst. Regarding

【0002】[0002]

【従来の技術】ハロゲン化芳香族化合物から気相にて加
水分解し、フェノール等のヒドロキシ芳香族化合物を製
造する方法としては、銅を担持したリン酸カルシュウム
アパタイトを触媒として用いる方法(米国特許第2,9
88,573号等)、銅を担持したリン酸ジルコニウム
を触媒として用いる方法(特公昭51−6108号公
報)、銅を担持した希土類金属リン酸塩を触媒に用いる
方法(特開昭47−27936号公報)、最近金属成分
含有の結晶性アルミノシリケートを触媒として用いる方
法(特開昭62−192330号公報、特開昭62−2
81834号公報)、結晶性ボロシリケートを触媒とす
る方法(特開昭62−240635号公報)、結晶性鉄
シリケートを触媒にする方法(特開昭62−24063
6号公報)、結晶性クロモシリケートを触媒に用いる方
法(特開昭62−240634号公報)が提案されてい
る。
2. Description of the Related Art As a method for producing a hydroxy aromatic compound such as phenol by hydrolyzing a halogenated aromatic compound in a gas phase, a method using copper-supported calcium phosphate apatite as a catalyst (US Pat. 2,9
88,573), a method using copper-supported zirconium phosphate as a catalyst (JP-B-51-6108), and a method using copper-supported rare earth metal phosphate as a catalyst (JP-A-47-27936). JP-A-62-192330, JP-A-62-2.
No. 81834), a method using a crystalline borosilicate as a catalyst (JP-A-62-240635), and a method using a crystalline iron silicate as a catalyst (JP-A-62-24063).
No. 6), and a method using a crystalline chromosilicate as a catalyst (JP-A-62-240634).

【0003】[0003]

【発明が解決しようとする課題】前記リン酸カルシュウ
ムアパタイト、リン酸ジルコニウム、希土類リン酸塩等
の触媒は活性が低く、500℃以上の高温反応や低い空
間速度で反応させる必要がある。また、結晶性メタロシ
リケート系の触媒は、比較的活性は高いが、これらいず
れの触媒も最も有効な活性成分である銅成分が反応中に
ハロゲン化銅として飛散ロスする等、触媒の不可逆的な
経時活性低下を生ずる問題点を有しており、工業的には
満足できるレベルにない。
The catalysts such as calcium phosphate apatite, zirconium phosphate, and rare earth phosphates have low activity, and it is necessary to react at a high temperature of 500 ° C. or higher and at a low space velocity. Further, the crystalline metallosilicate-based catalyst has a relatively high activity, but in any of these catalysts, the copper component, which is the most effective active component, is scattered and lost as copper halide during the reaction. It has a problem that it deteriorates in activity over time, and it is not industrially satisfactory.

【0004】[0004]

【課題を解決するための手段】本発明者らは、芳香族ハ
ロゲン化物の加水分解によりヒドロキシ芳香族化合物を
製造する方法について鋭意検討した結果、加水分解触媒
としてコバルト成分と銀,銅および鉛成分から選ばれた
いずれか1種以上を合わせ含有する結晶性アルミノシリ
ケート触媒を用いることにより、高収率で、かつ、安定
してフェノール類を製造できることを見いだしたもので
ある。特に触媒の再生繰り返しを含めた使用において、
本発明の触媒安定化効果が顕著である。
Means for Solving the Problems The inventors of the present invention have made earnest studies on a method for producing a hydroxyaromatic compound by hydrolyzing an aromatic halide, and as a result, have found that a cobalt component and a silver, copper and lead component as a hydrolysis catalyst. It was found that phenols can be stably produced in high yield by using a crystalline aluminosilicate catalyst containing any one or more selected from the above. Especially in use including repeated regeneration of the catalyst,
The catalyst stabilizing effect of the present invention is remarkable.

【0005】本発明で使用する触媒の安定性は、活性成
分であるコバルトの反応中の減少がほとんど生じないこ
と、かつ、銀、銅、鉛のいずれか1種以上を合わせ含有
することにより、恐らくこれら成分がコバルトと相互作
用し、副反応を抑制する効果を有するためと思われる。
The stability of the catalyst used in the present invention is determined by the fact that the reduction of cobalt as an active ingredient during the reaction hardly occurs, and by containing at least one of silver, copper and lead in combination. This is probably because these components interact with cobalt and have the effect of suppressing side reactions.

【0006】本発明に用いられる結晶性アルミノシリケ
ートとしては、ハイシリカの結晶性アルミノシリケート
が好ましい。例えば、ZSM−5,ZSM−11,AZ
−1(特開昭59−128210号公報)類似の構造を
有するものが好ましい。シリカ/アルミナ比としては1
0以上、100以下のものが好ましい。
As the crystalline aluminosilicate used in the present invention, a high silica crystalline aluminosilicate is preferable. For example, ZSM-5, ZSM-11, AZ
-1 (Japanese Patent Laid-Open No. 59-128210) Those having a similar structure are preferable. Silica / alumina ratio is 1
It is preferably 0 or more and 100 or less.

【0007】芳香族ハロゲン化物としては、塩素原子、
臭素原子のいずれか1つ以上が芳香族核に直接置換した
ものであって、例えば、クロロベンゼン、ジクロロベン
ゼン、ブロモベンゼン、ジブロモベンゼン、クロロトル
エン、ブロモトルエン、クロロキシレン、ブロモキシレ
ン等のハロゲン置換ベンゼン類、クロロナフタレン、ブ
ロモナフタレン等のハロゲン置換ナフタレン類等を挙げ
ることができる。
As the aromatic halide, chlorine atom,
Any one or more of bromine atoms directly substituted with an aromatic nucleus, for example, halogen-substituted benzene such as chlorobenzene, dichlorobenzene, bromobenzene, dibromobenzene, chlorotoluene, bromotoluene, chloroxylene, bromoxylene, etc. And halogen-substituted naphthalenes such as chloronaphthalene and bromonaphthalene.

【0008】本発明に用いられる触媒のコバルト、銀、
銅および鉛成分としては、ハロゲン化物、硝酸塩、硫酸
塩、炭酸塩、有機酸塩、水酸化物、酸化物等を挙げるこ
とができる。具体的には、コバルト化合物として、塩化
コバルト、硝酸コバルト、硫酸コバルト、炭酸コバルト
等を、銀化合物としては、硝酸銀、塩化銀、硫酸銀、炭
酸銀等を、銅化合物としては、硝酸銅、塩化銅、硫酸
銅、炭酸銅等を、鉛化合物としては、硝酸鉛、塩化鉛、
硫酸鉛、炭酸鉛等を用いることができる。コバルトの含
有量は金属として0.05〜10重量%、好ましくは
0.1〜5重量%、銀あるいは鉛の含有量としては0.
001〜2.0重量%、好ましくは0.01〜1.0重
量%、銅の含有量としては0.001〜0.5重量%、
好ましくは0.01〜0.4重量%である。
The catalyst used in the present invention is cobalt, silver,
Examples of the copper and lead components include halides, nitrates, sulfates, carbonates, organic acid salts, hydroxides and oxides. Specifically, cobalt compounds such as cobalt chloride, cobalt nitrate, cobalt sulfate and cobalt carbonate, silver compounds such as silver nitrate, silver chloride, silver sulfate and silver carbonate, and copper compounds such as copper nitrate and chloride. Copper, copper sulfate, copper carbonate, etc. are used as lead compounds such as lead nitrate, lead chloride,
Lead sulfate, lead carbonate, etc. can be used. The content of cobalt is 0.05 to 10% by weight, preferably 0.1 to 5% by weight as a metal, and the content of silver or lead is 0.
001 to 2.0% by weight, preferably 0.01 to 1.0% by weight, and the content of copper is 0.001 to 0.5% by weight,
It is preferably 0.01 to 0.4% by weight.

【0009】これら金属成分の添加方法としては、一般
に用いられる含浸法、イオン交換法、ブレンド法等を用
いることができる。これら金属成分は、同時に添加して
もよいが、銀、銅、鉛成分はイオン交換法でコバルト成
分添加前に含ませるのが好ましい。本発明に用いる結晶
性アルミノシリケートは、スチーム存在下で200〜7
00℃の温度で処理するか、スチーム非存在下で600
〜850℃の温度下で熱処理したものがフェノールの選
択性、触媒の安定性から好ましく用いられる。
As a method of adding these metal components, a generally used impregnation method, ion exchange method, blending method or the like can be used. These metal components may be added at the same time, but it is preferable to add the silver, copper and lead components by the ion exchange method before adding the cobalt component. The crystalline aluminosilicate used in the present invention is 200 to 7 in the presence of steam.
Treat at a temperature of 00 ° C or 600 without steam
What was heat-treated at a temperature of up to 850 ° C. is preferably used from the viewpoint of phenol selectivity and catalyst stability.

【0010】本発明に用いる触媒は、通常、無機バイン
ダーとして珪素、ジルコニア、チタニア、シリカ・マグ
ネシア、アルミナ、シリカ・ベリリア、シリカ・チタニ
ア、ゲルマニウム、カオリン、クレー等を用い、成型し
て用いられる。これら耐火性無機バインダーは、成型触
媒の10〜90重量%の範囲で選ぶことができる。触媒
の成型方法としては、押出し造粒法、圧縮成型造粒法、
転動造粒法、油中成型造粒法、噴霧造粒法等通常用いら
れる方法により、ペレット状、タブレット状、球状等使
用状体に応じ任意の形、大きさに造粒することができ
る。本発明方法は、固定床、移動床、流動床等いずれの
方式でも実施することができる。
The catalyst used in the present invention is usually used by molding using, as an inorganic binder, silicon, zirconia, titania, silica-magnesia, alumina, silica-beryria, silica-titania, germanium, kaolin, clay or the like. These refractory inorganic binders can be selected in the range of 10 to 90% by weight of the molded catalyst. The catalyst molding method includes extrusion granulation method, compression molding granulation method,
It is possible to granulate into any shape and size according to the state of use such as pellets, tablets, and spheres by a commonly used method such as rolling granulation method, in-oil molding granulation method, and spray granulation method. .. The method of the present invention can be carried out in any system such as fixed bed, moving bed and fluidized bed.

【0011】本発明方法の反応条件としては、原料ハロ
ゲン化芳香族化合物により異なるが、通常、250〜6
00℃の温度、好ましくは300〜550℃の温度、さ
らに好ましくは350〜500℃の反応温度が、水のハ
ロゲン化芳香族化合物に対するモル比としては0.5〜
100、好ましくは1〜50、さらに好ましくは1.5
〜20が用いられる。接触時間としては、原料ハロゲン
化芳香族物の供給速度としては重量時間空間速度(WH
SV)で0.05〜20Hr-1、好ましくは0.1〜1
0Hr-1が用いられる。
The reaction conditions for the method of the present invention will differ depending on the starting halogenated aromatic compound, but are usually 250 to 6
A temperature of 00 ° C., preferably 300 to 550 ° C., more preferably 350 to 500 ° C. is used as a molar ratio of water to the halogenated aromatic compound of 0.5 to
100, preferably 1-50, more preferably 1.5
~ 20 are used. The contact time is the weight hourly space velocity (WH
SV) 0.05 to 20 Hr -1 , preferably 0.1 to 1
0 Hr -1 is used.

【0012】[0012]

【実施例】以下に実施例を挙げて具体的に説明するが、
本発明は、これに限定されるものではない。 実施例1 公知の方法によりZSM−5(SiO2 /Al2 3
45)を水熱合成し、次いで、常法により塩化ナトリウ
ム水溶液を用いてナトリウム型とした後、硝酸銀水溶液
を用いてイオン交換、水洗、乾燥し、0.3重量%の銀
を含むゼオライト粉末を得た。これに無水塩化コバルト
粉末を乳鉢で均一に混合(コバルト金属として0.6重
量%含有)し、次いで、圧縮成型、破砕後、フルイ分け
9〜20メッシュにして用いた。
[Examples] Specific examples will be described below.
The present invention is not limited to this. Example 1 ZSM-5 by known methods (SiO 2 / Al 2 O 3 =
45) is hydrothermally synthesized, and then made into a sodium form by using a sodium chloride aqueous solution by a conventional method, followed by ion exchange using a silver nitrate aqueous solution, washing with water, and drying to obtain a zeolite powder containing 0.3% by weight of silver. Obtained. Anhydrous cobalt chloride powder was uniformly mixed with this in a mortar (containing 0.6% by weight of cobalt metal), then compression-molded, crushed, and sieved to 9-20 mesh for use.

【0013】反応は10mm径の石英製反応管に触媒を1
0g充填し、加熱炉により所定温度に加熱、定量ポンプ
でクロロベンゼン、水を各々所定量供給し、加水分解反
応を実施した。反応条件として450℃、水/クロロベ
ンゼンモル比6、クロロベンゼンの供給量WHSVとし
て0.28Hr-1、希釈剤として窒素を窒素/クロロベ
ンゼンモル比1.2で行った。
For the reaction, one catalyst was placed in a 10 mm diameter quartz reaction tube.
It was filled with 0 g, heated to a predetermined temperature in a heating furnace, and a predetermined amount of chlorobenzene and water were supplied by a metering pump to carry out the hydrolysis reaction. The reaction conditions were 450 ° C., a water / chlorobenzene molar ratio of 6, a chlorobenzene supply amount WHSV of 0.28 Hr −1 , and nitrogen as a diluent at a nitrogen / chlorobenzene molar ratio of 1.2.

【0014】通液開始後2〜3時間目のサンプリング液
のガスクロマトグラフ分析より、クロロベンゼンの転化
率17%、フェノール収率16.1mol %であり、副生
物はベンゼンがほとんどで、ベンゼンとフェノールの合
計の選択率は99.5mol %を示した。さらに反応を続
け50時間反応後の触媒を取り出し、蛍光X線分析によ
りコバルトおよび銀量の測定を行ったところ、コバル
ト、銀とも減少は認められなかった。
From the gas chromatographic analysis of the sampling liquid 2 to 3 hours after the start of the liquid passage, the conversion of chlorobenzene was 17%, the yield of phenol was 16.1 mol%, and most of the by-products were benzene. The total selectivity was 99.5 mol%. The reaction was further continued, and after 50 hours of reaction, the catalyst was taken out and the amount of cobalt and silver was measured by fluorescent X-ray analysis. As a result, no reduction was found in both cobalt and silver.

【0015】実施例2 実施例1と同様に、ただし、Na型ZSM−5を80容
量%水蒸気/窒素雰囲気にて、450℃温度下で20時
間加熱処理した。次いで、実施例1と同様に銀交換後、
常法にしたがい塩化コバルト水溶液を含浸し、110
℃、2時間乾燥し、実施例1と同様に圧縮成型して反応
に用いた(銀として0.2重量%、コバルトとして0.
6重量%を含有していた)。この触媒を実施例1と同様
にクロロベンゼンの加水分解反応に用いた。反応条件は
450℃、WHSV=0.25Hr-1、水/クロロベン
ゼンモル比2、窒素/クロロベンゼンモル比10で実施
した。その結果、2〜3時間目のクロロベンゼン転化率
13%、フェノール選択率95mol %で、30時間目の
クロロベンゼン転化率は10%、フェノール選択率は9
7mol %を示した。50時間反応に用いた触媒を500
℃のエアーバーニングにより再生した。再生触媒を用
い、同様条件でクロロベンゼンの加水分解を行った。そ
の結果、クロロベンゼンの転化率12.5%、フェノー
ル選択率95mol%、ベンゼン選択率4.5mol %を示
した。100時間反応を続け、クロロベンゼン転化率7
%に低下した触媒を400〜500℃にてエアーバーニ
ング再生し、同様に反応させたところ、クロロベンゼン
の転化率は13.2%と完全に回復した。
Example 2 As in Example 1, except that Na-type ZSM-5 was heat-treated at a temperature of 450 ° C. for 20 hours in an 80 vol% steam / nitrogen atmosphere. Then, after exchanging silver as in Example 1,
According to the conventional method, impregnate with an aqueous solution of cobalt chloride,
C., dried for 2 hours, compression molded in the same manner as in Example 1 and used in the reaction (0.2% by weight of silver and 0.1% of cobalt.
It contained 6% by weight). This catalyst was used in the hydrolysis reaction of chlorobenzene as in Example 1. The reaction conditions were 450 ° C., WHSV = 0.25 Hr −1 , water / chlorobenzene molar ratio of 2, and nitrogen / chlorobenzene molar ratio of 10. As a result, the chlorobenzene conversion rate in the second to third hours was 13%, the phenol selectivity was 95 mol%, the chlorobenzene conversion rate in the 30th hour was 10%, and the phenol selectivity was 9%.
It showed 7 mol%. The catalyst used for the reaction for 50 hours was 500
Regenerated by air burning at ℃. Using a regenerated catalyst, chlorobenzene was hydrolyzed under the same conditions. As a result, the conversion of chlorobenzene was 12.5%, the phenol selectivity was 95 mol%, and the benzene selectivity was 4.5 mol%. The reaction is continued for 100 hours, and the chlorobenzene conversion rate is 7
% Of the catalyst was air-burned at 400 to 500 [deg.] C. and reacted in the same manner. As a result, the conversion of chlorobenzene was completely recovered to 13.2%.

【0016】実施例3 実施例1と同様に、ただし、硝酸銀の替わりに硝酸銅を
用い、0.08重量%の銅およびコバルトとして0.6
重量%含む触媒を調製して用いた。実施例1と同様にク
ロロベンゼンの加水分解反応を行った。反応条件として
450℃、水/クロロベンゼンモル比6、クロロベンゼ
ンの供給量WHSVとして0.28Hr-1、希釈剤とし
て窒素ガスをクロロベンゼンの1モル量供給し反応させ
た。その結果、2〜3時間目のクロロベンゼン転化率は
18%、フェノール選択率95%を示した。さらに反応
を進め、28〜30時間目の転化率は12%、フェノー
ル選択率97%であった。反応液の触媒を解析したとこ
ろ、コバルト、銅ともほとんど減少は認められなかっ
た。
Example 3 As Example 1, except that copper nitrate was used instead of silver nitrate, and 0.08% by weight of copper and cobalt were added to 0.6.
A catalyst containing wt% was prepared and used. Hydrolysis reaction of chlorobenzene was carried out in the same manner as in Example 1. The reaction conditions were 450 ° C., a water / chlorobenzene molar ratio of 6, a chlorobenzene supply amount WHSV of 0.28 Hr −1 , and a diluent of nitrogen gas of 1 mol amount of chlorobenzene. As a result, the chlorobenzene conversion rate after 2 to 3 hours was 18% and the phenol selectivity was 95%. The reaction was further advanced, and the conversion in 28 to 30 hours was 12% and the phenol selectivity was 97%. When the catalyst of the reaction solution was analyzed, almost no reduction was observed in both cobalt and copper.

【0017】実施例4 実施例1と同様に、ただし、硝酸銀の替わりに塩化鉛を
用いてイオン交換し、次いで、常法にしたがい塩化コバ
ルト水溶液を含浸させ、0.4重量%の鉛、コバルトと
して0.7重量%含有のゼオライトを実施例1と同様に
成型し、実施例1と同様にクロロベンゼンの加水分解反
応に供した。反応条件として450℃、水/クロロベン
ゼンモル比2、クロロベンゼンの供給量WHSVとして
0.28Hr-1、希釈剤として窒素ガスをクロロベンゼ
ンの10モル量供給し反応させた。
Example 4 As in Example 1, except that lead chloride was used in place of silver nitrate for ion exchange, followed by impregnation with a cobalt chloride aqueous solution according to a conventional method, and 0.4% by weight of lead and cobalt. Then, 0.7% by weight of zeolite was molded in the same manner as in Example 1 and subjected to the hydrolysis reaction of chlorobenzene in the same manner as in Example 1. The reaction conditions were 450 ° C., a water / chlorobenzene molar ratio of 2, a chlorobenzene supply amount WHSV of 0.28 Hr −1 , and a nitrogen gas of 10 mol of chlorobenzene as a diluent were supplied for reaction.

【0018】2〜3時間目のクロロベンゼン転化率は1
6%、フェノール選択率94mol %を示した。20〜2
2時間目の転化率は13%、フェノール選択率95mol
%を示した。50時間反応を続けた後、500℃でエア
ーバーニングによる再生をし、同条件で反応させた結
果、クロロベンゼンの転化率16.4%、フェノール選
択率94mol %であった。再生によりほぼ完全に活性が
回復することが認められた。なお、副生物の大部分はベ
ンゼンであった。
The chlorobenzene conversion rate after 2 to 3 hours is 1
6%, and the phenol selectivity was 94 mol%. 20-2
Conversion in the second hour is 13%, phenol selectivity 95 mol
%showed that. After continuing the reaction for 50 hours, regeneration was carried out by air burning at 500 ° C., and the reaction was carried out under the same conditions. As a result, the conversion of chlorobenzene was 16.4% and the selectivity of phenol was 94 mol%. It was confirmed that the activity was almost completely restored by the regeneration. Most of the by-products were benzene.

【0019】比較例1 実施例1と同様に、ただし、銀を含まない触媒を用い、
同様条件でクロロベンゼンの加水分解反応を実施した。
その結果、初期のクロロベンゼン転化率は16%、フェ
ノール収率14.4mol %で、50時間目のフェノール
収率は8mol %であった。反応初期のフェノール選択率
90%から、70時間目のフェノール選択率88%と低
下傾向を示した。70時間反応後、実施例2と同様に再
生して用いたところ、フェノール収率12.7mol %
で、30時間目のフェノール収率6.5mol %を示し
た。反応再生によりフェノール収率の低下傾向が認めら
れた。
Comparative Example 1 As in Example 1, but using a silver-free catalyst,
The hydrolysis reaction of chlorobenzene was carried out under the same conditions.
As a result, the initial chlorobenzene conversion rate was 16%, the phenol yield was 14.4 mol%, and the phenol yield at 50 hours was 8 mol%. The phenol selectivity at the initial stage of the reaction was 90%, and the phenol selectivity at the 70th hour was 88%, showing a decreasing tendency. After reacting for 70 hours, it was regenerated and used in the same manner as in Example 2. The yield of phenol was 12.7 mol%.
At 30 hours, the phenol yield was 6.5 mol%. It was recognized that the phenol yield tended to decrease due to the reaction regeneration.

【0020】比較例2 実施例2と同様に、ただし、スチーミング処理したNa
ZSM−5に銅を0.1重量%イオン交換したものを用
いた他は、同様処方、条件でクロロベンゼンの加水分解
実験を行った。反応2〜3時間目のクロロベンゼンの転
化率は20%、フェノールの収率は19.7mol %、ベ
ンゼンとフェノールを合わせた選択率は99mol %を示
した。さらに反応を続け、30時間後の触媒を取り出し
活性成分である銅の量を測定したところ、25%の減少
が認められた。
Comparative Example 2 As in Example 2, but with steamed Na
A hydrolysis test of chlorobenzene was conducted under the same formulation and conditions except that ZSM-5 ion-exchanged with copper at 0.1% by weight was used. The conversion rate of chlorobenzene after 2 to 3 hours of reaction was 20%, the yield of phenol was 19.7 mol%, and the combined selectivity of benzene and phenol was 99 mol%. The reaction was further continued, and after 30 hours, the catalyst was taken out and the amount of copper as an active ingredient was measured. As a result, a decrease of 25% was recognized.

【0021】同触媒、同条件で50時間反応後の触媒の
銅量を測定したところ、銅量は50%の減少を示した。
反応後の触媒をエアーバーニングにより再生し、再び同
条件でクロロベンゼンの加水分解に供した。その結果、
クロロベンゼンの転化率は14%を示した。
When the copper content of the same catalyst and the catalyst after the reaction under the same conditions for 50 hours was measured, the copper content showed a decrease of 50%.
The catalyst after the reaction was regenerated by air burning and again subjected to hydrolysis of chlorobenzene under the same conditions. as a result,
The conversion rate of chlorobenzene was 14%.

【0022】比較例3 実施例1と同様に、ただし、銀のみ含有しコバルトを含
まない触媒を実施例1と同様方法、条件でクロロベンゼ
ンの加水分解反応に用いた。その結果、クロロベンゼン
の転化率は2.1%であった。
Comparative Example 3 As in Example 1, a catalyst containing only silver and no cobalt was used in the hydrolysis reaction of chlorobenzene under the same conditions and conditions as in Example 1. As a result, the conversion rate of chlorobenzene was 2.1%.

【0023】比較例4 実施例4と同様に、ただし、コバルトを加えない触媒を
用い、同様にクロロベンゼンの加水分解反応を同様条件
で行った。その結果、クロロベンゼンの転化率2.3%
と低い値を示した。
Comparative Example 4 The hydrolysis reaction of chlorobenzene was conducted under the same conditions as in Example 4, except that a catalyst containing no cobalt was used. As a result, the conversion rate of chlorobenzene is 2.3%
And showed a low value.

【0024】[0024]

【発明の効果】本発明の方法によれば、芳香族ハロゲン
化物を加水分解し、フェノール等のヒドロキシ芳香族化
合物を高選択率、高収率で、かつ、安定的に製造するこ
とができ、触媒はエアーバーニングにより再生でき、繰
り返し使用できる等工業的意義は大である。
According to the method of the present invention, an aromatic halide can be hydrolyzed to produce a hydroxyaromatic compound such as phenol with high selectivity, high yield and stably. The catalyst has a great industrial significance such that it can be regenerated by air burning and can be repeatedly used.

Claims (1)

【特許請求の範囲】 【請求項1】 芳香族ハロゲン化物を気相にて加水分解
し、ヒドロキシ芳香族化合物を製造する方法において、
コバルト成分と銀,銅および鉛から選ばれた1種以上の
成分を含有する結晶性アルミノシリケートを触媒として
用いることを特徴とするヒドロキシ芳香族化合物の製造
法。
Claim: What is claimed is: 1. A method for producing a hydroxyaromatic compound by hydrolyzing an aromatic halide in a gas phase,
A process for producing a hydroxyaromatic compound, which comprises using a crystalline aluminosilicate containing a cobalt component and one or more components selected from silver, copper and lead as a catalyst.
JP3184073A 1991-06-28 1991-06-28 Production of hydroxy aromatic compound Withdrawn JPH059141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3184073A JPH059141A (en) 1991-06-28 1991-06-28 Production of hydroxy aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3184073A JPH059141A (en) 1991-06-28 1991-06-28 Production of hydroxy aromatic compound

Publications (1)

Publication Number Publication Date
JPH059141A true JPH059141A (en) 1993-01-19

Family

ID=16146911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3184073A Withdrawn JPH059141A (en) 1991-06-28 1991-06-28 Production of hydroxy aromatic compound

Country Status (1)

Country Link
JP (1) JPH059141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142629A (en) * 2006-12-11 2008-06-26 Sumitomo Chemical Co Ltd Method for regenerating catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142629A (en) * 2006-12-11 2008-06-26 Sumitomo Chemical Co Ltd Method for regenerating catalyst

Similar Documents

Publication Publication Date Title
EP0181790B1 (en) Method for the synthesis of iodobenzene
JP2005503919A (en) Process using zeolite as catalyst / catalyst precursor
JP3481647B2 (en) Method for surface selective dealumination of zeolite and use of zeolite with surface dealuminated
JPH059141A (en) Production of hydroxy aromatic compound
JPH059142A (en) Production of phenol compounds
JPH04334333A (en) Production of phenols
JPH04334332A (en) Production of hydroxy aromatic compound
JPH0570391A (en) Method for producing aromatic hydroxide
JPH04368340A (en) Production of halogenated aromatic compound
JPH0570390A (en) Method for producing aromatic hydroxide
JPH0780798B2 (en) Method for producing halogenated benzene derivative with improved zeolite catalyst
JPH04117339A (en) Production of aromatic hydroxide
JP2715525B2 (en) Dehydrohalogenation method
JPH07110825B2 (en) Phenol manufacturing method
JPH0720894B2 (en) Method for producing halogenated benzene derivative
JPH04117338A (en) Production of aromatic hydroxide
JPH0421645A (en) Preparation of hydroxy aromatic compound
JPH03206060A (en) Production of phenols
JPS61112040A (en) Production of phenylacetaldehyde
JPH0529211B2 (en)
JPH047039A (en) Production of catalyst
JP4854111B2 (en) Method for producing pyrroles
JPH0796533B2 (en) Method for producing aromatic nitro compound
JPH0692369B2 (en) Method for producing pyridine bases
JP2595650B2 (en) Highly selective production method of para-substituted chlorinated benzene derivatives

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903