JP2008142629A - Method for regenerating catalyst - Google Patents

Method for regenerating catalyst Download PDF

Info

Publication number
JP2008142629A
JP2008142629A JP2006333068A JP2006333068A JP2008142629A JP 2008142629 A JP2008142629 A JP 2008142629A JP 2006333068 A JP2006333068 A JP 2006333068A JP 2006333068 A JP2006333068 A JP 2006333068A JP 2008142629 A JP2008142629 A JP 2008142629A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hours
inert gas
crystalline metallosilicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006333068A
Other languages
Japanese (ja)
Other versions
JP4656049B2 (en
Inventor
Carlos Knapp
カルロス クナップ
Toshiaki Ui
利明 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006333068A priority Critical patent/JP4656049B2/en
Publication of JP2008142629A publication Critical patent/JP2008142629A/en
Application granted granted Critical
Publication of JP4656049B2 publication Critical patent/JP4656049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating a crystalline metallosilicate catalyst or a metal supported crystalline metallosilicate catalyst used for manufacturing hydroxy compounds by hydrolysis of chlorinated hydrocarbon compounds, in which the activity of the catalyst deteriorated according to use can be recovered to a sufficient high level. <P>SOLUTION: The catalyst for use in regeneration is treated at 400°C or higher under the atmosphere of inert gas. The hydrolysis reaction includes a reaction substituting chlorine of the chlorinated hydrocarbon compounds with a hydroxide group and further a reaction substantially converting chlorobenzene to phenol. Nitrogen is preferable for the inert gas from a cost point of view. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、触媒の再生方法に関するものである。更に詳しくは、本発明は、塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する際に用いた結晶性メタロシリケート触媒又は金属担持結晶性メタロシリケート触媒の再生方法であって、使用に伴って活性低下を生じた触媒の活性を十分に高いレベルに回復させることができるという優れた特徴を有する触媒の再生方法に関するものである。   The present invention relates to a method for regenerating a catalyst. More specifically, the present invention relates to a method for regenerating a crystalline metallosilicate catalyst or a metal-supported crystalline metallosilicate catalyst used when hydrolyzing a chlorinated hydrocarbon compound to produce a hydroxy compound, The present invention relates to a method for regenerating a catalyst having an excellent feature that the activity of a catalyst that has caused a decrease in activity can be restored to a sufficiently high level.

塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する際に結晶性メタロシリケート触媒又は金属担持結晶性メタロシリケート触媒を用いる技術は公知である。また、本反応においては、触媒にコークが析出し活性が低下するため、空気焼成により活性を回復させることも公知である。(たとえば、特許文献1〜4参照。)。   A technique using a crystalline metallosilicate catalyst or a metal-supported crystalline metallosilicate catalyst when hydrolyzing a chlorinated hydrocarbon compound to produce a hydroxy compound is known. In this reaction, since coke is deposited on the catalyst and the activity is reduced, it is also known to restore the activity by air calcination. (For example, refer to Patent Documents 1 to 4.)

ところが、触媒は使用に伴って活性低下を生じ、その活性を、再現性よく十分に高いレベルに回復させる優れた方法は提案されていない。   However, the activity of the catalyst decreases with use, and an excellent method for recovering the activity to a sufficiently high level with good reproducibility has not been proposed.

特開昭62−192330号公報JP-A-62-192330 特開平4−117338号公報JP-A-4-117338 特開平4−117339号公報Japanese Patent Laid-Open No. 4-117339 特開平4−334333号公報JP-A-4-334333

かかる状況において、本発明が解決しようとする課題は、塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する際に用いた結晶性メタロシリケート触媒又は金属担持結晶性メタロシリケート触媒の再生方法であって、使用に伴って活性低下を生じた触媒の活性を十分に高いレベルに回復させることができるという優れた特徴を有する触媒の再生方法を提供する点に存する。   In such a situation, the problem to be solved by the present invention is a method for regenerating a crystalline metallosilicate catalyst or a metal-supported crystalline metallosilicate catalyst used when hydrolyzing a chlorinated hydrocarbon compound to produce a hydroxy compound. Thus, the present invention is to provide a method for regenerating a catalyst having an excellent feature that the activity of a catalyst that has decreased in activity with use can be recovered to a sufficiently high level.

すなわち、本発明は、塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する際に用いた結晶性メタロシリケート触媒又は金属担持結晶性メタロシリケート触媒の再生方法であって、再生に供する触媒を不活性ガスの雰囲気下に400℃以上の温度で処理する触媒の再生方法に係るものである。   That is, the present invention relates to a method for regenerating a crystalline metallosilicate catalyst or a metal-supported crystalline metallosilicate catalyst used when hydrolyzing a chlorinated hydrocarbon compound to produce a hydroxy compound, wherein the catalyst used for regeneration is used. The present invention relates to a method for regenerating a catalyst which is treated at a temperature of 400 ° C. or higher in an inert gas atmosphere.

本発明により、塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する際に用いた結晶性メタロシリケート触媒又は金属担持結晶性メタロシリケート触媒の再生方法であって、使用に伴って活性低下を生じた触媒の活性を十分に高いレベルに回復させることができるという優れた特徴を有する触媒の再生方法を提供することができる。   According to the present invention, there is provided a method for regenerating a crystalline metallosilicate catalyst or a metal-supported crystalline metallosilicate catalyst used for producing a hydroxy compound by hydrolyzing a chlorinated hydrocarbon compound, wherein the activity decreases with use. It is possible to provide a method for regenerating a catalyst having an excellent characteristic that the activity of the resulting catalyst can be recovered to a sufficiently high level.

本発明が対象とする触媒は、塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する際に用いた結晶性メタロシリケート触媒又は金属担持結晶性メタロシリケート触媒である。   The catalyst targeted by the present invention is a crystalline metallosilicate catalyst or a metal-supported crystalline metallosilicate catalyst used when hydrolyzing a chlorinated hydrocarbon compound to produce a hydroxy compound.

加水分解反応としては、塩素化炭化水素化合物の塩素を水酸基で置換する反応をあげることができ、更に具体的にはクロルベンゼンをフェノールに変換する反応を例示することができる。   Examples of the hydrolysis reaction include a reaction of substituting chlorine in the chlorinated hydrocarbon compound with a hydroxyl group, and more specifically, a reaction of converting chlorobenzene into phenol.

結晶性メタロシリケート触媒のメタロシリケートとは、Siを必須成分として含み、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種又は2種以上の金属元素を含み、Siと他金属原子比、Si/Me原子比(ここに、Meは、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種又は2種以上の金属元素を示す。)が、5以上であるメタロシリケートがより好ましいが、Me成分を実質的に含まない二酸化ケイ素からなる結晶性シリケートでもよい。結晶性メタロシリケートの結晶性とは、X線回折において回折ピークが観察されるものを示すことを意味する。   The metallosilicate of the crystalline metallosilicate catalyst contains Si as an essential component, and includes Al, Cu, Ga, Fe, B, Zn, Cr, Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Including one or more metal elements selected from Sb, Bi, Nb, etc., Si and other metal atomic ratio, Si / Me atomic ratio (where Me is Al, Cu, Ga, Fe, B, 1 or 2 or more metal elements selected from Zn, Cr, Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, Bi, Nb, etc.) are 5 or more. Metallosilicates are more preferred, but crystalline silicates composed of silicon dioxide substantially free of Me component may also be used. The crystallinity of the crystalline metallosilicate means that a diffraction peak is observed in X-ray diffraction.

金属担持結晶性メタロシリケート触媒は、上記の結晶性メタロシリケートを担体としての金属に担持したものである。金属としては、Al、Cu、La、Ce、Ni、Pd、Pt、Fe、Co等を用いることができる。金属担持結晶性メタロシリケート触媒中の結晶性メタロシリケートの金属担持量は、通常0.1〜10wt%である。   The metal-supported crystalline metallosilicate catalyst is obtained by supporting the above-described crystalline metallosilicate on a metal as a carrier. As the metal, Al, Cu, La, Ce, Ni, Pd, Pt, Fe, Co, or the like can be used. The metal loading of the crystalline metallosilicate in the metal-supporting crystalline metallosilicate catalyst is usually 0.1 to 10 wt%.

なお、結晶性メタロシリケート触媒及び金属担持結晶性メタロシリケート触媒については、たとえば「ゼオライトの科学と工学」(小野嘉夫・八嶋建明著,講談社)を参照することができる。   For the crystalline metallosilicate catalyst and the metal-supported crystalline metallosilicate catalyst, for example, “Science and Engineering of Zeolite” (by Yoshio Ono and Takeaki Yashima, Kodansha) can be referred to.

結晶性メタロシリケート触媒又は金属担持結晶性メタロシリケート触媒を用いて塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する方法しては、たとえば次の方法をあげることができる。   Examples of a method for producing a hydroxy compound by hydrolyzing a chlorinated hydrocarbon compound using a crystalline metallosilicate catalyst or a metal-supported crystalline metallosilicate catalyst include the following methods.

塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する方法は、特に制限はなく、公知の方法を使用することができる。クロルベンゼンをフェノールに変換する反応を例にしてあげれば次のとおりである。反応は、液相、気相いずれによっても実施されるが、通常は気相反応を用いる。反応形態としては、固定床、流動床、移動床のいずれでもよい。水と塩素化炭化水素のモル比(水/塩素化炭化水素)は通常0.5〜10であり、反応温度は160〜600℃であり、反応圧力は減圧、常圧、加圧いずれでもよいが、通常は常圧である。   There is no restriction | limiting in particular in the method of manufacturing a hydroxy compound by hydrolyzing a chlorinated hydrocarbon compound, A well-known method can be used. An example of the reaction of converting chlorobenzene to phenol is as follows. The reaction is carried out in either a liquid phase or a gas phase, but usually a gas phase reaction is used. The reaction form may be a fixed bed, a fluidized bed, or a moving bed. The molar ratio of water to chlorinated hydrocarbon (water / chlorinated hydrocarbon) is usually 0.5 to 10, the reaction temperature is 160 to 600 ° C., and the reaction pressure may be any of reduced pressure, normal pressure, and pressurized pressure. However, it is usually atmospheric pressure.

本発明の再生方法は、再生に供する触媒を不活性ガスの雰囲気下に400℃以上の温度で処理するものである。   In the regeneration method of the present invention, a catalyst to be regenerated is treated at a temperature of 400 ° C. or higher in an inert gas atmosphere.

不活性ガスとしては、コストの観点から窒素が好ましい。   As the inert gas, nitrogen is preferable from the viewpoint of cost.

再生温度は400℃以上であり、好ましくは450℃以上である。再生温度が低すぎると十分は再生効果を得ることができない。なお、再生温度の上限は触媒のシンタリング防止の観点から、850℃以下が好ましい。再生温度が高すぎると、触媒、および金属成分がシンタリングし、活性低下を起こす場合がある。   The regeneration temperature is 400 ° C. or higher, preferably 450 ° C. or higher. If the regeneration temperature is too low, the regeneration effect cannot be obtained sufficiently. The upper limit of the regeneration temperature is preferably 850 ° C. or less from the viewpoint of preventing sintering of the catalyst. If the regeneration temperature is too high, the catalyst and metal components may sinter and cause a decrease in activity.

再生の好ましい具体的方法をあげると、次のとおりである。   A preferred specific method of regeneration is as follows.

反応形態が固定床の場合、触媒を充填した固定床反応器に、水および塩素化炭化水素化合物を供給して加水分解反応を行った後、水および塩素化炭化水素の供給を停止して加水分解反応を終了し、次いで、不活性ガスを固定床反応器に供給することにより触媒層を不活性ガスで置換し、その後400℃以上の温度に触媒を保持することにより再生処理することが好ましい。   When the reaction mode is fixed bed, water and chlorinated hydrocarbon compound are supplied to the fixed bed reactor packed with catalyst to conduct hydrolysis reaction, and then water and chlorinated hydrocarbon supply are stopped and water is added. It is preferable to terminate the decomposition reaction, and then replace the catalyst layer with the inert gas by supplying the inert gas to the fixed bed reactor, and then regenerate by holding the catalyst at a temperature of 400 ° C. or higher. .

触媒層を不活性ガスで置換することにより、触媒層中の不活性ガス以外のガス成分濃度、特に酸素濃度を低減しておかなければならない。酸素が存在することにより、処理中に触媒に吸着している炭化水素、塩素化炭化水素、ヒドロキシ化合物が燃焼することで、触媒の温度が上昇し、シンタリングすることによって触媒が劣化する可能性がある。触媒層中の酸素濃度は、2vol%以下、好ましくは1vol%以下、さらに好ましくは500volppm以下である。   By replacing the catalyst layer with an inert gas, the concentration of gas components other than the inert gas in the catalyst layer, particularly the oxygen concentration, must be reduced. Due to the presence of oxygen, hydrocarbons, chlorinated hydrocarbons, and hydroxy compounds adsorbed on the catalyst during the treatment may burn, and the temperature of the catalyst will rise and the catalyst may deteriorate due to sintering. There is. The oxygen concentration in the catalyst layer is 2 vol% or less, preferably 1 vol% or less, more preferably 500 vol ppm or less.

400℃以上の温度での処理時間は、0.5時間〜5時間がよい。処理時間が短いと、触媒に吸着している炭化水素、塩素化炭化水素、ヒドロキシ化合物、塩化水素の脱離が不十分になり、活性が十分回復しない。また、処理時間が長いと、触媒再生に時間がかかり反応時間が短くなり生産性が低下する。   The treatment time at a temperature of 400 ° C. or higher is preferably 0.5 hours to 5 hours. When the treatment time is short, desorption of hydrocarbons, chlorinated hydrocarbons, hydroxy compounds and hydrogen chloride adsorbed on the catalyst becomes insufficient, and the activity is not sufficiently recovered. On the other hand, if the treatment time is long, it takes time to regenerate the catalyst, the reaction time is shortened, and productivity is lowered.

反応形態が流動床、または移動床の場合は、反応器に水および塩素化炭化水素化合物を供給して加水分解反応を行いながら、触媒は該反応器より触媒を連続的、または断続的に抜出し、別途設置した不活性ガスによる触媒再生処理設備にて、不活性ガス置換、400℃以上の温度で再生処理した後、これを反応器に戻す処方が、好適に採用される。   When the reaction mode is a fluidized bed or moving bed, the catalyst is continuously or intermittently withdrawn from the reactor while water and chlorinated hydrocarbon compounds are supplied to the reactor to carry out the hydrolysis reaction. In addition, a prescription is preferably adopted in which the catalyst is regenerated at a temperature of 400 ° C. or higher after replacement with an inert gas in a catalyst regeneration treatment facility with an inert gas installed separately, and then this is returned to the reactor.

本発明においては、不活性ガスで再生した触媒を、更に空気焼成することが好ましい。このことにより、再生後の触媒の活性を一層高いレベルに回復させることが可能となる。空気焼成の好ましい具体的方法をあげると、次のとおりである。   In the present invention, the catalyst regenerated with an inert gas is preferably further calcined with air. This makes it possible to recover the activity of the catalyst after regeneration to a higher level. A preferred specific method for air baking is as follows.

反応形態が固定床の場合、不活性ガスで再生処理を終了した後に、触媒層の温度を300℃〜600℃、より好ましくは350℃〜500℃に調節し、不活性ガスの供給を停止し、次いで空気を固定床反応器に供給することにより触媒層を空気焼成する。空気焼成の際の触媒層の温度が低すぎると、空気焼成による効果が低い。また、触媒層の温度が高すぎるとシンタリングにより触媒が劣化する。なお、空気焼成中に上記の温度範囲内で、温度を変更してもよい。   When the reaction form is a fixed bed, after the regeneration treatment with the inert gas is completed, the temperature of the catalyst layer is adjusted to 300 ° C to 600 ° C, more preferably 350 ° C to 500 ° C, and the supply of the inert gas is stopped. The catalyst layer is then air calcined by supplying air to the fixed bed reactor. If the temperature of the catalyst layer during air firing is too low, the effect of air firing is low. If the temperature of the catalyst layer is too high, the catalyst deteriorates due to sintering. In addition, you may change temperature within said temperature range during air baking.

空気焼成時間は、0.5時間〜5時間がよい。処理時間が短すぎると、空気焼成の効果が不十分であり、活性が一層高いレベルに回復しない。また、処理時間が長いと、触媒再生に時間がかかり反応時間が短くなり生産性が低下する。   The air firing time is preferably 0.5 hours to 5 hours. If the treatment time is too short, the effect of air baking is insufficient and the activity does not recover to a higher level. On the other hand, if the treatment time is long, it takes time to regenerate the catalyst, the reaction time is shortened, and productivity is lowered.

反応形態が流動床、または移動床の場合は、反応器に水および塩素化炭化水素化合物を供給して加水分解反応を行いながら、触媒は該反応器より触媒を連続的、または断続的に抜出し、別途設置した不活性ガスによる触媒再生処理設備および空気焼成設備にて処理した後、これを反応器に戻す処方が、好適に採用される。   When the reaction mode is a fluidized bed or moving bed, the catalyst is continuously or intermittently withdrawn from the reactor while water and chlorinated hydrocarbon compounds are supplied to the reactor to carry out the hydrolysis reaction. A prescription is preferably adopted in which the catalyst is treated in a catalyst regeneration treatment facility and an air calcination facility with an inert gas separately installed, and then returned to the reactor.

なお、この空気焼成では、空気の変わりに、酸素濃度がさらに低い不活性ガスと空気の混合ガスを用いてもよい。   In this air firing, a mixed gas of an inert gas and air having a lower oxygen concentration may be used instead of air.

次に本発明を実施例により説明する。
実施例1
イオン交換水150ml中に、市販の酢酸ニッケル四水和物(和光純薬工業製 99.9%)1.87g(0.05モル/L)を室温で攪拌、溶解させ酢酸ニッケル水溶液を調製した。その酢酸ニッケル水溶液中に、市販のNa−ZSM−5ゼオライト(エヌ・イー ケムキャット製 Si/Al=25 パウダー)30.0gを添加し、撹拌機にて攪拌下に100℃で加熱し、21時間含浸しイオン交換を行った。固形分をろ過、イオン交換水による水洗をした後、120℃で4時間乾燥、更に空気流通下400℃で5時間焼成し、触媒を得た。
200℃の固定床蒸発器と内径17mmφのガラス固定床反応器を直截に配置した。上記の触媒16.7gをガラス固定床反応器に充填し、400℃に保持した。窒素18ml/minを流通させた200℃の固定床蒸発器に水を1g/h、さらにクロルベンゼン(和光純薬工業製 特級)を5g/h供給し、(水/クロルベンゼン=1.3モル比)反応を開始した。
反応開始0.7時間後、生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析したところ、モノクロルベンゼン転化率26.7%、フェノール選択率84.6%、フェノール収率22.6%、ベンゼン選択率13.5%であった。4時間経過後、水、クロルベンゼンの供給を停止し、反応を停止した。(反応4時間)
窒素50ml/minを流通させ、固定床反応器を415℃にて1時間保持した(窒素処理)。
次に、固定床反応器を350℃に保持し、窒素の流通を止め、空気145ml/minを流通し、固定床反応器を350℃から450℃まで昇温、450℃にて1時間保持した(空気焼成)。
次に空気流通を止め、窒素流通下で固定床反応器を400℃に保持し、200℃の固定床蒸発器に水を1g/h、さらにクロルベンゼン(和光純薬工業製 特級)を5g/h供給し、反応を再度4時間実施した。
上記のような、反応4時間、窒素処理、空気焼成を再度繰り返した後、反応を再開し、3時間後(累積反応時間は11.0時間)生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析としたところ、モノクロルベンゼン転化率20.2%、フェノール選択率87.7%、フェノール収率17.7%、ベンゼン選択率10.3であった。
Next, the present invention will be described with reference to examples.
Example 1
In 150 ml of ion-exchanged water, 1.87 g (0.05 mol / L) of commercially available nickel acetate tetrahydrate (99.9%, manufactured by Wako Pure Chemical Industries, Ltd.) was stirred and dissolved at room temperature to prepare a nickel acetate aqueous solution. . 30.0 g of commercially available Na-ZSM-5 zeolite (Si / Al = 25 powder manufactured by N.E. Chemcat) was added to the nickel acetate aqueous solution, and the mixture was heated at 100 ° C. with stirring with a stirrer for 21 hours. Impregnation and ion exchange were performed. The solid content was filtered, washed with ion-exchanged water, dried at 120 ° C. for 4 hours, and further calcined at 400 ° C. for 5 hours under air flow to obtain a catalyst.
A fixed bed evaporator at 200 ° C. and a glass fixed bed reactor with an inner diameter of 17 mmφ were arranged directly. 16.7 g of the above catalyst was charged into a glass fixed bed reactor and maintained at 400 ° C. 1 g / h of water and 5 g / h of chlorobenzene (special grade manufactured by Wako Pure Chemical Industries, Ltd.) are supplied to a fixed bed evaporator at 200 ° C. in which nitrogen 18 ml / min is circulated, and (water / chlorobenzene = 1.3 mol). Ratio) The reaction was started.
0.7 hours after the start of the reaction, the product gas was absorbed in a toluene solvent, and the product was analyzed by gas chromatography. Monochlorobenzene conversion was 26.7%, phenol selectivity was 84.6%, and phenol yield was 22.6. %, And benzene selectivity was 13.5%. After 4 hours, the supply of water and chlorobenzene was stopped to stop the reaction. (Reaction 4 hours)
Nitrogen 50 ml / min was circulated, and the fixed bed reactor was held at 415 ° C. for 1 hour (nitrogen treatment).
Next, the fixed bed reactor was maintained at 350 ° C., the flow of nitrogen was stopped, air 145 ml / min was flowed, the fixed bed reactor was heated from 350 ° C. to 450 ° C., and held at 450 ° C. for 1 hour. (Air firing).
Next, the air flow was stopped, the fixed bed reactor was kept at 400 ° C. under nitrogen flow, 1 g / h of water was added to the fixed bed evaporator at 200 ° C., and 5 g / h of chlorobenzene (special grade manufactured by Wako Pure Chemical Industries) was used. h and the reaction was carried out again for 4 hours.
The reaction was repeated for 4 hours, nitrogen treatment and air calcination as described above, and then the reaction was resumed. After 3 hours (cumulative reaction time was 11.0 hours), the product gas was absorbed in the toluene solvent, and the product was When analyzed by gas chromatography, the monochlorobenzene conversion was 20.2%, the phenol selectivity was 87.7%, the phenol yield was 17.7%, and the benzene selectivity was 10.3.

実施例2
実施例1と同一の触媒、触媒充填量、反応設備にて、窒素18ml/minを流通させた200℃の固定床蒸発器に水を2g/h、さらにクロルベンゼン(和光純薬工業製 特級)を5g/h供給し(水/クロルベンゼン=2.5モル比)、実施例1と同じ反応温度にて反応を開始した。2時間経過後、水、クロルベンゼンの供給を停止し、反応を停止した(反応2時間)。
窒素50ml/min流通させ、固定床反応器を500℃にて2時間保持した(窒素処理)。
次に、固定床反応器を400℃に保持し、窒素の流通を止め、空気を145ml/minを流通した。固定床反応器を400℃から450℃まで昇温、450℃にて1時間保持した(空気焼成)。
次に空気流通を止め、窒素流通下で固定床反応器を400℃に保持し、200℃の固定床蒸発器に水を2g/h、さらにクロルベンゼン(和光純薬工業製 特級)を5g/h供給し、反応を再度2時間実施した。
上記のような、反応2時間、窒素処理、空気焼成を13回繰り返した後、反応を再開し、0.6時間後(累積反応時間は26.6時間)生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析としたところ、モノクロルベンゼン転化率、フェノール選択率、フェノール収率、ベンゼン選択率を測定したところ、表1の番号1のような結果になった。2時間経過後、水、クロルベンゼンの供給を停止し、反応を停止した。
窒素50ml/min流通させ、固定床反応器を500℃にて2時間保持して、窒素処理した後、空気焼成を行うことなく固定床反応器を400℃に保持し、窒素18ml/minを流通させた200℃の固定床蒸発器に水を2g/h、さらにクロルベンゼン(和光純薬工業製 特級)を5g/h供給し(水/クロルベンゼン=2.5モル比)、反応を再開した。
0.6時間後(累積反応時間は28.6時間)生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析としたところ、モノクロルベンゼン転化率、フェノール選択率、フェノール収率、ベンゼン選択率を測定したところ、表1の番号2のような結果になった。2時間経過後、水、クロルベンゼンの供給を停止し、反応を停止した。
以上のように、空気焼成することなく、反応2時間、窒素処理を繰り返し、反応開始0.5時間後の生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析としたところ、表1の番号3及び4に示す結果を得た。
窒素処理のみを行うことでも、モノクロルベンゼン転化率、フェノール収率が向上した。
Example 2
In the same catalyst, catalyst loading amount, and reaction equipment as in Example 1, 2 g / h of water was added to a fixed bed evaporator at 200 ° C. in which nitrogen 18 ml / min was circulated, and chlorobenzene (special grade manufactured by Wako Pure Chemical Industries). Was fed at 5 g / h (water / chlorobenzene = 2.5 molar ratio), and the reaction was started at the same reaction temperature as in Example 1. After 2 hours, the supply of water and chlorobenzene was stopped to stop the reaction (reaction 2 hours).
Nitrogen was allowed to flow at 50 ml / min, and the fixed bed reactor was maintained at 500 ° C. for 2 hours (nitrogen treatment).
Next, the fixed bed reactor was kept at 400 ° C., the flow of nitrogen was stopped, and air was circulated at 145 ml / min. The fixed bed reactor was heated from 400 ° C. to 450 ° C. and held at 450 ° C. for 1 hour (air calcination).
Next, the air flow was stopped, the fixed bed reactor was kept at 400 ° C. under a nitrogen flow, 2 g / h of water was added to the fixed bed evaporator at 200 ° C., and 5 g / h of chlorobenzene (special grade manufactured by Wako Pure Chemical Industries) was used. h and the reaction was carried out again for 2 hours.
The reaction was repeated for 2 hours, nitrogen treatment and air calcination 13 times as described above, and then the reaction was resumed. After 0.6 hours (cumulative reaction time was 26.6 hours), the product gas was absorbed in the toluene solvent, When the product was analyzed by gas chromatography, the conversion of monochlorobenzene, phenol selectivity, phenol yield, and benzene selectivity were measured, and the results as shown in No. 1 in Table 1 were obtained. After 2 hours, the supply of water and chlorobenzene was stopped to stop the reaction.
After flowing nitrogen at 50 ml / min, holding the fixed bed reactor at 500 ° C. for 2 hours, treating with nitrogen, holding the fixed bed reactor at 400 ° C. without air calcination, flowing nitrogen at 18 ml / min 2 g / h of water and 5 g / h of chlorobenzene (special grade manufactured by Wako Pure Chemical Industries) were supplied to the fixed bed evaporator at 200 ° C. (water / chlorobenzene = 2.5 molar ratio), and the reaction was resumed. .
After 0.6 hours (cumulative reaction time was 28.6 hours), the product gas was absorbed in a toluene solvent, and the product was analyzed by gas chromatography. Monochlorobenzene conversion, phenol selectivity, phenol yield, benzene selection When the rate was measured, the result shown in Table 1 No. 2 was obtained. After 2 hours, the supply of water and chlorobenzene was stopped to stop the reaction.
As described above, nitrogen treatment was repeated for 2 hours without air calcination, and the product gas 0.5 hours after the start of the reaction was absorbed in a toluene solvent, and the product was analyzed by gas chromatography. Results 3 and 4 were obtained.
Even when only the nitrogen treatment was performed, the conversion rate of monochlorobenzene and the yield of phenol were improved.

Figure 2008142629
Figure 2008142629

比較例1
実施例1と同一の触媒、触媒充填量、反応設備にて、実施例1と同一の反応開始操作を行い、反応開始1.5時間後、生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析としたところ、モノクロルベンゼン転化率26.2%、フェノール選択率84.0%、フェノール収率22.0%、ベンゼン選択率13.3%であった。4時間経過後、水、クロルベンゼンの供給を停止した。さらに、窒素流通を停止した。
実施例1とは異なり、窒素処理を行うことなく、空気を145ml/minを流通し、固定床反応器を400℃から450℃まで昇温、450℃にて1時間保持して空気焼成を実施した後、反応を再度4時間実施した。
上記のような、反応4時間、空気焼成を再度繰り返した後、反応を再開し3時間後(累積反応時間は11.0時間)生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析としたところ、モノクロルベンゼン転化率17.9%、フェノール選択率83.6%、フェノール収率15.0%、ベンゼン選択率13.2%であった。
Comparative Example 1
The same reaction start operation as in Example 1 was carried out using the same catalyst, catalyst loading, and reaction equipment as in Example 1, 1.5 hours after the start of the reaction, the product gas was absorbed in a toluene solvent, and the product was gas chromatographed. As a result of analysis by a graph, it was found that the conversion of monochlorobenzene was 26.2%, the phenol selectivity was 84.0%, the phenol yield was 22.0%, and the benzene selectivity was 13.3%. After 4 hours, the supply of water and chlorobenzene was stopped. Furthermore, the nitrogen flow was stopped.
Unlike Example 1, air was circulated at 145 ml / min with no nitrogen treatment, the fixed bed reactor was heated from 400 ° C. to 450 ° C. and held at 450 ° C. for 1 hour. After that, the reaction was carried out again for 4 hours.
After repeating the air calcination as described above for 4 hours, the reaction was restarted, and after 3 hours (cumulative reaction time was 11.0 hours), the product gas was absorbed in a toluene solvent, and the product was analyzed by gas chromatography. As a result, the monochlorobenzene conversion rate was 17.9%, the phenol selectivity was 83.6%, the phenol yield was 15.0%, and the benzene selectivity was 13.2%.

Claims (5)

塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する際に用いた結晶性メタロシリケート触媒又は金属担持結晶性メタロシリケート触媒の再生方法であって、再生に供する触媒を不活性ガスの雰囲気下に400℃以上の温度で処理する触媒の再生方法。 A method for regenerating a crystalline metallosilicate catalyst or a metal-supported crystalline metallosilicate catalyst used for producing a hydroxy compound by hydrolyzing a chlorinated hydrocarbon compound, wherein the catalyst used for regeneration is in an inert gas atmosphere. A method for regenerating a catalyst, wherein the catalyst is treated at a temperature of 400 ° C. or higher. 不活性ガスで処理し、その後空気焼成する請求項1記載の再生方法。 The regeneration method according to claim 1, wherein treatment is performed with an inert gas, followed by air firing. 不活性ガスが窒素である請求項1記載の再生方法。 The regeneration method according to claim 1, wherein the inert gas is nitrogen. 加水分解反応が塩素化炭化水素化合物の塩素を水酸基で置換する反応である請求項1記載の再生方法。 The regeneration method according to claim 1, wherein the hydrolysis reaction is a reaction in which chlorine of the chlorinated hydrocarbon compound is substituted with a hydroxyl group. 加水分解反応がクロルベンゼンをフェノールに変換する反応である請求項1記載の再生方法。 The regeneration method according to claim 1, wherein the hydrolysis reaction is a reaction for converting chlorobenzene into phenol.
JP2006333068A 2006-12-11 2006-12-11 Catalyst regeneration method Expired - Fee Related JP4656049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333068A JP4656049B2 (en) 2006-12-11 2006-12-11 Catalyst regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333068A JP4656049B2 (en) 2006-12-11 2006-12-11 Catalyst regeneration method

Publications (2)

Publication Number Publication Date
JP2008142629A true JP2008142629A (en) 2008-06-26
JP4656049B2 JP4656049B2 (en) 2011-03-23

Family

ID=39603399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333068A Expired - Fee Related JP4656049B2 (en) 2006-12-11 2006-12-11 Catalyst regeneration method

Country Status (1)

Country Link
JP (1) JP4656049B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192330A (en) * 1986-02-20 1987-08-22 Asahi Chem Ind Co Ltd Production of aryl hydroxide
JPH04117338A (en) * 1990-09-06 1992-04-17 Res Assoc Util Of Light Oil Production of aromatic hydroxide
JPH059141A (en) * 1991-06-28 1993-01-19 Res Assoc Util Of Light Oil Production of hydroxy aromatic compound
JPH0985098A (en) * 1995-09-21 1997-03-31 Mitsubishi Chem Corp Regeneration of hydrated catalyst
JP2002504014A (en) * 1997-06-06 2002-02-05 ビーエーエスエフ アクチェンゲゼルシャフト Regeneration method of zeolite catalyst
JP2002173479A (en) * 2000-09-29 2002-06-21 Sumitomo Chem Co Ltd METHOD FOR PRODUCING epsi-CAPROLACTAM AND REACTOR USED FOR THE METHOD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192330A (en) * 1986-02-20 1987-08-22 Asahi Chem Ind Co Ltd Production of aryl hydroxide
JPH04117338A (en) * 1990-09-06 1992-04-17 Res Assoc Util Of Light Oil Production of aromatic hydroxide
JPH059141A (en) * 1991-06-28 1993-01-19 Res Assoc Util Of Light Oil Production of hydroxy aromatic compound
JPH0985098A (en) * 1995-09-21 1997-03-31 Mitsubishi Chem Corp Regeneration of hydrated catalyst
JP2002504014A (en) * 1997-06-06 2002-02-05 ビーエーエスエフ アクチェンゲゼルシャフト Regeneration method of zeolite catalyst
JP2002173479A (en) * 2000-09-29 2002-06-21 Sumitomo Chem Co Ltd METHOD FOR PRODUCING epsi-CAPROLACTAM AND REACTOR USED FOR THE METHOD

Also Published As

Publication number Publication date
JP4656049B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP5545114B2 (en) Catalyst regeneration method
JP5788961B2 (en) Pretreatment and regeneration method of catalyst used in production process of fluoroiodoalkanes
RU2638930C2 (en) Catalytic composition and method of reactivation used for alkane dehydrogenation
JP2006315891A (en) Method of manufacturing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbon
RU2013138734A (en) CATALYTIC GAS-PHASE FLUORATION
CA2931633C (en) Metal-loaded zeolite catalysts for the halogen-free conversion of dimethyl ether to methyl acetate
JP2013534529A (en) Process for the synthesis of trifluoroethylene
JPWO2018164182A1 (en) Ammonia synthesis catalyst and its use
US4855267A (en) Regeneration of methanol dissociation catalysts
JP6566662B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus using ammonia oxidative decomposition catalyst
EP1921057B1 (en) Process for production of cycloolefin
JP4656049B2 (en) Catalyst regeneration method
CN104736242A (en) Regeneration of aldehyde decarbonylation catalysts
EP2831297A1 (en) Rhenium recovery from used reductive amination catalysts
EA001393B1 (en) Process for preparing hydroxylammonium salts
JP2009107969A (en) Method for producing vinyl chloride
TW201542512A (en) Process for producing an unsaturated hydrocarbon
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
JP2004261771A (en) Unsupported catalyst for directly decomposing hydrocarbon, production method thereof and production method of hydrogen and carbon by directly decomposing hydrocarbon
JP2000026347A (en) Production of aromatic compound having hydroxyl group by catalytic oxidation
JP4779942B2 (en) Method for producing catalyst for hydrolysis reaction
WO2019208281A1 (en) Method for producing indene
US11806703B2 (en) Emission control during catalyst regeneration
JPH10286439A (en) Decomposing method of fluorine-containing compound
JPH0975734A (en) Method for regenerating catalyst

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees