JP4779942B2 - Method for producing catalyst for hydrolysis reaction - Google Patents

Method for producing catalyst for hydrolysis reaction Download PDF

Info

Publication number
JP4779942B2
JP4779942B2 JP2006312527A JP2006312527A JP4779942B2 JP 4779942 B2 JP4779942 B2 JP 4779942B2 JP 2006312527 A JP2006312527 A JP 2006312527A JP 2006312527 A JP2006312527 A JP 2006312527A JP 4779942 B2 JP4779942 B2 JP 4779942B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrolysis reaction
reaction
nickel
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006312527A
Other languages
Japanese (ja)
Other versions
JP2008126123A (en
Inventor
カルロス クナップ
利明 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006312527A priority Critical patent/JP4779942B2/en
Publication of JP2008126123A publication Critical patent/JP2008126123A/en
Application granted granted Critical
Publication of JP4779942B2 publication Critical patent/JP4779942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、加水分解反応用触媒の製造方法及び加水分解反応用触媒に関するものである。更に詳しくは、本発明は、特徴を有する加水分解反応用触媒の製造方法及び該製造方法により得られる加水分解反応用触媒に関するものである。   The present invention relates to a method for producing a catalyst for hydrolysis reaction and a catalyst for hydrolysis reaction. More specifically, the present invention relates to a method for producing a hydrolysis reaction catalyst having characteristics and a hydrolysis reaction catalyst obtained by the production method.

たとえば塩素化炭化水素化合物の塩素を水酸基で置換する加水分解反応に用いる触媒としては、金属坦持結晶性メタロシリケート、リン酸ランタン等が知られている。特許文献1には、結晶性メタロシリケートに塩化銅を担持した触媒が開示されている。   For example, metal-supported crystalline metallosilicates, lanthanum phosphates, and the like are known as catalysts used in hydrolysis reactions in which chlorine in chlorinated hydrocarbon compounds is substituted with hydroxyl groups. Patent Document 1 discloses a catalyst in which copper chloride is supported on a crystalline metallosilicate.

しかしながら、従来の触媒は、所望の加水分解反応を高収率かつ高選択率の下に実施するという点において必ずしも満足できるものではなかった。   However, conventional catalysts are not always satisfactory in that the desired hydrolysis reaction is carried out with high yield and high selectivity.

特開昭62-192330号公報Japanese Patent Laid-Open No. 62-192330

かかる状況において、本発明が解決しようとする課題は、本発明は、特徴を有する加水分解反応用触媒の製造方法及び該製造方法により得られる加水分解反応用触媒を提供する点に存する。   Under such circumstances, the problem to be solved by the present invention resides in that the present invention provides a method for producing a hydrolysis reaction catalyst having characteristics and a hydrolysis reaction catalyst obtained by the production method.

すなわち、本発明のうち第一の発明は、メタロシリケートを酢酸ニッケル及び/又は蟻酸ニッケルを溶解させた溶液に浸漬する工程を有する加水分解反応用触媒の製造方法に係るものである。   That is, the first invention of the present invention relates to a method for producing a catalyst for hydrolysis reaction, which comprises a step of immersing a metallosilicate in a solution in which nickel acetate and / or nickel formate is dissolved.

また、本発明のうち第二の発明は、上記の製造方法により得られる加水分解反応用触媒に係るものである。   Moreover, 2nd invention among this invention concerns on the catalyst for hydrolysis reactions obtained by said manufacturing method.

本発明により、加水分解反応用触媒の製造方法及び加水分解反応用触媒に関するものである。更に詳しくは、本発明は、特徴を有する加水分解反応用触媒を提供することができる。   The present invention relates to a method for producing a hydrolysis reaction catalyst and a hydrolysis reaction catalyst. More specifically, the present invention can provide a catalyst for hydrolysis reaction having characteristics.

本発明の製造方法は、メタロシリケートを酢酸ニッケル及び/又は蟻酸ニッケルを溶解させた溶液に浸漬する工程を有する。   The production method of the present invention includes a step of immersing the metallosilicate in a solution in which nickel acetate and / or nickel formate is dissolved.

メタロシリケートとは、Siを必須成分として含み、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種又は2種以上の金属元素を含み、Siと他金属原子比、Si/Me原子比(ここに、Meは、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種又は2種以上の金属元素を示す。)が、5以上であるメタロシリケートがより好ましいが、Me成分を実質的に含まない二酸化ケイ素からなる結晶性シリケートでもよい。メタロシリケートには結晶性のものと非晶性のものがあり、本発明はどちらも使用できるが、加水分解反応の収率、選択率向上の観点から結晶性のものがこのましい。ここで結晶性とはX線回折において回折ピークが観察されるものを示す意味する。   Metallosilicate includes Si as an essential component, and includes Al, Cu, Ga, Fe, B, Zn, Cr, Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, Bi, Nb, and the like. Including one or more metal elements selected from: Si and other metal atomic ratio, Si / Me atomic ratio (where Me is Al, Cu, Ga, Fe, B, Zn, Cr, Be, 1 or 2 or more metal elements selected from Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, Bi, Nb, etc.) are more preferably metallosilicates having 5 or more. Crystalline silicate composed of silicon dioxide substantially free of Me component may be used. There are crystalline and amorphous metallosilicates, both of which can be used in the present invention, but crystalline ones are preferable from the viewpoint of improving the yield and selectivity of hydrolysis reaction. Here, the crystallinity means that a diffraction peak is observed in X-ray diffraction.

メタロシリケートを酢酸ニッケル及び/又は蟻酸ニッケルを溶解させた溶液に浸漬する溶液の溶媒は水を用いることができる。溶液中の酢酸ニッケル及び/又は蟻酸ニッケル濃度はニッケルに換算して0.001〜1モル/Lが好ましい。該濃度が低すぎると加水分解反応の収率が低下することがあり、一方該濃度が高すぎると不溶の酢酸ニッケル及び/又は蟻酸ニッケルが発生し、触媒性能が悪化することがある。なお、酢酸ニッケルと蟻酸ニッケルはその一種を単独で用いてもよく、両方を併用してもよい。   Water can be used as a solvent for the solution in which the metallosilicate is immersed in a solution in which nickel acetate and / or nickel formate is dissolved. The concentration of nickel acetate and / or nickel formate in the solution is preferably 0.001 to 1 mol / L in terms of nickel. If the concentration is too low, the yield of the hydrolysis reaction may be reduced. On the other hand, if the concentration is too high, insoluble nickel acetate and / or nickel formate may be generated, and the catalyst performance may deteriorate. In addition, nickel acetate and nickel formate may be used individually by 1 type, and may use both together.

含浸させるときの溶液の温度は10〜100℃が好ましい。該温度が低すぎると触媒中のニッケル含有量が低くなることがあり、一方該温度が高すぎると触媒中のニッケル含有量が多すぎるとなることがある。   The temperature of the solution when impregnating is preferably 10 to 100 ° C. If the temperature is too low, the nickel content in the catalyst may be low, while if the temperature is too high, the nickel content in the catalyst may be too high.

含浸時間は1〜48時間が好ましい。該時間が短かすぎると触媒中のニッケル含有量が低くなり収率(転化率)が低下することがあり、一方該時間が長すぎると触媒中のニッケルが多すぎると、選択率が低下することがある。   The impregnation time is preferably 1 to 48 hours. If the time is too short, the nickel content in the catalyst may be lowered and the yield (conversion rate) may be reduced. On the other hand, if the time is too long, the selectivity will be reduced if there is too much nickel in the catalyst. Sometimes.

含浸後は、濾過、乾燥(たとえば、80〜150℃、1〜24時間)及び焼成(たとえば、300〜500℃、1〜8時間)することにより粉状の触媒を得ることができる。必要に応じ、成形して用いることができる。また、濾過せずに蒸発乾燥させた後、焼成してもよい。   After impregnation, a powdered catalyst can be obtained by filtering, drying (for example, 80 to 150 ° C., 1 to 24 hours) and firing (for example, 300 to 500 ° C., 1 to 8 hours). If necessary, it can be molded and used. Moreover, you may bake, after evaporating and drying, without filtering.

本発明の製造方法により得られる触媒は、加水分解反応に供せられるものである。加水分解反応としては、塩素化炭化水素化合物の塩素を水酸基で置換する反応をあげることができ、より具体的にはクロルベンゼンをフェノールに変換する反応をあげることができる。   The catalyst obtained by the production method of the present invention is subjected to a hydrolysis reaction. Examples of the hydrolysis reaction include a reaction in which chlorine of a chlorinated hydrocarbon compound is substituted with a hydroxyl group, and more specifically, a reaction in which chlorobenzene is converted to phenol.

加水分解反応させる方法は、特に制限はなく、公知の方法を使用することができる。クロルベンゼンをフェノールに変換する反応を例にしてあげれば次のとおりである。反応は、液相、気相いずれによっても実施されるが、通常は気相反応を用いる。反応形態としては、固定床、流動床、移動床のいずれでもよい。塩酸中の水と塩素化炭化水素のモル比(水/塩素化炭化水素)は通常0.5〜10であり、反応温度は160〜600℃であり、反応圧力は減圧、常圧、加圧いずれでもよいが、通常は常圧である。   There is no restriction | limiting in particular in the method of making it hydrolyze, A well-known method can be used. An example of the reaction of converting chlorobenzene to phenol is as follows. The reaction is carried out in either a liquid phase or a gas phase, but usually a gas phase reaction is used. The reaction form may be a fixed bed, a fluidized bed, or a moving bed. The molar ratio of water to chlorinated hydrocarbon in hydrochloric acid (water / chlorinated hydrocarbon) is usually 0.5 to 10, the reaction temperature is 160 to 600 ° C., and the reaction pressure is reduced pressure, normal pressure, increased pressure. Either may be used, but normal pressure is usually used.

次に本発明を実施例により説明する。
実施例1
イオン交換水150ml中に、市販の酢酸ニッケル四水和物(和光純薬工業製 99.9%)1.87g(0.05モル/L)を室温で攪拌、溶解させ酢酸ニッケル水溶液を調製した。その酢酸ニッケル水溶液中に、市販のNa−ZSM−5ゼオライト(エヌ・イー ケムキャット製 Si/Al=25 パウダー)30.0gを添加し、撹拌機にて攪拌下に100℃で加熱し、21時間含浸しイオン交換を行った。固形分をろ過、イオン交換水による水洗をした後、120℃で4時間乾燥、更に空気流通下400℃で5時間焼成し、触媒を得た。
200℃の固定床蒸発器と内径17mmφのガラス固定床反応器を直截に配置した。上記触媒1.00gをガラス固定床反応器に充填し、454℃に保持した。窒素11ml/minを流通させた200℃の固定床蒸発器に窒素11ml/min水を2.9g/h、さらにクロルベンゼン(和光純薬工業製 特級)を3.0g/h固定床蒸発器に供給し、60ml/minの水蒸気として、さらにクロルベンゼン蒸気として10ml/min(水/クロルベンゼン=6.0)をガラス固定床反応器に供給して反応を開始した。
1.5時間経過後、生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析としたところ、モノクロルベンゼン転化率18.8%、フェノール選択率93.7%、ベンゼン選択率5.8%であった。
Next, the present invention will be described with reference to examples.
Example 1
In 150 ml of ion-exchanged water, 1.87 g (0.05 mol / L) of commercially available nickel acetate tetrahydrate (99.9%, manufactured by Wako Pure Chemical Industries, Ltd.) was stirred and dissolved at room temperature to prepare an aqueous nickel acetate solution. . 30.0 g of commercially available Na-ZSM-5 zeolite (Si / Al = 25 powder manufactured by N.E. Chemcat) was added to the nickel acetate aqueous solution, and the mixture was heated with stirring at 100 ° C. for 21 hours. Impregnation and ion exchange were performed. The solid content was filtered, washed with ion-exchanged water, dried at 120 ° C. for 4 hours, and further calcined at 400 ° C. for 5 hours under air flow to obtain a catalyst.
A fixed bed evaporator at 200 ° C. and a glass fixed bed reactor with an inner diameter of 17 mmφ were arranged directly. 1.00 g of the catalyst was charged into a glass fixed bed reactor and maintained at 454 ° C. Nitrogen 11ml / min water 2.9g / h, nitrogen chlorobenzene (special grade made by Wako Pure Chemical Industries) 3.0g / h fixed bed evaporator Then, 60 ml / min water vapor and 10 ml / min (water / chlorobenzene = 6.0) as chlorobenzene vapor were supplied to the glass fixed bed reactor to start the reaction.
After 1.5 hours, the product gas was absorbed in a toluene solvent, and the product was analyzed by gas chromatography. Monochlorobenzene conversion was 18.8%, phenol selectivity was 93.7%, and benzene selectivity was 5.8. %Met.

実施例2
酢酸ニッケルの代わりに、市販の蟻酸ニッケル二水和物(和光純薬工業製)1.38重量部(0.05モル/L)を使用した以外、実施例1と同様に触媒を得た。
実施例1と同様反応を開始し、1.5時間経過後、モノクロルベンゼン転化率13.5%、フェノール選択率96.9%、ベンゼン選択率2.2%であった。
Example 2
A catalyst was obtained in the same manner as in Example 1 except that 1.38 parts by weight (0.05 mol / L) of commercially available nickel formate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of nickel acetate.
The reaction was started in the same manner as in Example 1. After 1.5 hours, the monochlorobenzene conversion was 13.5%, the phenol selectivity was 96.9%, and the benzene selectivity was 2.2%.

比較例1
酢酸ニッケルの代わりに、市販の塩化ニッケル六水和物(和光純薬工業製 99.9%)1.77重量部(0.05モル/L)を使用した以外、実施例1と同様に触媒を得た。
実施例1と同様反応を開始し、1.5時間経過後、モノクロルベンゼン転化率12.9%、フェノール選択率94.9%、ベンゼン選択率4.6%であった。
Comparative Example 1
The catalyst was the same as in Example 1 except that 1.77 parts by weight (0.05 mol / L) of commercially available nickel chloride hexahydrate (99.9%, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of nickel acetate. Got.
The reaction was started in the same manner as in Example 1. After 1.5 hours, the monochlorobenzene conversion was 12.9%, the phenol selectivity was 94.9%, and the benzene selectivity was 4.6%.

Claims (5)

メタロシリケートを酢酸ニッケル及び/又は蟻酸ニッケルを溶解させた溶液に浸漬する工程を有する加水分解反応用触媒の製造方法。 A method for producing a catalyst for hydrolysis reaction, comprising a step of immersing a metallosilicate in a solution in which nickel acetate and / or nickel formate is dissolved. メタロシリケートが結晶性のメタロシリケートである請求項1記載の製造方法。 The process according to claim 1, wherein the metallosilicate is a crystalline metallosilicate. 加水分解反応が塩素化炭化水素化合物の塩素を水酸基で置換する反応である請求項1記載の製造方法。 The process according to claim 1, wherein the hydrolysis reaction is a reaction in which chlorine of the chlorinated hydrocarbon compound is substituted with a hydroxyl group. 加水分解反応がクロルベンゼンをフェノールに変換する反応である請求項1記載の製造方法。 The production method according to claim 1, wherein the hydrolysis reaction is a reaction for converting chlorobenzene into phenol. 溶液が水溶液である請求項1記載の製造方法。 The method according to claim 1, wherein the solution is an aqueous solution.
JP2006312527A 2006-11-20 2006-11-20 Method for producing catalyst for hydrolysis reaction Expired - Fee Related JP4779942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312527A JP4779942B2 (en) 2006-11-20 2006-11-20 Method for producing catalyst for hydrolysis reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312527A JP4779942B2 (en) 2006-11-20 2006-11-20 Method for producing catalyst for hydrolysis reaction

Publications (2)

Publication Number Publication Date
JP2008126123A JP2008126123A (en) 2008-06-05
JP4779942B2 true JP4779942B2 (en) 2011-09-28

Family

ID=39552500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312527A Expired - Fee Related JP4779942B2 (en) 2006-11-20 2006-11-20 Method for producing catalyst for hydrolysis reaction

Country Status (1)

Country Link
JP (1) JP4779942B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148918B (en) * 2015-07-05 2020-05-05 桂林电子科技大学 Preparation method and application of Co-B/Ni-B amorphous nanosphere composite alloy catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206060A (en) * 1990-01-08 1991-09-09 Res Assoc Util Of Light Oil Production of phenols
JPH04334332A (en) * 1991-05-09 1992-11-20 Res Assoc Util Of Light Oil Production of hydroxy aromatic compound
JPH0570390A (en) * 1991-09-12 1993-03-23 Asahi Chem Ind Co Ltd Method for producing aromatic hydroxide
JPH07110825B2 (en) * 1993-02-03 1995-11-29 旭化成工業株式会社 Phenol manufacturing method
JP4935052B2 (en) * 2005-03-30 2012-05-23 住友化学株式会社 Method for producing phenol

Also Published As

Publication number Publication date
JP2008126123A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
CN102206147B (en) Method for oxidizing cyclohexane
WO2005092874A1 (en) Process for the preparation of propylene oxide
CN109890782A (en) Produce the single-stage process of butadiene
JPS6191142A (en) Synthesis of iodobenzene
CN107771101B (en) Preparation method of ferrite metal oxide catalyst
JP4779942B2 (en) Method for producing catalyst for hydrolysis reaction
WO2020161750A1 (en) Process of preparation of 1,2-pentanediol from furfural
JP2013063997A (en) Use of chemical reaction to separate ethylene from ethane in ethane-based process to produce acetic acid
JPH02188542A (en) Production of phenol
JP7029346B2 (en) Indene manufacturing method
JP2007253007A (en) Catalyst for hydrolysis reaction and its manufacturing method
JP2000026347A (en) Production of aromatic compound having hydroxyl group by catalytic oxidation
JP2007302612A (en) Method for producing ketone
JP2012514628A (en) Ammoximation method
JP2007253008A (en) Method for manufacturing catalyst for hydrolysis reaction and catalyst
CN107954838B (en) Method for preparing 1, 3-dichloro-2-propanol
CN1832923A (en) Method for the manufacture of cyanopyridines and catalysts suitable therefor
JP2008207156A (en) Manufacturing method of ketone compound
JP2008133255A (en) Method for producing hydroxy compound
CN107954834B (en) Method for preparing dichloropropanol
WO2018178831A1 (en) Process for production of phenol using zeolite supported catalysts
WO2005003073A1 (en) Process for producing 5-iodo-2-methylbenzoic acid
KR100588948B1 (en) Catalyst for making dimethylether, method of preparing the same and method of preparing dimethylether using the same
JP4352537B2 (en) Method for producing acrylonitrile and / or acrylic acid
JP6621016B2 (en) Method for producing phenol

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees