JPH03206060A - Production of phenols - Google Patents

Production of phenols

Info

Publication number
JPH03206060A
JPH03206060A JP2000379A JP37990A JPH03206060A JP H03206060 A JPH03206060 A JP H03206060A JP 2000379 A JP2000379 A JP 2000379A JP 37990 A JP37990 A JP 37990A JP H03206060 A JPH03206060 A JP H03206060A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
phenols
reaction
halogenated aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000379A
Other languages
Japanese (ja)
Inventor
Masahiko Furuya
方彦 古谷
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Utilization of Light Oil
Original Assignee
Research Association for Utilization of Light Oil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Utilization of Light Oil filed Critical Research Association for Utilization of Light Oil
Priority to JP2000379A priority Critical patent/JPH03206060A/en
Publication of JPH03206060A publication Critical patent/JPH03206060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To stably obtain the aimed compound in a high yield by using nickel- containing crystalline metallosilicate as a catalyst in transformation of a halogenated aromatic compound to phenols with hydrolyzing in a vapor phase. CONSTITUTION:A halogenated aromatic compound is hydrolyzed in a vapor phase using nickel-containing crystalline metallosilicate molded preferably by low-acidic binder, especially silica as a catalyst to stably obtain phenols in a high yield using the above-mentioned catalyst generating extremely slighter loss of an active component during reaction as compared with a connectional copper-based catalyst. Besides, said catalyst has a structure resemble to ZSM-5, ZSM-11 or AZ-1 and contains Al and B as metal components preferably having a molar ratio of Si to the metal components of >=10, especially 15-500. Further, a containing amount of Ni is 0.01-20wt.%, preferably 0.01-10wt.% and especially 0.2-5wt.%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ハロゲン化芳香族化合物を気相にて加水分解
し、フェノール類を製造する方法に関する。さらに詳し
くは、ニッケル含有のメタロシリケートを触媒として用
いることを特徴とするハロゲン化芳香族化合物を加水分
解しフェノール類を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing phenols by hydrolyzing a halogenated aromatic compound in a gas phase. More specifically, the present invention relates to a method for producing phenols by hydrolyzing a halogenated aromatic compound, which is characterized by using a nickel-containing metallosilicate as a catalyst.

(従来の技術) ハロゲン化芳香族化合物から気相にて加水分解してフェ
ノール類を製造する方法としては、銅を担持したリン酸
カルシウムアバタイトを触媒として用いる方法(米国特
許第2,988,573号等)、洞を担持したリン酸ジ
ルコニウムを触媒として用いる方法(特公昭51−61
08号公報)、銅を担持した希土類金属リン酸塩を触媒
に用いる方法(特開昭47−27936号公報)、金属
成分含有の結晶性アルミノシリケートを触媒として用い
る方法(特開昭62−192330号公報、特開昭62
−281834号公報)、結晶性ポロシリケートを触媒
とする方法(特開昭62−240635号公報)、結晶
性鉄シリケートを触媒とする方法(特開昭6 2−2 
4 0 6 3 6号公報)、結晶性クロモシリケート
を触媒に用いる方法(特開昭6 2−2 4 0 6 
3 4号公報)が知られている。
(Prior Art) As a method for producing phenols by hydrolyzing halogenated aromatic compounds in the gas phase, a method using copper-supported calcium abatite phosphate as a catalyst (US Pat. No. 2,988,573) etc.), a method using zirconium phosphate supporting cavities as a catalyst (Japanese Patent Publication No. 51-61
08 Publication), a method using a rare earth metal phosphate supporting copper as a catalyst (Japanese Unexamined Patent Publication No. 47-27936), a method using a crystalline aluminosilicate containing a metal component as a catalyst (Japanese Unexamined Patent Publication No. 62-192330) Publication, JP-A-62
-281834), a method using crystalline porosilicate as a catalyst (Japanese Unexamined Patent Publication No. 62-240635), a method using crystalline iron silicate as a catalyst (Japanese Unexamined Patent Publication No. 62-240635)
40636), a method using crystalline chromosilicate as a catalyst (Japanese Unexamined Patent Publication No. 62-2406)
3 No. 4) is known.

(発明が解決しようとする課題) しかしながら、リン酸力ルシウムアパタイト、リン酸ジ
ルコニウム、希土類リン酸塩等の触媒は活性が低く、5
00″C以上の高温反応や低い空間速度で反応させる必
要がある。また、結晶性メタロシυケート系の触媒は比
較的活性は高いが、これらいずれの触媒も、最も有効な
活性或分である銅成分が反応中にハロゲン化銅として飛
散ロスするため、触媒の不可逆的な経時活性低下を生ず
る等の問題点を有しており、工業的には満足できるレヘ
ルにない。
(Problem to be solved by the invention) However, catalysts such as lucium apatite phosphate, zirconium phosphate, and rare earth phosphates have low activity;
It is necessary to carry out the reaction at a high temperature of 00"C or higher and at a low space velocity. Also, although crystalline metallosicate-based catalysts have relatively high activity, the most effective activity of any of these catalysts is Since the copper component is scattered and lost as copper halide during the reaction, there are problems such as an irreversible decline in the activity of the catalyst over time, which is not at an industrially satisfactory level.

(課題を解決するための手段) 本発明者らは、ハロゲン化芳香族化合物から加水分解に
より、フェノール類を高収率で、かつ、安定して製造す
る方法について鋭意検討を加えた結果、ニッケル含有結
晶性メタロシリケートを触媒に用いることにより、上記
課題が解決されることを見出したものである。ニッケル
含有結晶性メタロシリケート触媒は、銅系触媒に比べ反
応中の活性戒分のロスが極めて少なく、安定してフェノ
ール類を製造することができ、かつ、触媒活性も同等以
上の威績を示すことを見出したものである。
(Means for Solving the Problems) The present inventors have conducted intensive studies on a method for stably producing phenols in a high yield by hydrolysis from halogenated aromatic compounds, and found that nickel The inventors have discovered that the above-mentioned problems can be solved by using the crystalline metallosilicate containing crystalline metallosilicate as a catalyst. Compared to copper-based catalysts, nickel-containing crystalline metallosilicate catalysts have extremely little loss of active components during the reaction, can produce phenols stably, and have the same or higher catalytic activity. This is what I discovered.

本発明に用いられるハロゲン化芳香族化合物としては、
塩素原子、臭素原子のいずれか1つ以上が芳香族核に直
接置換したものであって、例えば、クロロベンゼン、ジ
クロ口ベンゼン、プロモベンゼン、ジブロモベンゼン、
クロロトルエン、プロモトルエン、クロロキシレン、プ
ロモキシレン等のハロゲン置換ベンゼン類、クロロナフ
タレン、プロモナフタレン等のハロゲン置換ナフタレン
類等を挙げることができる。
The halogenated aromatic compounds used in the present invention include:
One or more of a chlorine atom or a bromine atom is directly substituted on an aromatic nucleus, such as chlorobenzene, dichlorobenzene, bromobenzene, dibromobenzene,
Examples include halogen-substituted benzenes such as chlorotoluene, promotoluene, chloroxylene, and promoxylene, and halogen-substituted naphthalenes such as chloronaphthalene and promonaphthalene.

本発明で用いる触媒は、ニッケル含有の結晶性メタロシ
リケートであって、ZSM−5,ZSM−11,AZ−
1 (特開昭59−128210号公報)類似の構造を
有するものが好ましく用いられる。結晶性メタロシリケ
ートのメタル或分としては、アルξニウム、ホウ素、ク
ロム、鉄、パナジウム、ガリウム、チタン等公知のメタ
ロシリケートに用いられるいずれでもよい。好ましくは
アルミニウム、ホウ素を含むものである。これらメタロ
シリケートのケイ素とメタル威分の原子比としては10
以上、好ましくは15以上、500以下がよい。
The catalyst used in the present invention is a nickel-containing crystalline metallosilicate, such as ZSM-5, ZSM-11, AZ-
1 (JP-A-59-128210) Those having a similar structure are preferably used. The metal of the crystalline metallosilicate may be any metal used in known metallosilicates, such as aluminum, boron, chromium, iron, panadium, gallium, and titanium. Preferably it contains aluminum and boron. The atomic ratio of silicon and metal content in these metallosilicates is 10.
Above, preferably 15 or more and 500 or less.

ニッケルの含有量としては0.01〜203131%、
好ましくは0.1〜10重量%、さらに好ましくは0.
2〜5重量%である。ニッケルの含有方法としては、含
浸法、イオン交換法、ニッケル化合物(好ましくは塩化
ニッケル)をパウダーブレンドあるいは混練り含有する
方法、結晶性メタロシリケートの水熱合成時にニッケル
塩として添加する等公知の方法を用いることができる。
The content of nickel is 0.01 to 203131%,
Preferably 0.1 to 10% by weight, more preferably 0.1% by weight.
It is 2 to 5% by weight. Nickel can be added using known methods such as impregnation, ion exchange, powder blending or kneading a nickel compound (preferably nickel chloride), and adding it as a nickel salt during hydrothermal synthesis of crystalline metallosilicate. can be used.

これら結晶性メタロシリケートは、通常、無機酸化物か
ら成るバインダーを加え戒型体として用いられるが、バ
インダーのf[としては、低酸性度のものがフェノール
の選択性に与える影響から好ましい。酸性度の高いバイ
ンダーを用いると、脱ハロゲン化水素副生物であるベン
ゼン等の副生が増大する。低酸性度のバインダーとして
は、硅素、ジルコニア、チタニア、シリカ・マグネシア
、シリカ・ベリリア、シリカ・チタニア、ゲルマニウム
等を挙げることができる。これらは単独あるいはアルカ
リ、アルカリ土類金属酸化物と組合わせて用いられる。
These crystalline metallosilicates are usually used in the form of a binder by adding a binder made of an inorganic oxide, but f[ of the binder is preferably one with low acidity because of its influence on the selectivity of phenol. When a highly acidic binder is used, by-products such as benzene, which is a dehydrohalogenation by-product, increase. Examples of the low acidity binder include silicon, zirconia, titania, silica/magnesia, silica/beryria, silica/titania, and germanium. These may be used alone or in combination with alkali or alkaline earth metal oxides.

特にシリカが好ましい。Particularly preferred is silica.

さらに、本発明に用いる結晶性メタロシリケートは、ス
チーム存在下で200〜7 0 0 ’Cの温度で処理
するか、スチーム非存在下で600〜850℃の温度下
で熱処理したものが、フェノール選択性、触媒の安定性
から好ましく用いられる。
Furthermore, the crystalline metallosilicate used in the present invention is heat-treated at a temperature of 200 to 700'C in the presence of steam, or at a temperature of 600 to 850'C in the absence of steam, and the crystalline metallosilicate used in the present invention is phenol-selective. It is preferably used from the viewpoint of properties and stability of the catalyst.

本発明における反応条件としては、原料ハロゲン化芳香
族化合物により異なるが、通常250〜600゜Cの温
度、好ましくは300〜550゜Cの温度、さらに好ま
しくは350〜500゜Cの反応温度が、水のハロゲン
化芳香族化合物に対するモル比としては0.5〜100
、好ましくは1〜50、さらに好ましくは2〜20が用
いられる。原料ハロゲン化芳香族化合物の供給速度とし
ては、重量時間空間速度(WHSV)で0.05〜20
Hr− ’、好ましくは0.1〜10Hr−’が用いら
れる。
The reaction conditions in the present invention vary depending on the raw material halogenated aromatic compound, but the reaction temperature is usually 250 to 600°C, preferably 300 to 550°C, and more preferably 350 to 500°C. The molar ratio of water to the halogenated aromatic compound is 0.5 to 100.
, preferably 1 to 50, more preferably 2 to 20. The feed rate of the raw material halogenated aromatic compound is 0.05 to 20 in terms of weight hourly space velocity (WHSV).
Hr-', preferably 0.1 to 10 Hr-' is used.

(発明の効果) 本発明の方法によれば、ハロゲン化芳香族化合物よりフ
ェノール類を高い収率で、かつ、安定的に製造すること
ができる。
(Effects of the Invention) According to the method of the present invention, phenols can be stably produced in higher yield than halogenated aromatic compounds.

(実施例) 以下に実施例を挙げて具体的に説明するが、本発明は、
これに限定されるものではない。
(Example) The present invention will be specifically explained by giving examples below.
It is not limited to this.

実施例1 公知の方法によりZ S M  5 (Sing/ A
f t’s=45)を水熱合威し、次いで、常法により
塩化ナトリウム水溶液を用いてナトリウム型とし、次い
で、硝酸ニッケル水溶液を用いてニッケル交換し、ニッ
ケル含有量0.6重量%含有させた。こノニッケル含有
ZSM−5を、シリカゾルをバインダーに用い、混練り
、押出威型し、乾燥した後、550″Cにて4時間仮焼
したもの(バインダー量はシリカとして30重量%)を
触媒として用いた。
Example 1 Z SM 5 (Sing/A
f t's=45) was hydrothermally combined, then made into a sodium form using a sodium chloride aqueous solution by a conventional method, and then nickel-exchanged using a nickel nitrate aqueous solution to obtain a product containing 0.6% by weight of nickel. I let it happen. This nickel-containing ZSM-5 was kneaded using silica sol as a binder, extruded, dried, and then calcined at 550"C for 4 hours (the amount of binder was 30% by weight as silica) as a catalyst. Using.

反応は10mm径の石英製反応管に触媒10gを充填し
、加熱炉により所定温度に加熱、定量ボンプでクロロベ
ンゼン、水を各々所定量供給し、加水分解反応を実施し
た. 反応条件として、450℃、水/クロロベンゼンモル比
6、クロロベンゼンの供給IWHsVとして0.  2
Hr−’で行った。通液開始後2〜3時間目のサンプリ
ング液の分析より、クロロベンゼンの転化率46%、フ
ェノール収率40molXであり、副生物はベンゼンが
殆どで、ベンゼンとフェノールの合計の選択率は98.
6%を示した。
The reaction was carried out by filling a 10 mm diameter quartz reaction tube with 10 g of catalyst, heating it to a predetermined temperature in a heating furnace, and supplying predetermined amounts of chlorobenzene and water with a metering pump to carry out a hydrolysis reaction. The reaction conditions were 450°C, water/chlorobenzene molar ratio 6, and chlorobenzene supply IWHsV of 0. 2
I went with Hr-'. Analysis of the sampled liquid 2 to 3 hours after the start of the flow revealed that the conversion rate of chlorobenzene was 46%, the phenol yield was 40 molX, the by-product was mostly benzene, and the total selectivity of benzene and phenol was 98.
It showed 6%.

さらに反応を続け50時間反応後の触媒を取り出し、ニ
ッケル量の測定を行ったところ、ニッケルの減少は1%
以下であった。
When the reaction continued for 50 hours, the catalyst was taken out and the amount of nickel was measured, and the decrease in nickel was 1%.
It was below.

実施例2 実施例lと同様に、ただし、バインダーとしてアルミナ
ゾルを用いて成型した触媒を反応に使用した。反応条件
は実施例1と同様にして行った。
Example 2 Similar to Example 1, except that a shaped catalyst using alumina sol as binder was used in the reaction. The reaction conditions were the same as in Example 1.

クロロベンゼンの転化率は28%、フェノールの収率は
23mol!であった。ベンゼンとフェノールの合計の
選択率は97.5%を示した。
The conversion rate of chlorobenzene is 28% and the yield of phenol is 23 mol! Met. The total selectivity of benzene and phenol was 97.5%.

実施例3 実施例lと同様に、ただし、触媒として実施例1で用い
たZSM−5を850℃、空気雰囲気で4時間加熱処理
し、ついでNa交換、Ni交換(ニッケル含量0.4重
量%)したものを用いた。反応温度4 6 0”C,W
HSV=0.2 5Hr−’,水/クロロベンゼン比5
.8の条件で加水分解反応を実施した。反応開始後2〜
3時間目の反応成績は、クロロベンゼンの転化率35%
、フェノールの収率31%であった。
Example 3 Same as Example 1, except that ZSM-5 used as a catalyst in Example 1 was heat treated at 850°C in an air atmosphere for 4 hours, and then Na exchanged and Ni exchanged (nickel content 0.4% by weight). ) was used. Reaction temperature 460"C, W
HSV=0.2 5Hr-', water/chlorobenzene ratio 5
.. The hydrolysis reaction was carried out under the conditions of 8. 2~ after starting the reaction
The reaction result at the 3rd hour was a conversion rate of chlorobenzene of 35%.
, the yield of phenol was 31%.

実施例4 公知方法によりSing/ A j! zOs比70の
ZSM5を水熱合威し、実施例1と同様に処理し、シリ
カバインダーを使用したNi含有のZSM−5触媒を調
製した(ニッケル含有量0.4重量%/ゼオライト)。
Example 4 Sing/A j! by a known method. ZSM-5 with a zOs ratio of 70 was hydrothermally combined and treated in the same manner as in Example 1 to prepare a Ni-containing ZSM-5 catalyst using a silica binder (nickel content 0.4% by weight/zeolite).

実施例1と同様の方法によりクロロベンゼンの加水分解
反応を450℃、WHSV=0.  2Hr−’、水/
クロロベンゼンモル比lOの反応条件で行った。2〜3
時間目のクロロベンゼンの転化率は20%、フェノール
の選択率は95moIXを示した。lO〜12時間目の
クロロベンゼンの転化率は17%、フェノールの選択率
は96mo1zであった。15時間反応後の触媒を取り
出し、ニッケル含有量を蛍光X分析装置を用い測定した
ところ、ニッケルの減少は認められなかった。
The hydrolysis reaction of chlorobenzene was carried out in the same manner as in Example 1 at 450°C and WHSV=0. 2Hr-', water/
The reaction conditions were such that the molar ratio of chlorobenzene was 10. 2-3
The conversion rate of chlorobenzene at the time point was 20%, and the selectivity of phenol was 95 moIX. The conversion rate of chlorobenzene at 12 hours after 1O was 17%, and the selectivity of phenol was 96 mo1z. After 15 hours of reaction, the catalyst was taken out and the nickel content was measured using a fluorescence X analyzer, and no decrease in nickel was observed.

比較例1 実施例1と同様に、ただし、ニッケルの替わりに銅を用
いた他は、同様処方、条件でクロロベンゼンの加水分解
実験を行った。反応2〜3時間目のクロロベンゼンの転
化率は40%、フェノールの収率は37molX、ベン
ゼンとフェノールを合わせた選択率は95a+oHを示
した。さらに反応を続け10時間後の触媒を取り出し、
活性威分である銅の量を測定したところ、10%の減少
が認められた。
Comparative Example 1 A chlorobenzene hydrolysis experiment was conducted in the same manner as in Example 1, except that copper was used instead of nickel, and the same formulation and conditions were used. The conversion rate of chlorobenzene during the second to third hours of the reaction was 40%, the yield of phenol was 37 molX, and the selectivity for benzene and phenol combined was 95a+oH. The reaction continued for 10 hours, and the catalyst was removed.
When the amount of copper, which is an active ingredient, was measured, a 10% decrease was observed.

同触媒、同条件で50時間反応後の触媒の銅量を測定し
たところ、銅量は50%の減少を示した。
When the amount of copper in the catalyst was measured after reacting with the same catalyst for 50 hours under the same conditions, the amount of copper showed a decrease of 50%.

実施例5 シリカゾル(シリカ含有量30重量%)256gに、硝
酸ニッケル・6水塩7.4g、テトラプ口ビルアンモニ
ウムブロマイド60gを純水220gに溶解させた溶液
を強攪拌下に転化し、次いで、20重量%の苛性ソーダ
水溶液20gを添加し、ゲル化させた。このゲル状物を
1lのテフロン内張りのオートクレープに仕込み、17
0゜C、600rpm下60時間水熱合威した。生成ス
ラリーを濾過、水洗、次いで110″C、6時間乾燥後
、500″C、空気中で焼威してニッケルシリケートを
得た。ニッケルの含有量は1.6%で、X線回折分析に
よるとZSM−5類似の回折パターンを示した。このも
のを圧縮成型、次いで破砕し、8〜20メッシュに篩分
けしたものを触媒に用い、反応温度4 50’C,WH
SV=0.29Hr−’、水/クロロベンゼンモル比6
、希釈窒素量を窒素/クロロベンゼンモル比1.1の条
件でクロロベンゼンの加水分解反応を行った。
Example 5 A solution prepared by dissolving 256 g of silica sol (silica content 30% by weight), 7.4 g of nickel nitrate hexahydrate, and 60 g of tetrabubyl ammonium bromide in 220 g of pure water was converted under strong stirring, and then, 20 g of a 20% by weight aqueous solution of caustic soda was added to form a gel. Pour this gel into a 1 liter Teflon-lined autoclave,
Hydrothermal synthesis was carried out at 0°C and 600 rpm for 60 hours. The resulting slurry was filtered, washed with water, dried at 110''C for 6 hours, and then calcined at 500''C in air to obtain nickel silicate. The nickel content was 1.6%, and X-ray diffraction analysis showed a diffraction pattern similar to ZSM-5. This product was compression molded, then crushed and sieved to 8 to 20 mesh, and used as a catalyst, reaction temperature 4 50'C, WH
SV=0.29Hr-', water/chlorobenzene molar ratio 6
The hydrolysis reaction of chlorobenzene was carried out under the conditions that the amount of diluting nitrogen was set to a nitrogen/chlorobenzene molar ratio of 1.1.

Claims (2)

【特許請求の範囲】[Claims] (1)ハロゲン化芳香族化合物を気相にて加水分解して
フェノール類に転換するに際し、触媒としてニッケル含
有の結晶性メタロシリケートを用いることを特徴とする
フェノール類の製法。
(1) A method for producing phenols, which comprises using a nickel-containing crystalline metallosilicate as a catalyst when converting a halogenated aromatic compound into phenols by hydrolyzing it in the gas phase.
(2)ニッケル含有の結晶性メタロシリケートが低酸性
度のバインダーにより成型されたものである特許請求の
範囲第1項記載の方法。
(2) The method according to claim 1, wherein the nickel-containing crystalline metallosilicate is molded using a binder with low acidity.
JP2000379A 1990-01-08 1990-01-08 Production of phenols Pending JPH03206060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000379A JPH03206060A (en) 1990-01-08 1990-01-08 Production of phenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000379A JPH03206060A (en) 1990-01-08 1990-01-08 Production of phenols

Publications (1)

Publication Number Publication Date
JPH03206060A true JPH03206060A (en) 1991-09-09

Family

ID=11472164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000379A Pending JPH03206060A (en) 1990-01-08 1990-01-08 Production of phenols

Country Status (1)

Country Link
JP (1) JPH03206060A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126123A (en) * 2006-11-20 2008-06-05 Sumitomo Chemical Co Ltd Method for preparing catalyst for hydrolysis reaction and catalyst for hydrolysis reaction
JP2022513396A (en) * 2018-10-30 2022-02-07 エクソンモービル ケミカル パテンツ インコーポレイテッド Microporous Molecular Sieve Catalyst Burning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126123A (en) * 2006-11-20 2008-06-05 Sumitomo Chemical Co Ltd Method for preparing catalyst for hydrolysis reaction and catalyst for hydrolysis reaction
JP2022513396A (en) * 2018-10-30 2022-02-07 エクソンモービル ケミカル パテンツ インコーポレイテッド Microporous Molecular Sieve Catalyst Burning

Similar Documents

Publication Publication Date Title
CN101090865B (en) Process for making a germanium-zeolite
JPH0157047B2 (en)
JPH0250045B2 (en)
US5338525A (en) MFI-type zeolite and its preparation process
WO2018099966A1 (en) Process for the conversion of monoethanolamine to ethylenediamine employing a nanocrystalline zeolite of the mor framework structure
EP0105679B1 (en) Zeolites
JPH032132A (en) Silicometallate molecular sieve and use thereof as oxidation catalyst for alkanoic acids
JPS5978922A (en) Crystalline zeolite and manufacture
JPH03206060A (en) Production of phenols
JPH0228523B2 (en)
CN112551543B (en) Method for preparing IZM-2 zeolite in the presence of mixture of nitrogen-containing organic structuring agent in hydroxide and bromide form
JP2005510445A (en) Porous crystalline material (ITQ-21) and process for its preparation in the absence of fluoride ions
EP0129239B1 (en) Method for the synthesis of zsm-5 zeolite, at atmospheric pressure and at low temperature
JPH0826721A (en) Clinoptilolite and method for synthesizing same
JPH069464A (en) Production of aryl hydroxide compound
JP2000302735A (en) Production of methylamines
JPH035436B2 (en)
JPH04117339A (en) Production of aromatic hydroxide
JPH09122494A (en) Synthetic zeolite zsm-5 containing cu, manufacture thereof and manufacture of nitrogen oxide decomposition catalyst
JPH04117338A (en) Production of aromatic hydroxide
JPH01319447A (en) Production of phenols
JPH04240113A (en) Metal containing zeolite and its production
JPH0735351B2 (en) Manufacturing method of aryl hydroxide
JP2003277047A (en) Method for manufacturing cfi type zeolite, catalyst using the same and method for converting organic compound
JPS62240636A (en) Production of aryl hydroxide